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Synthesizing a Color Algorithm from Examples 

A lightness algorithm that separates surface reflectance from ihmhation in a 
Mondrian world is synthesized automatically from a set of examples, which consist of 
pairs of input (intensity signal) and desired output (surface reflectance) images. The 
algorithm, which resembles a new lighmess algorithm recently proposed by Land, is 
approximately equivalent to filtering the image through a center-surround receptive 
field in individual chromatic channels. The synthesizing technique, optimal linear 
estimation, requires only one assumption, that the operator that transforms input into 
output is linear. This assumption is true fbr a certain class of early vision algorithms 
that may therefbre be synthesized in a similar way from examples. Other methods of 
synthesizing algorithms from examples, or  "learning," such as back-propagation, do 
not yield a significantly bmer lightness algorithm. 

T HE PROBLEMS THAT A VISUAL SYS- 

tem must solve in decoding two- 
dimensional images into three-di- 

mensional scenes (inverse optics problems) 
are diflicult: the information supplied by an 
image is not sufficient by itself to specif) a 
unique scene. To reduce the number of 
possible interpretations of images, visual 
systems, whether artificial or biological, 
must make use of natural constraints which 
are explicit assumptions about the physical 
properties of surfaces and lights. Computa- 
tional vision scientists have derived effective 
solutions for some inverse optics problems 
(such as computing depth from binocular 
disparity) by determining the appropriate 
natural constraints and embedding them in 
algorithms. How might a visual system dis- 
cover and exploit natural constraints on its 
own? We address a simpler question: Given 
only a set of examples of input images and 
desired output solutions, can a visual system 
synthesize, or "learn," the algorithm that 
converts input to output? We find that an 
algorithm for computing color in a restrict- 
ed world can be constructed from examples 
by means of standard techniques of optimal 
linear estimation. 

The computation of color is a prime 
example of the difficult problems of inverse 
optics. Human beings do not merely dis- 
criminate between different wavelengths of 
light; we assign roughly constant colors to 
objects even though the intensity signals 
they send to our eyes change as the illumina- 
tion varies across space and chromatic spec- 
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trum. The computational goal underlying 
color constancy seems to be the extraction of 
invariant surface spectral reflectance proper- 
ties from the image intensity signal, in 
which reflectance and illumination are 
mixed (1). 

Lightness algorithms (2-8), pioneered by 
Land, assume that the color of an object can 
be speafied by its lighmess, or relative sur- 
face reflectance, in each of three indepen- 
dent chromatic channels, and that lighmess 
is computed in the same way in each chan- 
nel. Computing color is thereby reduced to 
extracting surface reflectance from the inten- 
sity signal in a single chromatic channel. 

The image intensity signal, or more pre- 
cisely, the image imadiance s' is proportional 
to the product of the illumination intensity 
e' and the surface reflectance r' in that 
channel: 

where x and y specif) a point on the surface. 
This form of the intensity equation is true 
for a Lambertian reflectance model, in 
which the irradiance s' has no specular com- 
ponents, and for appropriately chosen color 
channels (9). Taking the logarithm of both 
sides converts it to a sum: 

where s = log(sP), r = log(rr), and e = 
log(el). 

Given s(x,y) alone, the problem of solving 
Eq. 2 for r(x,y) is underconstrained. Light- 
ness algorithms constrain the problem by 
restricting their domain to a world of Mon- 
drians, two-dimensional surfaces covered 
with patches of random colors (2) (Fig. 1) 
and by exploiting two constraints in that 
world: (i) rl(x,y) is uniform within patches 
but has sharp discontinuities at edges be- 

tween patches and (ii) er(x,y) varies smooth- 
ly across the Mondrian. Under these con- 
straints, lightness algorithms can recover a 
good approximation to r(x,y) and so can 
recover lighmess triplets that label roughly 
constant colors (10). 

We asked whether it is possible to synthe- 
size from examples an algorithm to extract 
reflectance from image irradiance, and 
whether the synthesized algorithm would 
resemble existing lighmess algorithms de- 
rived from an explicit analysis of the con- 
straints. We made one assumption, that the 
operator that transforms irradiance into re- 
flectance is linear. Under that assumption, 
motivated by considerations discussed later, 
we used optimal linear estimation tech- 
niques to synthesize an operator from exam- 
ples. The examples are pairs of images: an 
input image of a Mondrian under illumina- 
tion that varies smoothly across space paired 
with the desired output image that displays 
the reflectance of the Mondrian without the 
illumination. The technique finds the linear 
estimator that best maps input into desired 
output, in the least-squares sense. 

For computational convenience we used 
one-dimensional "training vectors" that rep- 
resent vertical scan lines across the Mondri- 
an images (Fig. 2). We generated many 
different input vectors s by adding together 
different random r and e vectors, according 
to Eq. 2. Each vector r represents a pattern 
of step changes across space, corresponding 
to one column of a reflectance image (Fig. 3, 
left). The step changes occur at random 
pixels and are of random amplitude between 
set minimum and maximum values. Each 
vector e represents a smooth gradient across 
space with a random o&et and slope, corre- 

Flg. 1. A Mondrian under an illumination gradi- 
ent, generated by adding together two 320 by 
320 pixel images: one is the (log) reflectance 
image, an array of rectangles each with a different, 
uniform gray-level (Fig. 2A); the other is the 
(log) illumination image, in which the pixel values 
increase linearly in the same way across each 
column. 
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sponding to one column of an illumination 
image. We then arranged the training vec- 
tors s and r as the columns of two matrices S 
and R, respectively. Our goal was then to 
compute the optimal solution L of 

by using many more training vectors than 
there are number of pixels in each vector- 

What is the algorithm and what is its rela- 
tionship to other lightness algorithms? To 

and by using the stkghtforward formula 
that a lies in the overconstrained case: 
s+ = s e q s ~ ) - '  (12). 

The operator L computed in this way 
recovers a good approximation to the cor- 
rect output vector r when given a news, not 
part of the training set, as input (Fig. 2C). A 
second operator, estimated in the same way, 
recovers the illumination 8. Acting on a 
random two-dimensional Mondrian, L also 
yields a satisfactory approximation to the 
correct output image (Fig. 3, right). 

Our estimation scheme has successfully 
synthesized an algorithm that performs the 
lightness computation in a Mondrian world. 

answer-these we &mined the 
structure of the matrix L. We assumed that, 
although the operator is not a convolution 
operator, it should approximate one when 
applied far from the boundaries of the im- 
age. That is, in its central part, the operator 
should be space-invariant, performing the 
same action on each point in the image. 
Each row in the central part of L should 
therefore be the same as the row above but 
displaced by one element to the right. In- 
spection of the matrix confirms this expecta- 
tion. To find the form of L in its center, we 
thus averaged the rows there, first shifting 
them appropriately. The result, shown in 
Fig. 4, is a space-invariant filter with a 
narrow positive peak and a broad, shallow, 
negative surround. 

The filter our scheme synthesizes is very 
similar to Land's most recent retinex opera- 
tor (5), which divides the image irradiance 
at each pixel by a weighted average of the 
irradiance at all pixels in a large surround 
and takes the logarithm of that result to 
yield lightness (13). The lighmess triplets 
computed by the retinex operator agree well 
with human perception in a Mondrian 
world. The retinex operator and our matrix 
L both differ from Land's earlier retina 
algorithms, which require a nonlinear 
thresholding step to eliminate smooth gradi- 
ents of illumination. The shape of the filter 
in Fig. 4, particularly of its large surround, is 
also suggestive of the "nonclassical" recep 

where L is a linear operator represented as a 
matrix. 

It is well known that the solution of this 
equation that is optimal in the least-squares 
sense is 

where S+ is the Moore-Penrose pseudoin- 
vetse (1 1 ) . We computed the pseudoinverse 
by overconstraining the problem-that is, 
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Flg. 2. (A) The input data, a one-dimensional vector 320 pixels long. Its random Mondrian dectance 
pa -m 'is. superimposed on a linear illumination gradent with-a random slope and offset. (B) 
Corrcsmndinp ou t~u t  solution. the illumination on the left and reflectance on the ripht. We uxd 1500 
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such p&s of Gput-butput aramples (each different from the others) to train the operator shown in Fig. 
4. (C) Result obtained by the estimated operator when it acts on the input data (A), not part of the 
training set; illumination is on the left and the retlectance is on the right, to be compared with (B). The 
result is fairly typical: in some cases the prediction is even better, in others it is worse. 
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Ag. 4. The space-invariant part of the estimated 
operator, obtained by shifting and averaging the 
rows of a 160-pixel-wide central square of the 
matrix L, trained on a set of 1500 examples with 
linear illumination gradients (xe Fig. 2). When 
logarithmic illumination gradients are used, a 
qualitatively similar receptive field is obtained. In 
a separate experiment we used a training set of 
one-dimensional Mondrians with either linear 
illumination gradients or slowly varying sinusoi- 
dal illumination components with random wave- 
length, phase, and amplitude. The r e s u l ~ g  filter 
is shown in the inset. The surrounds of both 
filters extend beyond the range we can estimate 
reliably, the range we show here. 

Fig. 3. (Left) The (log) dectance image that is one component of the Mondrian of Fig. 1, equivalent 
to the Mondrian of Fig. 1 under uniform illumination. (RlgM) The (log) dectance image that the 
estimated operator produces when it acts on the Mondrian of Fig. 1. 
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tive fields that have been found in V4, a 
cortical area implicated in mechanisms un- 
derlying color constancy (14-17. 

The form of the space-invariant filter is 
similar to that derived in our earlier formal 
analysis of the lightness problem (8). It is 
qualitatively the same as that which results 
from the direct application of regularization 
methods exploiting the spatial constraints 
on reflectance and illumination described 
above (9, 18, 19). The Fourier transform of 
the filter of Fig. 4 is approximately a band- 
pass filter that cuts out low frequencies that 
are the result of slow gradients of illumina- 
tion and preserves intermediate frequencies 
that are the result of step changes in reflec- 
tance. In contrast, the operator that recovers 
the illumination, e, takes the form of a low- 
pass filter. We stress that the entire operator 
L is not a space-invariant filter. 

In this context, it is clear that the shape of 
the estimated operator should vary with the 
type of illumination gradient in the training 
set. We synthesized a second operator with a 
new set of examples that contained equal 
numbers of vectors with random, sinusoi- 
dally varying illumination components and 
vectors with random, linear illumination 
gradients. Whereas the first operator, syn- 
thesized from examples with strictly linear 
illumination gradients, has a broad negative 
surround that remains virtually constant 
throughout its extent, the new operator's 
surround (Fig. 4, inset) has a smaller extent 
and decays smoothly toward zero from its 
peak negative value in its center. 

We also applied the operator in Fig. 4 to 
new input vectors in which the density and 
amplitude of the step changes of reflectance 
differed greatly from those on which the 
operator was trained. The operator per- 
forms well, for example, on an input vector 
representing one column of an image of a 
small patch of one reflectance against a 
uniform background of a different reflec- 
tance, where the entire image is under a 
linear illumination gradient. This result is 
consistent with psychophysical experiments 
that show that color constancy of a patch 
holds when its Mondrian background is 
replaced by an equivalent gray background 
(20). 

The operator also reproduces simulta- 
neous brightness contrast, as expected from 
the shape and sign of its surround. The 
output reflectance it computes for a patch of 
fixed input reflectance decreases linearly 
with increasing average irradiance of the 
input test vector in which the patch appears, 
in the same way that, to us, a dark patch 
appears darker when against a light back- 
ground than against a dark one. 

Our estimation procedure is motivated by 
our previous observation (9, 18, 21) that 

standard regularization algorithms (19) in 
early vision define linear mappings between 
input and output and therefore can be esti- 
mated associatively under certain condi- 
tions. The technique of optimal linear esti- 
mation that we use is closely related to 
optimal Bayesian estimation (22). If we 
were to assume from the start that the 
optimal linear operator is space-invariant, 
we could considerably simplify (and stream- 
line) the computation by using standard 
correlation techniques (22, 23). 

We have compared our estimation tech- 
nique with other methods of "learning" a 
lightness algorithm. In particular, we com- 
puted the regularized pseudoinverse using 
gradient descent on a "neural" network (24) 
with linear units. Since the pseudoinverse is 
the best linear approximation in the L2 
norm, a gradient descent method that mini- 
mizes the square error between the actual 
output and desired output of a hlly con- 
nected linear network is guaranteed to con- 
verge, albeit slowly. Thus gradient descent 
in weight space converged to the same re- 
sult, the global minimum, as our first tech- 
nique. We also compared the linear estima- 
tion technique with a "back-propagation" 
network: gradient descent on a two-layer 
network with sigmoid units (24) (32 inputs, 
32 "hidden units," and 32 linear outputs), 
with training vectors 32 pixels long. The 
time needed for the network to converge to 
a stable configuration was much longer than 
for the linear estimator for the same set of 
examples. The network's performance was 
slightly, yet consistently, better. 

We do  not think that our results mean 
that color constancy may be learned during a 
critical period by biological organisms. It 
seems more reasonable to consider them 
simply as a demonstration on a toy world 
that in the course of evolution a visual 
system may recover and exploit natural con- 
straints hidden in the physics of the world. 
The significance of our results lies in the 
facts that a simple statistical technique may 
be used to synthesize a lightness algorithm 
from examples; that the technique does as 
well as other techniques such as back-propa- 
gation; and that a similar technique may be 
used for other problems in early vision. 
Furthermore, the synthesized operator re- 
sembles both Land's psychophysically tested 
retinex operator and a neuronal nonclassical 
receptive field. The operator's properties 
suggest that simultaneous brightness (or 
color) contrast might be the result of the 
visual system's attempt to discount illumina- 
tion gradients (25). 
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Seawater Strontium Isotopes, Acid Rain, and the 
Cretaceous-Tertiary ~ o u n d a r ~  

A large bolide impact at the end of the Cretaceous would have produced significant 
amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid 
precipitation would have increased continental weathering greatly and could be an 
explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at 
about this time, due to the dissolution of large amounts of strontium fiom the 
continental crust. Spikes to high values in the seawater strontium isotope record at 
other times may reflect similar episodes. 

I N RECENT YEARS MUCH PROGRESS HAS 

been made in two areas of research that 
appear unrelated: precise documenta- 

tion of the strontium isotopic composition 
of ocean water through time and the under- 
standing of the a&ospheric geochemical 
effects that accompany impacts of large ex- 
traterrestrial objects on the earth. Both may 
be important for understanding the events 
that occurred at the Cretaceous-Tertiary 
(K-T) boundary. 

Hess e t  al. ( I )  recently presented new data 
on the 8 7 ~ r / 8 6 ~ r  ratio in seawater over the 
past 100 million years. They analyzed select- 
ed fossil foraminifera from D e e ~  Sea Drill- 
ing Project cores and showed that the 
8 7 ~ r / 8 6 ~ r  ratio generally increases smoothly 
from near 0.7074 at 100 million years ago 
to the present-day seawater value of 0.7092. 
However, anomalously high ratios occur at 
the K-T boundary, forming a pronounced 
maximum in the otherwise relativelv smooth 
curve. They considered whether a large im- 
pact, suggested as the cause of iridium 
anomalies at this boundary (2 ) ,  could also 
be responsible for the strontium isotopic 
anomaly. Two possibilities were examined: 
(i) that the elevated 87Sr/86Sr ratio was due \ ,  

to dissolution of the bolide in seawater and 
(ii) that the impact ejecta (vapor and solid) 
were the major source of the strontium. 

ratios, these sources could not supply suffi- 
cient strontium to account for the observed 
seawater increase. 

Prinn and Fegley (3)  analyzed the atmo- 
spheric chemical effects of the impact of a 
large projectile on the earth and, following 
an earlier idea by Lewis e t  al. (4), calculated 
that the major effect would be the produc- 
tion of large amounts of nitrogen oxides 
(NO,) due to shock heating of the atmo- 
sphere. As a consequence, extremely acidic 
precipitation would occur immediately near 
the impact site, and, over a more extended 
time period, it would occur globally. The 
resulting enhanced weathering of the conti- 
nents would increase the supply of continen- 
tal strontium to the oceans, and potentially 

might be a cause for the high 8 7 ~ r / 8 6 ~ r  ratio 
observed at the K-T boundary. Even under a 
normal weathering regime the most impor- 
tant factor controlling strontium isotopic 
variation in seawater is the isotopic compo- 
sition of the riverine strontium input (5 ) .  

Seawater strontium isotope data from 
three recent papers (1, 5, 6) for the time 
period from 50 million to 80 million years 
ago are plotted in Fig. 1. Age assignments 
for most of these samples are probably accu- 
rate to 1 million to 2 million years, although 
there may be more uncertainty attached to 
some of ;he non-Deep Sea ~ i i l l i n ~  Project 
samples analyzed by DePaolo and Ingram 
(6). Agreement among the three labora- 
tories for samples of approximately the same 
age is generally good, and for modern shells 
and seawater the bias-adjusted values agree 
within reported uncertainties. Thus appar- 
ently "anomalous" values (Fig. 1) are proba- 
bly not due to interlaboratory effects. The 
high values near the K-T boundary are 
apparent, although there is some scatter. 
One sample in particular [sample P3 mea- 
sured by DePaolo and Ingram (6) and as- 
signed an age of 62.5 million years] that is 
somewhat younger than the boundary nev- 
ertheless has a high 8 7 ~ r i 8 6 ~ r  ratio. Compari- 
son with the other isotopic data suggests 
that it may be a few million years older. The 
sample is a "Middle Danian" rhynchonellid 
brachiopod from Faxe in Denmark; this 
species was one of the first to appear in the 
Tertiary in this area (7). If this sample is 
reworked or if the age assignment is errone- 
ously low, then the strontium isotopic spike 
appears to begin very abruptly at the K-T 
boundary, high values occur over a time 
period of about 2 million years, and the 
ratios then begin to decrease to pre-Tertiary 
values (Fig. 1). This is consistent with rapid 
introduction into the oceans of strontium 

However ,Hesseta l , (1)showedthata l -  0.7074 '  ' '  ' ' I I ' ' ' I 
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though both continental crust and chondrit- 
Age (million years) 

ic meteorites have high strontium isoto~ic " 
Fig. 1. Strontium isotopic composition of seawater for the period from 50 million to 80 nullion years 
ago, based on data from ( I )  (solid circles), (5)  (open triangles), and (6) (open circles). Arrows on the 
time axis indicate the K-T boundary. The apparently anomalous sample P3 (question mark) is discussed 

scripps ~ ~ ~ t i t ~ t i ~ ~  of oceanography, L~ joua, CA in the text. AU data are bias-adjusted to the 87Sr/86~r value for National Bureau of Standards standard 
92093. strontium given in (1); errors are as reported in the original works. 
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