
Neurometrics : Computer- Assisted Differential 
Diagnosis of Brain Dysfunctions 

Normative developmental equations provide reliable de- 
scriptors of brain electrical activity in people 6 to 90 years 
old. Healthy persons display only chance deviations be- 
yond predicted ranges. Patients with neurological impair- 
ment, subtle cognitive dysfunctions, or psychiatric disor- 
ders (including dementia and primary depression) show a 
high incidence of abnormal values. The magnitude of the 
deviations increases with clinical severity. Different disor- 
ders are characterized by distinctive profiles of abnormal 
values of brain electrical features. Computerized differen- 
tial classification of some of these disorders can be 
achieved with high accuracy. Such classification, provid- 
ing objective corroboration of brain dysfunctions, may be 
a useful adjunct to psychiatric diagnosis, which relies 
primarily on subjective clinical impressions. These meth- 
ods may provide independent criteria for diagnostic valid- 
ity, evaluations of treatment efficacy, and more individ- 
ualized therapy. 

I N 1977, rr WAS PROPOSED THAT STATISTICAL ANALYSIS OF 

standardized, quantitative electrophysiological features relative 
to a body of normative data (Neurometrics) might aid in the 

differential diagnosis of a variety of subtle brain dysfunctions (I). 
Subsequently, a set of developmental equations was reported that 
described the electroencephalogram (EEG) features that could be 
observed in healthy children in the United States and Sweden, aged 
6 to 16 years (2). A high proportion of children with learning 
disabilities or neurological dyshnctions showed marked deviations 
of certain features from the predicted normal range (3). Large 
numbers of normal subjects aged 1 7  to 90 years have now been 
studied. The set offeatures that can be considered normal from age 6 
to 90 has been greatly expanded and described by normalized age- 
regression equations. These features include univariate and multi- 
variate descriptors of absolute power, relative power, mean frequen- 
cy, and coherence and asymmetry between homologous leads for 
both monopolar and bipolar derivations (4). All features are extract- 
ed from a 60-second sample of artifact-free EEG, automatically 
recorded and analyzed by a mobile microprocessor system, collected 
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from scalp electrodes or a helmet placed on a subject resting 
comfortably with eyes closed in a quiet, dimly lit room. 

In eight countries, including the United States, investigators have 
found that normal persons display few values outside the predicted 
range, indicating that these features are independent of cultural or 
ethnic background (3,s-11). When these features were evaluated in 
large groups of patients with a variety of cognitive, psychiatric, and 
neurological dysfunctions, a high proportion of abnormal values 
were found (6, 8, 9, 11-13). The patterns of abnormal values 
appeared to be distinctive for different disorders and made it 
possible to perform computer-assisted differential classification with 
high accuracy (9, 12, 13). 

These findings are of particular importance in psychiatry, where 
current diagnostic methods rely almost exclusively on subjective 
impressions obtained by clinical interviews and rating scales. Objec- 
tive evidence of specific abnormalities in brain electrical activity 
provides independent corroboration of clinical judgment and per- 
mits validation of the physiological homogeneity of clinical psychi- 
atric classifications. Such adjuncts to psychiatric diagnosis are 
presently lacking. Since the magnitude of many abnormal neurome- 
tric values increases with clinical severity, longitudinal tracking may 
provide criteria for describing the natukl course of different disor- 
ders and for the evaluation of treatments. Such sequential measure- 
ments should lead to more individualized therapeutic management 
and better outcomes of treatment. 

Topographic head maps depict in Fig. 1 the average deviations 
from the values predicted by the developmental equations, for one 
subset of relative power features in large groups of normal persons 
(14) and of patients with mild cognitive impairment (15), primary 
degenerative dementia (IS), schizophrenia (1 6), alcoholism (1 7), 
unipolar depression (1 8), and bipolar depression (1 8). 

The color coding on these maps is scaled to reflect the probability 
that the observed findings are within the normal range. First, for 
each of the 19 electrodes of the International 10120 System, the 
values of relative power X in the delta, theta, alpha, and beta 

Fig. 1. Average topographic head maps for Z scores of relative power 
(percentage) in delta, theta, alpha, and beta frequency bands, computed 
across groups of individuals classified as stated. These maps represent the 
mean relative power difference between each group and the reference group, 
expressed in standard deviation of the reference (normal) group not shown 
on the figure. Color coding is proportional to the mean Z score for each 
group, in steps corresponding to those shown on the Z scale. The scale from 
+ 1.5 to - 1.5 applies to the first six rows. The scale +0.7 to -0.7 applies 
only to the last row. The significance of Z-scale values can be estimated by 
taking the square root of sample size and the standard deviation of each 
group into account and ranges from 0.002 to <0.001. For example, for n = 
60, the probability associated with an average Z value of 0.7 is that 
corresponding to a standard normal deviate of 5.4, that is, a probability 
considerably less than 0.0001. 
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frequency bands were computed from the EEG sample recorded 
from every subject (19). Second, the individual data were subjected 
to the transform Y = log[X/(l.O - X)] which achieves Gaussian 
distributions for these features (2, 4, 5) .  Third, the significance of 
the obtained individual values of Y was assessed by computing the 
standard score or Z score (4, 20). Finally, the individual Z scores 
were averaged for each electrode position separately for each group 
of patients, and the group means were displayed as the color-coded 
topographic maps shown in Fig. 1. 

A sufficiently high proportion of individuals within each of these 
groups of 20 to 93 patients deviated from normal in the same 
direction for particular features so that the mean value of Z was 
often greater than 1.0. This is evidence that many features for each 
group are significantly different from normal, which was corroborat- 
ed by multiple t tests. Many patients with the same disorder have 
some abnormal features in common. Marked differences are visible 
in the average profiles of abnormality among these disorders. 
Consistent patterns of weak differences across large numbers of 
features, even if individual feature differences do not reach signifi- 
cance, can yield extremely high multivariate significance. 

However, individual variability within each group is appreciable. 
As a result, patients with the same disorder often show differences so 
marked that accurate classification by visual inspection of topo- 
graphic maps of individual features alone is not possible. It is 
therefore necessary to use multivariate statistical analysis of compos- 
ite descriptors of relations among brain regions, as well as of local 
features, in order to accomplish computer classification of the 
individual patients. Here, we briefly review the development and 
basic principles of this neurometric approach and present results that 
demonstrate the accuracy achieved with this method, especially in 
classification of psychiatric patients. 

Developmental Equations for the EEG of 
Children 

In 1973, Matoulek and PetersCn (10) published normative data 
for 16 features extracted from EEGs of healthy Swedish children 
from 1 to 21 years old. These features were the absolute power (in 
squared microvolts) in four frequency bands (delta, theta, alpha, and 
beta) in each of eight bipolar derivations, averaged across homolo- 
gous pairs on the two hemispheres (21). Computer analysis of these 
features in EEGs from healthy, normally functioning, black U.S. 9- 
year-olds showed that they corresponded very closely to 9-year-old 
Swedish children ( I ) .  

In view of this correspondence, 60 seconds of artifact-free EEGs 
were collected from healthy, normally functioning, U.S. children 
aged 6 to 16, with a microprocessor-controlled digital data acquisi- 
tion and analysis system with an on-line artifact rejection algorithm 
(I) .  After visual editing to remove residual contamination not 
excluded by this algorithm, the same features were quantitatively 
extracted from these data, separately for each hemisphere. The 
resulting 32 absolute power features were normalized as relative (in 
percent) power within each derivation, because such normalization 
yielded high test-retest reliability. Logarithmic transformations were 
devised to approximate a Gaussian distribution, so that parametric 
statistical procedures could be validly applied. Age-regression equa- 
tions were then calculated for the means and standard deviations of 
these distributions. Age-regression equations for the same features 
were also calculated from the previously published data from 
Swedish children, after transformation to relative power. Compari- 
son of the equations describing the U.S. and Swedish samples 
revealed that they were almost identical (2). These equations were 
subsequently used to express features as Z scores [(observed value 

minus mean value)/standard deviation] for comparison with the 
normal distribution for the corresponding age. 

A number of investigators have obtained similar results. The 
transformations of neurometric features that we used to approxi- 
mate a Gaussian distribution have been found accurate (5, 11). 
Spectral features extracted from short EEG samples were found to 
be replicable characteristic traits of the individual (12, 22). The 
range of values predicted by the normative equations corresponded 
well with distributions subsequently observed in samples of healthy, 
normally functioning children studied in Barbados (3), Cuba (8),  
Germany (12), Mexico (6, 9), Venezuela (9), and the United States 
(7). The incidence of values outside the normative distributions 
(false positives) was at the level expected by chance. 

Sensitivity and  specijiczty. Whereas an independent sample of 
normal children showed a chance incidence of false positives (about 
5%), groups of children with specific learning disabilities, children 
with multiple learning disabilities, and children at risk for a wide 
variety of neurological disorders showed an incidence of "hits" (true 
positives) as high as 56% on some individual features relative to the 
mean and standard deviation of the original group of normal 
subjects (3, 4). I t  was concluded that these neurometric descriptors 
were sensitive to cognitive dysfunctions as well as to well-recognized 
neurological disorders. 

Gasser e t  al. (12) similarly compared samples of normal, learning 
disabled (LD), and mentally retarded (MR) children. The features 
of the normal children were predominantly in the range expected for 
normal subjects, while a high proportion of the LD and MR groups 
showed significantly abnormal values and could be discriminated 
well from the normal individuals. Alvarez e t  al. (8) and Harmony (9) 
studied samples of normal and mildly retarded Cuban and Mexican 
schoolchildren and found that the two groups could be separated 
neurometrically with high accuracy. Yingling e t  al. (7) have reported 
a low incidence of abnormal neurometric findings in a neurological- 
ly screened sample of children with "pure dyslexia," in contrast with 
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Fig. 2. Histograms of Z values for three different neurometric features (A) 
absolute power a F, (from frontal electrode 1 in the alpha band), (B) relative 
power A RFT (from right frontotemporal derivation in the delta band), and 
(C) total power Tj (from left anterior temporal electrode) without (top row) 
and with (bottom row) transformations to approximate a Gaussian distribu- 
tion. The transformation for absolute and total power is log X and for 
relative power is log[X/(l.O - X)]. Note that distributions are markedly 
skewed before correction. 
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the relatively high incidence observed by us in our reading-disabled 
children. Most i f  our reading-disabled children were in a special 
education facility. Many had mild neurological signs, such as 
impulsive behavior, brief attention span, clumsy performance of fine 
motor tasks, or awkward gait. Since our subjects do not meet the 
rigorous criteria for pure dyslexia, we cannot comment on this 
finding. 

Extension to Adults 
The approach used in children was then extended to adults. Five 

groups of subjects were studied: normal adults and patients with 
depression, alcoholism, dementia, and schizophrenia. 

1) The normal adults (n = 120; 77 males, 43 females) were aged 
17 to 90 years. The normative data were collected from projects at 
New York University Medical Center and six other sites (14). 
Normal subjects were selected on the basis of extensive psychiatric 
and neuropsychological test batteries, a psychiatric as well as 
neurological examination, achievement tests, and determination of 
eye, hand, and foot dominance. All intelligence quotients (IQs) 
were within normal range. Medical and psychosocial histories, pre- 
and perinatal data, and current and past school or work records were 
also evaluated. The subset of instruments used varied with age. 
Subjects with sipficant abnormal findings or events in their history 
that placed them at risk were excluded. Additional exclusion criteria 
included current use of prescription drugs, a history of head injury 
or loss of consciousness, any previous EEG or neurological examina- 
tion, or febrile convulsions. 

2) The depressed patients (n = 103; 61 females, 42 males; mean 
age, 53 years) were selected on the basis of Research Diagnostic 
Criteria (RDC) for the diagnosis of primary depression and were 
divided into unipolar (n = 68) and bipolar (n = 35) subtypes. AU 
had symptomatic affective illness severe enough to interfere with 
daily functioning, and included both voluntary admissions to an 
inpatient evaluation unit and outpatients (18). Psychiatric, medical, 
and family histories, mental status evaluation, and physical examina- 
tion were obtained. A score on the Hamilton Psychiatric Rating 
Scale for Depression greater than 18 (or its equivalent on the Carroll 
self-rating scale) was required for entry into the study. 

Coherence, temporal beta 

A WHh corrections B Without corrections 

Fig. 3. Scatterplots for coherence in the beta band between derivations T3T5 
and T4T6, shown with both age regression and log transformation to 
approximate a Gaussian distribution (A) and without either (8). Dotted 
lines represent -+ 2 SD from mean of the normative reference group (solid 
line). Solid circles indicate cases .displaying significantly abnormal values. 
Note the far greater sensitivity achieved when features are corrected for 
biases. 

Percent abnormal 
n (A) with (B) without 

correction correction 
- ----  

Depression 103 17 0 
Alcoholism 30 27 10 
Dementia 93 26 0 
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3) The alcoholic patients (n = 30; all males; mean age, 41 years) 
were in early stages of withdrawal and had been referred for testing 
from an alcohol inpatient treatment program (17). These patients 
were consecutive admissions not balanced for severitv of ~roblem, 

, I  

degree of deterioration of function, or other clinical variables, and 
ranging in age from 21 to 60. Since they comprise a heterogeneous 
group at various stages of disease progression, abnormal neurome- 
tric features shared by this group are likely to reflect alcoholism per 
se rather than chronicity or complications of the disease. 

4) The dementia patients (n = 125; 73 females, 52 males; mean 
age, 70 years) were selected from several hundred patients who were 
tested as a part of a large ongoing multidisciplinary study of 
dementia (15). All of them had a DSM 111 (23) diagnosis of 
dementia [primary degenerative dementia (n = 93) or multi-infarct 
dementia (n = 32)]. The diagnosis had the concurrence of both a 
psychiatrist and a psychologist and was based on clinical history, 
psychiatric and medical (including neurological) examinations, and - .  
psychological test performance. AU patients showed measurable 
cognitive decline reflected by a global deterioration scale (GDS) 
score of 3 or greater. An additional group of elderly patients with a 
GDS score of 2 will be referred to as having "mild cognitive 
impairment" (n = 76). 

5) The schizophrenic patients (n = 20; all male; mean age, 40 
years) had all received extensive clinical evaluation and met DSM 111 
criteria for diagnosis of schizophrenia (16). 

All patients were evaluated a minimum of 10 days after discontin- 
uation of all psychotropic medication. Informed consent was ob- 
tained for all subjects. 

Methods for Data Collection and Analysis 
The data acquisition procedures and feature extraction methods 

have been described previously (1,2,4). Recordings were monopo- 
lar and used all 19 electrodes of the International 10120 Electrode 
Placement System referenced to llnked earlobes. Eight bipolar 
derivations were then constructed by computation. Univariate and 
multivariate features were computed for absolute and relative pow- 
er, mean frequency, and coherence and symmetry in the four 
frequency bands for the 19 monopolar derivations, as well as for the 
8 bipolar derivations. Transforms for approximating a Gaussian 
distribution were devised and tested for all of these features and age- 
regression equations computed for the full expanded feature set. Z 
scores expressed the deviation of the disparate neurometric features 
from the predicted normative values in the common metric of 
relative probability. 

Once these univariate features were similarly scaled, multivariate 
or composite features could be computed. Composite features of 
two sorts were computed: (i) within each derivation across frequen- 
cy bands for absolute power, relative power, coherence, or symme- 
try; (ii) across derivations in the anterior or posterior regions of each 
hemisphere, across the whole left and right hemispheres, and across 
the whole brain for every feature. Correction for intercorrelations 
among the features combined in each composite was accomplished 
by computing the Mahalanobis distance across the set offeatures. By 
procedures analogous to those used for univariate features, norma- 
tive data were used to permit Z transformation of these new 
composite features (4). 

Split-half samples were constructed for every group, counterbal- 
anced to control for possible differences in recording conditions or 
diagnostic criteria among sites. In every discriminant computation 
reported herein, one of these split-half samples was used for the 
initial "training" discriminant and the other as a test set for the 
independent replication of the initial discriminant. Z values were 
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based on the mean and standard deviation of the first split-half 
normal sample, to which all other samples, including the second 
split-half normal sample, were then referred. 

Statistical Issues and Sensitivity 
There is a current upsurge of interest in "functional imaging" of 

brain electrical activity in neurology and psychiatry, reflected in 
numerous recent international symposia on this topic and the 
appearance of a large number of commercial instruments for this 
purpose. Increasingly, topographic mapping devices use statistical 
methods to compare quantitative features extracted from an individ- 
ual recording to reference data from a normative database. There is a 
general tendency in current applications of this neurometric technol- 
ogy to neglect certain statistical issues that greatly affect the sensitiv- 
ity of the method, such as biased distributions, correlations with 
age, and correlations among features. Failure to consider these issues 
properly can lead both to increased false positive and false negative 
findings, which greatly diminish the clinical usefulness of this 
method. 

1) Biased distributwns. Histograms were made of the distribution 
of every feature in the normal and abnormal groups, with and 
without transforms to approximate a Gaussian distribution. Numer- 
ous features displayed distributions that were skewed in such a 
manner that appreciable incidence of both false positive and false 
negative errors would ensue unless corrections were applied before 
parametric statistical methods were applied. Examples of uncorrect- 
ed and corrected distributions are shown in Fig. 2. 

2) Correlations with age. Scatterplots were made of the distribu- 
tion of every feature as a function of age, for all groups. Numerous 
features displayed a significant correlation with age. Were the values 
of these features used to compute an overall mean value and 
standard deviation across the entire age range, the resulting "norma- 
tive data" would embody several errors. First, the variance would be 
greater than with age regression, causing a bias against positive 
findings. Second, Z transforms from individuals below the mean of 
the age range would be biased in one direction, whereas those from 
individuals above the mean age would be biased in the opposite 
direction. These effects can be significant. Figure 3 shows that more 
patients lie outside the normal confidence interval (dotted lines) 
when these biases are corrected. 

3) Intercowelations amang.features. Many features of brain electri- 
cal activity are highly intercorrelated. On the one hand, this 
introduces a high degree of redundancy into the measure set, which 
must be taken into consideration when estimates of overall abnor- 
mality are desired. On the other hand, this provides an additional 
source of valuable information, because pathology often causes 
changes in brain relations that increase or decrease these intercorre- 
lations. 

A composite feature combines the information from several 
univariate measures, and its value will be overestimated if there are 
intercorrelations among those measures. The accuracy with which a 
composite feature estimates the significance of deviations from 
normal values depends on how adequately such relations are taken 
into account. 

If the variables were assumed to be independent, the determina- 
tion of significance would depend on the variances. In Fig. 4, A and 
B, the area inside the circle is the 95% confidence region, if one 
assumes that the two variables were independent. Although few 
points for normal subjects (Fig. 4A) fall outside the circle (false 
positives), many points for abnormal subjects (Fig. 4B) lie inside the 
circle (false negatives). If the intercorrelations among the variables 
were taken into account, the composite significance would be 

equivalent to the Mahalanobis distance. In Fig. 4, A and B, the area 
inside the ellipse is the 95% confidence region based on the 
Mahalanobis distance. Although the area of the ellipse is much 
smaller than the circle, the majority of the normal subjects are 
encompassed with even fewer false positives (Fig. 4A). Conversely, 
a much higher proportion of the points for abnormal subjects fall 
outside the ellipse (Fig. 4B). Thus, false positives decrease and true 
positives increase. These results are due to the fact that the two 
variables display a strong negative correlation. Therefore, deviations 
in the same direction are much more significant than those in 
opposite directions. 

Detection of Dysfunctions in Adults 
Mean incidence of abnmal  @dings. The mean incidence of false 

positives in an independent sample of 60 normal healthy adults and 
of true positives in 354 patients representing seven dysfunctional 
categories were calculated separately for each of 274 univariate and 
431 multivariate features from both monopolar and bipolar deriva- 
tions (21) with and without correction for biases due to age effects 
and lack of conformation to a Gaussian distribution. On the average, 
multivariate features had 34% higher sensitivity and 41% higher 
specificity (true positivestfalse positives) than univariate, and cor- 
rected features had 19% higher sensitivity and 47% higher specific- 
ity than uncorrected ones. 

For the 705 properly corrected features, the mean sensitivity per 
feature across the seven groups of patients was 21.9% (at the P 5 
0.05 level), whereas the mean incidence offalse positive findings was 
3.9%. Figure 5 compares the average incidence of positive findings 
in 95 univariate and 121 multivariate monopolar absolute power 
features for normal subjects and patients in seven dysfunctional 
categories. The same tendencies were true for other sets of features, 
including monopolar relative power and bipolar relative power, 
coherence, and symmetry data. 

Sensitivity of multivariate features in cerebrovascular disease. In a 
recent collaborative study performed in Holland ( l l ) ,  the sensitivity 
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Fig. 4. Scatterplot for Z values of relative power (percentage) in alpha and 
beta bands in derivation P3O1 for 60 normal subjects (A) and for 202 
patients in three categories (6). In each graph, the 95% confidence region is 
represented within the circle, if the multivariate compression is computed as 
the square root of the sum of the squared Z values of these two features (for 
which one assumes independence), and within the ellipse, if the multivariate 
compression is computed as the Mahalanobis distance (which corrects for 
intercorrelation between the two features). Note the far superior sensitivity 
achieved by taking the intercorrelations among features into account. The 
percentage abnormal for points outside the circle and outside the elhpse, 
respectively, were as follows: normal subjects (A, n = 60) 6.7 and 3.3; 
subjects with mild cognitive impairment (A, n = 76) 15.8 and 31.6; patients 
with dementia (0, n = 93) 19.3 and 52.7; patients with vascular dementia 
(*, n = 33) 24.2 and 54.5. 
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of neurometric analysis and xenon-133 measures of regional cerebral 
blood flow (rCBF) were compared in the evaluation of patients with 
known cerebrovascular disease. Three groups of patients were 
assessed with both methods: 11 patients with completed strokes and 
43 patients with partial nonprogressive strokes (symptomatic), 15 
patients with reversed ischemic neurological deficit and 24 patients 
with transient ischemic attacks (asymptomatic), and a group of 64 
healthy volunteers (normal subjects). 

In the group with completed strokes or partial nonprogressive 
strokes, with neurological symptoms present at the time of examina- 
tion, both methods detected a high proportion of abnormalities, 
although the neurometric method was superior (see Table 1). In the 
asymptomatic group with reversed ischemic neurological deficit or 
transient ischemic attacks, the ' 3 3 ~ e  rCBF detection dropped far 
below the neurometric detection of abnormalities, which remained 
high. Multivariate neurometric analysis detected abnormalities in 
91% of all the patients, compared with 62% for '33Xe and 54% for 
skilled electroencephalographers visually evaluating the same record- 
ings. The incidence of false positive findings in the matched control 
group of healthy Dutch volunteers was 3%. 

A noteworthy aspect of this study was the absence of abnormal 
univariate findings in the majority of the asymptomatic patients. 
Most of these patients were extremely abnormal on the composite 
feature "overall frequency abnormality." This feature compresses the 
h l l  set of relative power features from the eight bipolar derivations 
used in this study. These results suggest that such highly compressed 
features can be of great utility for dichotomous decisions about 
normal versus abnormal profiles, although they can be logically 
expected to have less utility for differential diagnosis. Although these 
patients had no detectable localized abnormality, the relations 
among electrical events in different brain regions were markedly 
disturbed, perhaps reflecting a hernodynamic alteration. It may be 
feasible to use these indications of cerebral reorganization to identify 
asymptomatic individuals at risk for strokes, a possibility that is 
under study. 

Diswiminatwn between nownal and abnormal individuals. The 
utility of these methods for the detection of subtle cognitive 
dysfunctions was evaluated by computing a discriminant function 
between normal persons and patients with a variety of psychiatric 
disorders. The data in Table 2 reveal an accuracy of about 80% for 
this discrimination, based solely on the overall composite neuromet- 
ric feature "whole head abnormality." Performance of the discrimi- 

Fig. 5. Percentage of ab- 
normal findings for the av- 
erage of 95 univariate 
(shaded bars) and 121 
multivariate (black bars) 
monopolar absolute pow- 
er features for eight differ- 
ent groups. Note the inci- 
dence of false positives at 
the chance level (5% in the 
normal group), the rela- 
tively high incidence of 
abnormal findings among 
patients with a variety of 
dsorders, and the consis- 
tently higher sensitivity of 
multivariate indices. 
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nant is impaired somewhat by the high variability of the profiles of 
abnormal features represented within this mixed sample of patients. 
This discriminant hnction must construct a rule for dichotomous 
classification, for example, normal or abnormal, in spite of the great 
inhomogeneity of the abnormal group. 

I - 

Differential Diagnosis in Patients with 
Various Psychiatric Disorders 

Mult@le discl.iminatwn amand a variety of disorders. A multiple 
discriminant hnction was computed among a group of normal 
persons and separate groups of patients with dementia, alcoholism, 
or depression. As shown in Table 3, the overall accuracy of 
classification by this four-way multiple discriminant with 11 varia- 
bles was 76% (79% on independent replication), far superior to the 
25% accuracy expected by chance. It is unusual that the accuracy of 
the independent replication actually exceeded that of the initial 
discrimination. This may be attributed to fluctuations in composi- 
tion of the patient groups. The subset of neurometric variables 
which accounted for most of the variance in this discrimination 
were: central theta, frontotemporal alpha, and the composite varia- 
bles theta all regions, anterior power, total slow-wave asymmetry, 
and total delta coherence (4 ) .  Note that the accuracy of differential 
diagnosis was comparable to that achieved for the apparently 
simpler task of separating normal and abnormal individuals, because 
their distinctive profiles facilitated differentiation between relatively 
homogeneous groups of patients each with a different disorder. The 
number of "misclassifications" was low and distributed evenly across 
all groups. Results with the schizophrenic patients similarly indicat- 
ed high classification accuracy, but even though the results of "leave- 
one-out" replication were excellent, the data are not presented here 
because the sample was not large enough for independent replica- 
tion. 

Table 1. Percentages of abnormal findmgs in sym tomatic and asymptomat- P ic patients with cerebrovascular disease using ' 'Xe measures of regional 
cerebral blood flow (rCBF) or neurometric evaluation (Nx). Only the 
composite neurometric feature "overall frequency abnormality" was used. 

Subject description 
% Abnormal 

n 
rCBF Nx 

Symptomatic 
Completed strokes (n = 11) and 54 69 91 

partial nonprogressive strokes (n = 43) 
Asymptomatic 
Reversible ischemic neurological deficits (n = 15) 40 53 90 

and transient ischemic attacks (n = 25) 
Normal subjects 64 3 

Table 2. Computer classifications of normal (I) and mixed abnormal groups 
(11) using neurometric variables. Only the composite neurometric feature 
"whole head abnormality" was used. 

Actual 
group 

Classification (%) as 

I I1 

Initial discriminant 
I Normal 60 - 83 7 

I1 Abnormal 145 20 - 80 
Independent replication 

I Normal 60 - 85 15 
I1 Abnormal 128 25 - 75 
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Correlation between neurometn'c and clinical severity. The profile of 
abnormal features described the pattern of deviations characteristic 
of a particular disorder; the magnitude of the deviation correlated 
with the severity. 

Histograms of the distributions of abnormal values of the com- 
posite neurometric feature, "relative power theta (all regions)," are 
shown (Fig. 6) in groups of patients with increasing severity of 
senile dementia assessed by a clinically derived GDS (14) based on 
an extensive multidisciplinary evaluation. The deviation of this 
feature from the normal range increased with increasing clinical 
impairment, with a significance of P < 0.0001 with analysis of 
variance (ANOVA). This scaling of cognitive dysfunction may 
provide an independent method for evaluating the effectiveness of 
different treatments, leading to more individualized therapy. 

Dism'minatwn among subpups with similar symptoms. It is also 
important to be able to distinguish subgroups of patients with 
different pathophysiology within a population with similar clinical 
symptoms. Members of different subgroups may display similar 
symptoms for different physiological reasons and may respond very 
differently to particular treatments. Table 4 shows the results of a 
discriminant function separating unipolar from bipolar depressed 
patients with (left side) and without (right side) correction for bias 
of age and for approximation to a Gaussian distribution. Unipolar 
and bipolar patients in a clinically depressed state were differentiated 
with accuracy of almost 85% with six variables that were log- 
transformed and age-regressed, but only 70% without such correc- 
tions. The subset of variables that accounted for most of the variance 
in this discriminant were the composites left medial alpha (across F3, 
C3, P3, and 01), central and occipital slow-wave asymmetry, and 
overall beta relative power (4). 

Depressed patients constitute a significant percentage of the 
psychiatric patient population. The ability to differentiate between 
these two subtypes electrophysiologically would significantly short- 

Table 3. Computer classification of normal (I), primary depression (11), 
alcoholism (111), and dementia (IV) groups using neurometric variables. 

Actual Classification (%) as 
n 

group I I1 I11 IV 

Initial discriminant 
I Normal 60 - 77 11 7 5 

I1 Primary depression 69 9 - 72 10 9 
I11 Alcoholism 20 20 0 - 80 0 
IV Dementia 63 9 6 6 - 79 

Independent replication 
I Normal 60 - 75 10 3 12 

I1 Primary depression 34 6 - 85 6 3 
I11 Alcoholism 10 5 5 - 90 0 
IV Dementia 62 13 8 2 - 77 

Table 4. Computer classification of unipolar (I) versus bipolar (11) depres- 
sion using neurometric variables with [or without] age regression and log 
transformation. 

Actual Classification (%) as 
n 

group I I1 

Initial discriminant 
I Unipolar 34 - 85 [67IX 15[33] 

I1 Bipolar 18 15[25] - 85 [75] 
Independent replication 

I Unipolar 34 - 85 [65] 15[35] 
I1 Bipolar 17 13[13] - 87[87] 

"Brackets are around values without age regression and without log transformation. 
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en the period required for confident diagnosis, effective treatment, 
and prophylaxis. 

Discussion 
The evolution of brain electrical activity across the human life 

span follows a predictable course that has been described by simple 
equations for each of a large number of quantitative features. 
Presumably, these features reflect the interaction of neuroanatomical 
and neurochemical processes within the central nervous system that 
are largely genetically determined. Healthy, normally functioning 
individuals with a wide diversity of cultural and ethnic backgrounds 
display brain electrical activity consonant with the same set of 
quantitative descriptors. This supports the proposition that the 
organ responsible for cognition is fundamentally similar for all 
healthy members of the human species. Should systematic deviations 
from these proposed universal rules of human brain development 
eventually be found, it seems reasonable to expect that they will 
follow "~ocal" rules reflecting the influence of nutrition, altitude, or 
other systematic environmental influences. 

Individuals with overt neurological diseases, subtle affective disor- 
ders, "thought" disorders, or cognitive dysfunctions usually deviate 
from these rules of normal development. The developmental equa- 
tions that have been derived reflect the organization of brain 
relations whose integrity is essential for the normal performance of 
higher nervous system functions. Such quantitative indices should 
facilitate the identification of subgroups of patients with different 
underlying neurophysiological and neurochemical factors that pro- 
duce a final common path of apparently similar clinical symptoms. 
By recognizing the different underlying pathologies and creating 
more homogeneous groups, it will be possible ultimately to identify 
the different pathophysiologies. This in turn can lead to individual- 
ized treatment and provide the means to evaluate the relative efficacy 
of different therapeutic approaches. It should also become possible 
to identify premorbid "trait" markers of vulnerability to stroke, 
dementia, depression, and schizophrenia. Preliminary assessments 
indicate that some patients can be classified correctly, whether they 
are actively symptomatic before treatment or in remission. With 
some disorders, we have been able to distinguish between mildly 
symptomatic patients who subsequently deteriorate and those 
whose clinical condition remains stable over several years. 

Global %Theta (all regions) 

deterioration 1 
score (GDS) 

GDS 4 to 7 
( n  = 38) 

GDS 3 
( n  = 5 6 )  

Fig. 6. Distributions of Z 
scores for multivariate fea- GDS 2  
ture "relative power (per- ( n  = 76) 

centage) in theta across all 
regions" for groups of elder- 
ly individuals showing a 
GDS of 1 (normal), 2 (mild 
impairment), 3 (moderate 
impairment), and 4 or above GDS 

(severe impairment). Note ("  = 2, 
that the mean Z score in- 
creases with greater impair- 
ment. Z score 
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The standard for psychiatric diagnosis and categorization in the 
United States and Canada is now DSM-111 and soon will be DSM- 
IIIR. The categories defined therein have often been criticized as 
nothing more than a compilation of symptoms. The results obtained 
with neurometrics have shown that at least the categories studied are 
much more than arbitrary groupings of symptoms. These results are 
the first independent validation of clinical nosology and, of greater 
importance, the validation utilizes neurophysiological measures. 
While the agreement between neurophysiology and description is 
not perfect, it is exceptionally robust. Validity-the great deficiency 
of psychiatric nosology-is beginning to emerge and, thus far, to 
reveal an impressive concordance with biology. 
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