
Effects of Acid Rain on Freshwater Ecosystems 

Acid-vulnerable areas are more numerous and widespread 
than believed 7 years ago. Lakes and streams in acid- 
vulnerable areas of northeastern North America have 
suffered substantial declines in acid-neutralizing capacity, 
the worst cases resulting in biological damage. Many 
invertebrates are very sensitive to acidification, with some 
disappearing at pH values as high as 6.0. However, the 
recent rate of acidification of lakes is slower than once 
predicted, in part the result of decreases in sulfur oxide 
emissions. A discussion of some of the processes that have 
contributed to the acidification of lakes as well as those 
that have protected acid-sensitive freshwaters is present- 
ed. 

W HEN ANGUS SMITH COINED THE TERM "ACID RAIN" TO 

refer to the effect that industrial emissions had on the 
precipitation of the British midlands (I),  he could scarce- 

ly have dreamed that little over a century later the topic would be the 
subject of research for thousands of environmental scientists that 
would utilize hundreds of millions of dollars in research funds and 
would become of international political importance. Although 
Smith clearly recognized that acid rain caused environmental dam- 
age (2), the continental scale of acid rain effects was not recognized 
until the mid-20th century (3). It was not until concern was publicly 
widespread in the late 1970s that governments sponsored large-scale 
stules of the problem (4). 

Although much has been learned about the causes, extent, 
transport, and effects of acid rain, some issues are still debated, 
which in turn cause polarization among scientists, political parties, 
states, and countries (5). These debates are often based on outdated 
preconceptions. Many statements of opinion or hypothesis have 
been misrepresented as "proofs" by later investigators (6). Seldom 
has such a large proportion of ecological science been published in 
the unrefereed "gray" literature. Research has solved some problems 
but has also led to the discovery of new ones (7). In this article, I 
attempt to synthesize recent progress made in the understanding of 
acid rain and its effects on North American aquatic resources. 

The Origin and Extent of Acid Rain 
A decade ago, most scientists believed that natural unpolluted 

precipitation would have a pH of 5.6, the pH of distilled water 
saturated with COz. Despite evidence to the contrary, this simplistic 
assumption has persisted until recently (8). We now know that in 
remote areas, uncontaminated by either industrial emissions or 

The author is in the Department of Fisheries and Oceans, Freshwater Institute, 501 
University Crescent, W i p e g ,  Manitoba R3T 2N6, Canada. 

8 JANUARY 1988 

calcareous dust, precipitation usually has a pH value close to 5.0 
because it contains small amounts of both weak and strong acids of 
natural origin (9). Unfortunately, in most areas within several 
hundred kilometers of large centers of human activity, precipitation 
has much lower pH values. Widespread acid rain has been known in 
northern Europe and eastern North America for some time (3). 
Recent work has led to the discovery of acid rain in western North 
America, Japan, China, the Soviet Union, and South America (1 0). 
Globally, anthropogenic emissions of sulfur are comparable in 
magnitude to emissions from natural sources (1 1 ), but regionally, in 
northern Europe and eastern North America, over 90% of sulfur 
deposited from the atmosphere is anthropogenic (12, 12a). About 
50% of the sulfates falling in eastern Canada are believed to have 
originated in the United States, and Canadian emissions contribute 
substantially to the American acid rain problem, particularly in the 
Northeast (12, 12a). Similarly, much of Scandinavian acid precipita- 
tion originates in industrialized areas of central Europe and the 
United Kingdom (13). Earlier claims that acids from volcanoes, 
trees, salt marshes, or other natural sources cause the acid rain 
problem have largely ceased (14). Polluted air masses have been 
convincingljr tracked across the Atlantic (15) and over the North 
Pole from Eurasia to North America, by using the unique trace 
metal content of polluted air masses (15, 16). Broad regional to 
global pollution of the atmosphere with acid rain and many other 
pollutants is clearly a result of human activities (7). 

The Extent of Acid-Sensitive Areas 
The extent of areas that are geologically vulnerable to acid 

precipitation is much larger than was believed a decade ago. In the 
United States, large acid-sensitive areas are now known to occur in 
Minnesota, Wisconsin, upper Michigan, several southeastern states, 
and many of the mountainous areas of the West, in addition to the 
well-known northeastern sector of the country (17). It is estimated 
that half of the 700,000 lakes in the six eastern provinces of Canada 
and south of 52"N have alkalinity values below 50 peq liter-', that 
is, they are extremely acid-sensitive (18). Large acid-sensitive areas 
are known to exist in all western provinces, the Yukon, the 
Northwest Territories, and Labrador. In Europe, acid-sensitive 
areas of the Netherlands, Belgium, Denmark, Switzerland, Italy, 
West Germany, and Ireland have been added to the better known 
areas of Scandinavia and the United Kingdom. Vast areas of 
Precambrian and Cambrian geology in Asia, Africa, and South 
America are also acid-sensitive (19, 19a). 

Rates of Increase in Acid Rain 
Precipitation chemistry data from before the mid-1950s are of 

questionable reliability, causing considerable controversy over the 
timing of increases in acid rain (20). As a result, the onset of the 
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ecological effects of acid precipitation can be deduced only from the 
timing of changes in lake chemistry or acid-sensitive microfossils and 
metallic pollutants in sediments, as discussed below. The earliest 
records of lakes acidified by atmospheric emissions come from 
Scotland, where analyses of diatoms in sediments showed that lakes 
were becoming acid in the mid-19th century. Widespread damage 
to ecosystems of Scandinavia and North America did not begin until 
the 1930s to 1950s (21). This has puzzled many, because sulfur 
emissions in North America increased most rapidly before 1920, 
followed by alternating periods of decline and increase (22). There 
are a number of possible reasons for the damage occurring later. The 
increasing construction of large power plants and smelters with tall 
smokestacks in the middle of the 20th century was coupled to a 
decline in the use of coal for home heating, so that a local air 
pollution problem was transformed into a long-range, transboun- 
dary one. Whereas peak fuel combustion once occurred in winter for 
heating, it now occurs typically in summer, when emissions are 
directed into a warmer, moister, and thus more reactive atmosphere 
where oxidation of sulfur compounds is more efficient (23). Alkaline 
materials such as fly ash have been removed from emissions to 
control particulate pollutants (24). Emission of nitrogen oxides and 
of other pollutants that catalyze the oxidation of sulfur and nitrogen 
oxides has also increased (25). Finally, it probably took years to 
decades to deplete the acid-neutralizing capacity of lakes, streams, 
and their catchments, so thatpH depressions were not noticeable for 
some time after precipitation became acidic. Better recent chemical 
records have revealed that the acidity of precipitation has recently 
increased in the southeastern United States (26, 26a). Sulfate 
concentrations in precipitation are currently from 4 to 16 times as 
high east of the Mississippi River as they are in regions farther away 
from anthropogenic sources of sulfur (27). 

The Extent and Rate of Surface Water 
Acidification 

It is now clear that acid rain has already caused widespread 
acidification of many aquatic ecosystems in the northeastern United 
States, Canada, Norway, Sweden, and the United Kingdom. Evi- 
dence comes from four sources: geochemical theory, analysis of 
long-term trends, comparison of older with more recent chemical 
records, and paleoecological analyses. On the other hand, the rate of 
change has increased less rapidly in recent years than was feared a 
decade ago. 

Fig. 1. The average ratio of alkalinity (acid neutralizing capacity) to Ca2+ 
and MgZ+ in freshwater lakes of northeastern North America. Average ratios 
in lakes of pristine areas usually range from 0.6 to 1.1. Inputs of acid, such as 
acid rain, cause alkalinity to decline and Ca2+ and MgZ+ to increase. Average 
values for sensitive lakes in areas with highly acidic deposition are less than 
0.2. In individual lakes, zero or even negative values can occur. Only lakes 
with Ca2+ + MgZ+ less than 200 peq liter-' are included. Values were sea- 
salt corrected where appropriate. The map was compiled by D. S. Jeffries, 
National Water Research Institute, Burlington, Ontario. Canadian data of 
roughly 8000 lakes; U.S. data from Linthurst et al. and Kanciruk et al. (32). 
Heavy lines numbered 5, 10, and 20 indicate sulfate deposition in kilograms 
per hectare per year and were added by the author. 

Anv broad-scale assessment of acidification must be based on 
geochemical concepts because no historical data are required (28). 
Such studies show that the alkalinity of lakes has been replaced with 
sulfate over broad areas of Scandinavia. the northeastern United 
States, and eastern Canada. This causes greatly decreased ratios of 
alkalinity to Ca2+ + Mg2+ (Fig. 1) and increased ratios of Sod2- to 
Ca2+ + Mg2+. Results show that in large areas of geologically 
sensitive terrain in eastern North America, average lakes have lost 
over 40% of their original alkalinity. The most sensitive waters of 
such areas are now entirely devoid of alkalinity, so that inputs of 
strong acids cause considerable decreases in p H  (29). 

Further evidence for lake acidification has been supplied by 
paleoecological p H  reconstructions from diatom remains in lake 
sediments. These reconstructions have shown the rapid acidification 
of many poorly buffered lakes in the Adirondacks, southern Norway 
and Sweden. West Germanv. Scotland. Wales, central Ontario and , , 
Quebec, and Nova Scotia. Rates of acidification have ranged from 
slow to undetectable for several New England lakes and at a few sites 
in eastcrn Canada and in Finland. No ~ a l e o e ~ o l o ~ i c a l  evidence of 
acidification has yet been found in midwestern or western North 
America or in northern Scandinavia (30). Although paleoecological 
investigations are still too few to allow broad-scale regional conclu- 
sions to be drawn, in general, more recently acidified lakes and 
higher rates of acidification have been found in acid-sensitive areas 
where acid deposition is the highest. This strongly implicates acid 
precipitation as the cause. 

Comparisons of chemical data from lakes that were sampled on 
two or more occasions many years apart have usually been hampered 
by the poor documentation of older records, or the unreliability of 
older chemical methods. Recently, various investigators have devel- 
oped methods for correcting older data, reproducing older analyses, 
or both (31). This has allowed comparisons of recent and olderpH 
or alkalinity records for three areas. These data show that the lakes of 
the Adirondacks have suffered substantial losses of alkalinity (32). 
The lakes in New Hampshire have not changed detectably in 
alkalinity, and some lakes in Wisconsin appear to have increased 
slightly, apparently as a result of modifications in the watersheds. In 
general, there is a strong tendency for declines in alkalinity to 
correspond to increases in sulfate, and vice versa (33). 

A few studies have applied consistent chemical methods over long 
time periods. Significant increases in S042- and decreases in 
alkalinity have been recorded for low-alkalinity streams gauged by 
the U.S. Geological Survey between the mid-1960s and 1983, 
except in the northeastern United States, where decreased S042- 
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and increased alkalinity reflect the decreased emissions and deposi- 
tion of sulfur during the period (34). The alkalinity of Plastic Lake, 
in the Muskoka region of Ontario, has decreased by an average of 2 
keq liter-' year-' for a period of six consecutive years in the late 
1970s and early 1980s (35). Substantial alkalinity decreases in four 
other lakes in eastern Ontario were also recorded in the 1960s and 
1970s, where consistent chemical methods were applied (36). The 
acidification of lakes in the LaCloche Mountains, in the Sudbury 
areas of Ontario, and in Nova Scotian rivers in the 1960s and 1970s 
is also well documented (37, 38). However, alkalinity losses greater 
than 100 keq liter-' are unlikely to be caused entirely by acid 
precipitation (27, 3 3 ,  except perhaps in a few areas of extremely 
high dry deposition. In such cases land-use changes, disruptions in 
the internal sources of alkalinity, climatic factors, or analytical errors 
must be suspected. Records of from 4 to 19 years have shown no 
decrease in alkalinity or p H  in lakes of extreme northwestern 
Ontario, an area where precipitation still has an averagepH of 4.9 to 
5.0 (39). 

Together, the four lines of evidence demonstrate convincingly 
that acidification of lakes and streams has occurred in geologically 
sensitive areas of North America that receive precipitation polluted 
with strong acids, but not in sensitive areas where atmospheric 
pollution is still relatively low. Changes in the chemistry of precipi- 
tation have occurred so frequently that steady state between atmo- 
spheric inputs and lake chemistry cannot have been reached for lakes 
with long water-residence times (40). 

Evidence for Biological Change 
Most early records of biological damage were confined to adult 

fishes of species valued for sport. Most of these can tolerate p H  
values of less than 5.5 (41). Lakes with higher p H  values were 
assumed to be free from biological effects. More recently, juvenile 
fishes and many organisms lower in the aquatic food web have been 
shown to be intolerant of much higher p H  values (42). The early 
disappearance of organisms at lower trophic levels may cause 
starvation to stress large predatory fishes well before direct toxic 
action of the hydrogen ion is evident. Several recent studies support 
this hypothesis (43). 

Because spawning beds are difficult to locate and young fish are 
usually difficult to catch, populations may have experienced several 
years of successive recruitment failure before damage is detected 
(44). In summary, because assessments of biological effects have 
focused on adult game fish instead of more sensitive juveniles or 
organisms lower in the food web, our current estimates of biological 
damage to aquatic communities caused by acid rain are unquestion- 
ably too low. 

Among larger game fishes, most auturnn-spawning species are 
usually more sensitive to acidification than spring spawners, because 
the very sensitive hatchlings are present in shallow nearshore waters 
in early spring when snowmelt can produce a strong acid and 
aluminum pulse (45). 

The oligotrophication of acidified lakes, one of the key earlier 
concerns of ecologists (46), does not occur in most cases. While 
there is some evidence for reduced phosphorus inputs (47) or 
changed forms of phosphorus (48) in acidified lakes, most field 
investigations have found that significant changes in photosynthetic 
production, biomass, and nutrient concentrations in acidified lakes 
did not occur (49). Indeed, in some cases, phosphorus was mobi- 
lized from lake sediments and stream beds during acid pulses (50). 
Likewise, although several investigators have observed an increased 
abundance of coarse organic matter on surface sediments of acidified 
lakes (51), this has not always caused decreased microbial decompo- 

sition, as had been hypothesized (52). In contrast to the lack of effect 
on lake metabolism, changes in species of phytoplankton are 
dramatic and remarkably similar in most acidified lakes (51). The 
formation of mats of benthic algae or bryophytes in littoral regions 
of acidified lakes is also widespread (53). 

Although the number of zooplankton species is usually lower in 
acidic lakes, the lower biomass once thought to be caused by 
acidification has recently been shown to be due to lower availability 
of nutrients (54). The few thorough case studies of streams indicate 
that their biota may be even more sensitive to acidification than that 
of lakes. The benthic fauna of acidic streams has long been known to 
be less diverse than in circurnneutral ones (55). Several species of 
mayflies and stoneflies disappeared from acidified reaches of streams 
in the Algonquin Highlands of Ontario between 1937-42 and 
1984-85 (56). The impoverishment was attributed largely to a 
decrease in p H  of up to 1.5 units during spring snowmelt (57). 
Similar conclusions were reached from surveys of stream benthos in 
Sweden (58). In Norway, the stream invertebrate fauna has been 
severely impoverished by acidification (59). Fish kills that have been 
observed in streams and rivers during acid pulses and the decline in 
trout or salmon fisheries in acidified waters are good evidence for 
ecological damage that results from acid rain (60). 

The Role of Aluminum in Biological Damage 
Aluminum is released to lakes and streams from acidified terrestri- 

al soils and lake sediments. Only ionic aluminum and aluminum 
hydroxide appear to be highly toxic to fishes, and only the former is 
important at low p H  (61). Other organisms appear to be much less 
susceptible (62). The importance of aluminum seems to vary greatly 
between ecosystems and with the stage of acidification, as a result of 
differences in watersheds, aquatic chemical complexes, the presence 
of refugia, and the behavioral responses of fish species (63). Many of 
the early effects of acidification mentioned above, at p H  values 
approaching 6, cannot be attributed to aluminum toxicity (64). 

The Resistance of Lakes to Acidification 
Until recently, scientists believed that the entire resistance of lakes 

to acidificatioi' was supplied by the weathering of geological 
substrates or the exchange of hydrogen ions for base cations in 
terrestrial soils of watersheds. As a result, until recently, published 
models of acidification have focused exclusively on terrestrial proces- 
ses (65). 

However. historical studies and whole-lake ex~eriments have 
revealed that there is an additional resistance to acidification within 
lakes, and budgets for natural lakes revealed that in some cases 
terrestrial sources could only account for a part of the observed 
buffering (66). These processes are not 100% efficient at neutraliz- 
ing incoming acids. Therefore, they have not prevented lakes from 
acidifying. Yet without them, the acidification of lakes would be 
much more severe (67). These processes involve first-order reactions 
at sediment surfaces, so that their efficiency is higher in shallower, 
more slowly flushing lakes and lower in deeper, rapidly flushing 
lakes (68). 

Recovery from Acidification 
The recovery of lakes and streams after the acidity of precipitation 

has been reduced is documented in case history studies from areas of 
eastern Canada where sulfate deposition has decreased substantially 
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in the past 10 to 15 years. In the Sudbury area, a combination of 
smelter closures and SO2 controls have reduced emissions to about 
one-third of their value in the early 1970s (69). The concomitant 
decreases in the acidity of local deposition have been accompanied 
by rapid increases in alkalinity andpH in nearby lakes, and decreased 
concentrations of sod2-, aluminum. and toxic trace metals (70). . , , r 

The recoveries have occurred at rates more or less predictable from 
the water renewal rates of the lakes (71). The acidity of at least some 
of the lakes decreased enough to prevent the extinction or to allow 
the reintroduction of lake trout or brook trout (69). Crustacean 
zooplankton communities of the lakes have not recovered (72), but 
rotifer populations are returning to those typical of less acidic 
conditions (73). Decreased acidity of the spring melt pulses in 
streams was also attributed to the decrease in emissions (74). Similar 
increases in p H  were observed in 54 lakes of the Algoma region in 
north-central Ontario. In two of the lakes, white sucker (Catostomus 
cummersoni) were able to reinvade and survive (75). 

The reduction of U.S. and Canadian SO2 emissions has also 
allowed some recoverv of freshwaters in maritime Canada. Sulfate 
runoff from 12 river watersheds in Nova Scotia and 8 watersheds in 
Newfoundland has decreased dramatically, accompanied by in- 
creases in river p H  (76). 

However, it is not clear whether lakes will be able to recover 
completely. Base cations in soils can be depleted by acidification, 
and their recovery may take many years (35). Also, experimental 
whole-lake studies show that the reversal of acidification d o w s  onlv 
some components of the biota to recover rapidly. Acidification of 
Lake 223 to p H  5.0 eliminated several key species of fishes and 
invertebrates (77). Recovery of the lake to a p H  of 5.4 to 5.6 by 
reducing inputs of sulfuric acid allowed two of the remaining species 
of fishes to resume reproduction. Some species of phytoplankton 
that had been eliminated bv acidification also returned. T o  date, lake 
trout have not resumed reproduction. Other species eliminated from 
the lake have not returned (71). 

Although it is now clear that reducing emissions of SO2 will allow 
the rapid chemical recovery of lakes, it is unlikely that original p H  
values will be reached for many years. Unassisted biological recovery 
of all original species also appears to be unlikely. Widespread 
stocking of game fishes and key prey species will be necessary. Even 
then, the reconstructed food chains may not resemble the original 
ones. It therefore seems prudent to prevent as much additional 
ecological damage as we c k .  

Land Use and Acidification 
In some circumstances, land-use changes may have a greater 

acidifying effect on soils than acid deposition (78). Some investiga- 
tors have argued that deforestation several decades ago resulted in 
decreases in the acidity of runoff waters that caused the p H  of lakes 
to increase. They believe that the regrowth of forests has been 
responsible for the recent increase in acidification of lakes (79). In 
heavily populated areas, it has been difficult to separate the two 
causes of acidification. In individual watersheds, studies have shown 
that acidification results from land use when large deposits of 
reduced sulfur are exposed to oxygen in the atmosphere by human 
disturbance, such as in acid mine drainage (80) and in areas where 
ancient marine or wetland sediments have been exposed by drainage 
and cultivation (81 ) . 

However, acidification has occurred in remote parts of the North 
American Precambrian Shield where land use has not changed (Fig. 
1). Moreover, where land-use changes have been intensively studied, 
the evidence does not support the land-management hypothesis. For 
example, deforestation at Hubbard Brook and the Experimental 

Lakes Area caused higher losses of H' and strong acid anions than 
under aggrading conditions, as a result of higher nitrification and 
reoxidation of reduced sulfur compounds (82). This is the reverse of 
what was hypothesized by proponents of the land-use hypothesis. 
Sulfate is usually the predominant anion in runoff from anthropo- 
genically acidified areas, rather than the organic anions expected if 
forest regrowth were responsible for acidification (83). In Norway, 
lakes with pristine watersheds and those where land-use changes had 
occurred were found to acidify at identical rates (84). In Scotland 
and Wales, paleoecological studies have shown that the timing of 
recent lake acidification is consistent with changes in the strong acid 
content of precipitation and not with the timing of land-use changes 
(85). Similarly, the rapid acidification of Big Moose Lake in the 
Adirondacks since 1950 correlates to increases in fossil fuel combus- 
tion, not watershed changes (86). In summary, terrestrial processes 
clearly contribute to the acidity of soils and natural waters, but 
changes in land use cannot explain the widespread acidification of 
fresh waters in the 20th century. 

How Much Must We Reduce Sulfur 
Deposition? 

Most scientists now agree that reducing deposition of sulfuric acid 
will benefit aquatic ecosystems (86). As we have seen, data from 
areas whose acid deposition has decreased confirm this view. The 
remaining questions are, what degree of reduction is necessary to 
protect our aquatic resources, and what is the link to emissions of 
sulfur oxides? A few aquatic ecosystems are naturally acidic enough 
to have an impoverished biota, even when the p H  of precipitation is 
5.0 or greater, implying that any anthropogenic additions to the 
acidity of deposition would add to the number of acidic lakes (87). 
Furthermore, if decades of exposure to high inputs of acid have 
depleted the base cations in watershed soils, even a return of 
precipitation to natural levels of acidity would not allow waters to 
recover fully for many years (35). Some realistic compromise 
between ecosystem damage and anthropogenic activity must obvi- 
ously be struck. This problem may be approached in several ways: 

First, almost all areas where the average ratio of alkalinity to Ca2+ 
+ M ~ ' +  in acid-sensitive lakes has been reduced by acidification to 
values of 0.6 or less are bounded by the 10 kg ha-' year-' isopleth 
for wet S042- deposition (Fig. 1). In lakes where original alkalinity 
was 50 peq liter-' or less, even declines in the ratio to 0.6 would 
usually be accompanied by decreases in p H  of several tenths of a 
unit. Given the sensitivity of aquatic food chains to any decrease in 
p H  (43), deposition of over 10 kg ha-' year-' can be expected to 
cause some biological impoverishment in our most sensitive fresh 
waters. 

Second, all lakes that are claimed to have been acidified are located 
in areas receiving precipitation with p H  values less than 4.6 to 4.7 
(88). Statistical analysis of precipitation data from the eastern 
United States reveals that such p H  values in precipitation usually 
occur where sod2- deposition is less than 14 kg ha-' year-' (89). 
Because of the short time intervals considered and other shortcom- 
ings of the historical data sets on which these conclusions are based, 
these observations are robably less sensitive than the ratio of 
alkalinity to ca2+  + M $ + .  

Third, in Sweden, a maximum allowable Sod2- deposition of 9 
kg ha-' has been deduced from a comparison of the current 
pH values observed in extremely sensitive lakes in areas with 
different sulfur deposition values (90). Finally, some acidification 
has been recorded in very sensitive lakes receiving sod2- deposi- 
tions of 16  to 25 kg ha-' year-' (91). 

In summary, it appears that the limit to sod2- deposition must be 
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somewhere between 9 to 14 kg ha-' year-' to protect our most 
sensitive aquatic ecosystems (92). These values are far below the 
values of 20 to 50 kg ha-' year-' currently measured in most of 
eastern North America and most of western Europe, and would only 
be attained by substantial reductions in anthropogenic emissions of 
SO2. 

nitrogen oxides would be beneficial to softwater aquatic ecosystems 
and probably to terrestrial ecosystems as well. ~ e ~ i o n a l  air 
is much more severe than we believed in the past, and more 
comprehensive measures to control it are necessary to preserve the 
integrity of the biosphere (1 07). 

Interaction of Acid Rain with Other 
Pollutants and Terrestrial Ecosystems 

Clearly, we know enough about the effects of acid rain on aquatic 
ecosystems to make a strong case for regulating emissions of sulfur 
oxides. However, while the debate about controlling acidifying 
emissions has focused almost entirely on SO2, emissions of nitro- 
gen oxides have received little attention and have increased much 
more rapidly than SO2 in recent decades (7, 93). The resulting nitric 
acid plays an increasing role in the acidification process and is 
particularly important during the spring, when melting of polluted 
snow normally causes a strong acid pulse (93). In addition, nitrogen 
oxides are known to react in the atmosphere to form ozone, which is 
highly toxic to terrestrial plants (94). 

Metals are also known to exacerbate the acidification problem. 
The case of aluminum leached from soils and sediments was 
discussed earlier. In addition, many toxic trace metals are emitted 
from the same sources that release oxides of sulfur and nitrogen. 
These are distributed almost as widely as acid rain (95). As 
precipitation becomes more acid, a higher proportion of these will 
be soluble in rain, mist, and fog. Prior to the industrial revolution, 
the trace metal inputs to ecosystems were s m d .  In the past 100 to 
200 years inputs have increased rapidly, and many of the trace metal 
biogeochemical cycles are dominated by anthropogenic inputs, even 
at very remote locations (96, 97). 

At circumneutralpH values, most trace metals are quite insoluble 
in water, sorbing quickly to particles in lake water, which sink 
rapidly (98). Even many fold increases in metal inputs may result in 
concentrations that are below the limits of detection of standard 
chemical methods for analyzing lake water (97). It is therefore much 
easier to detect increases in lake sediments. However, some of the 
sedimented trace metals may be remobilized or remain in solution 
longer as lakes acidify (99),  increasing the exposure to aquatic 
organisms (100). The acidification of ground water may also 
mobilize trace metals, and acidic water supplies are known to 
dissolve metals from plumbing, possibly constituting a drinking 
water hazard in some areas (101). Although there have been few 
studies, a number of cases have documente2 ecological effects that 
result from interactions between acid rain and metals (61-64, 102). 

Interactions between oxides of sulfur, oxides of nitrogen, ozone, 
carbon monoxide, hydrocarbons, and methane are known or sus- 
pected to contribute to a variety of adverse environmental effects, 
ranging from acidification of ecosystems to crop damage, depletion 
of the ozone layer, and climatic change (103). 

In forests, agricultural lands, and wetlands, the causes of observed 
damage appear to be more complicated than in lakes and streams, 
with many air pollutants acting in concert, in some cases exacerbat- 
ing the effects of natural stresses such as cold and drought (104). 
Acid rain appears to play some role in the observed damage. It is 
clearly instrumental in mobilizing the soil aluminum which causes 
root damage in forests, and in leaching plant nutrients from foliage 
(104). Polluted fogs and mists also expose terrestrial plants to 
concentrations of acid much higher than in rain, causing direct foliar 
damage in some cases (105). Long-range transport of sulfur in the 
atmosphere has caused increased haze in both Arctic and temperate 
regions (106). In summary, reducing emissions of sulfur and 
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Infrared Laser Spectroscopy of Molecular Ions 

The development of new techniques for infrared laser 
spectroscopy of molecular ions has resulted in an explo- 
sion of high-quality data for important charged mole- 
cules. Velocity modulation laser spectroscopy, which ex- 
ploits the motions of charged particles in electrical plas- 
mas to eliminate interference from neutral absorbers, is 
rapidly producing a large body of new results for both 
positive and negative molecular ions. This information 
will have an important impact on chemistry, biology, and 
astrophysics. 

T HE STRUCTURES, PROPERTIES, AND DYNAMICS OF 

charged molecules are of substantial contemporary interest 
because of their crucial roles in such diverse and timely 

contexts as plasma processing of semiconductor devices, electron 
and proton transfer in biological systems, the formation and evolu- 
tion of stars and planetary systems from interstellar dust clouds, and 
the chemistry and physics of planetary atmospheres. Although 
perhaps not seeming to be qualitatively different from their neutral 
counterparts, molecular ions do, in fact, present a unique set of 
difficult challenges to both theoreticians and experimentalists. As a 
consequence, it is only recently that these species have become 
amenable to detailed investigations. Technological innovations, 
such as the development of tunable infrared lasers and the explosion 
of large-scale computer technology, have certainly been necessary 
ingredients for this surge of progress, but new intellectual advances 
have actually been the seminal elements in the "molecular ion 
revolution." 

In his Science article (1) entitled "Methylene: A paradigm for 
computational quantum chemistry," H. F. Schaefer described the 
recent advances made in ab initio quantum chemistry that have 
resulted in the availability of accurate and reliable theoretical 
predictions to guide the design and interpretation of molecular ion 
spectroscopy experiments. The principal impediment to experimen- 
tal investigations of molecular ion spectra is simply the difficulty of 
obtaining sufficient concentrations to produce a detectable interac- 
tion with electromagnetic radiation. This difficulty is the result of 
both the inherently high chemical reactivity of charged molecules 
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and the elementary fact that like charges repel each other. The 
problems associated with producing detectable concentrations of 
ions have limited the spectroscopic information previously available 
to either optical emission spectra, which were obtained for a variety 
of diatomic and a few polyatomic ions, or to infrared spectra 
measured in highly perturbative condensed-phase environments. 
High-resolution techniques, such as microwave and infrared laser 
spectroscopy, which yield far more detailed information for individ- 
ual unperturbed molecules in the gas phase (the distribution of 
electrons in a molecule, precise molecular geometries, and barriers to 
internal motions, for example) were considered inapplicable to this 
entire class of molecules. Even more serious was the fact that the 
molecular ions of greatest importance possess closed electron shells, 
and do not exhibit accessible electronic spectra. Then, nearly 15 
years ago, two independent experimental breakthroughs occurred 
that dramatically changed this situation and began the molecular ion 
revolution. 

One of these experiments, carried out by Wing and co-workers 
(2), combined infrared laser excitation of a velocity-tuned ion beam 
with sensitive mass spectroscopic detection of the ions themselves to 
indirectly measure the vibration-rotation spectrum of a few very 
simple ions (HD', HeH', and D3+) with extreme precision. 
Because the concentration of ions in such a beam is so small, the 
effects of the infrared radiation were detected by monitoring 
changes induced in the ion current that resulted when ions transfer- 
ring their charge through collisions with a buffer gas underwent 
vibrational transitions. This indirect (mass spectrometric) approach 
has since been developed by Carrington, Moseley, and others into a 
general technique for measuring spectra of molecular ions in the 
ultraviolet-visible region as well as in the infrared. A considerable 
body of interesting structural and dynamical information has been 
obtained as a result of this important development. 

Woods and co-workers (3) pioneered the other major experimen- 
tal breakthrough somewhat earlier by directly measuring rotational 
absorption spectra of a series of simple ions (CO', HCO', and 
HNN') generated in an electrical discharge. By overcoming the 
technical problems associated with using such violent means to 
produce the ions, spectroscopists could take advantage of the high 
concentrations of ions that exist in electrical discharges because of 
the mutual shielding effects of electrons and ions. Direct absorption 
spectroscopy of several kinds of laboratory plasmas has subsequently 
been used for studies of many molecular ions in the microwave, 
infrared, and visible regions. 
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