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Fig. 4. Effect of HDL on the growth of T. cruz:
epimastigotes (strain  MV-13). Parasites were
grown for the indicated time in a complete medi-
um containing 10% fetal calf serum, in LDM, and
in LDM reconstituted with human HDL at the
indicated concentrations. The results shown are
the average of duplicate tubes and representative
of four experiments (standard deviation is less
than 20% of the mean).

of its ability to inhibit neuraminidase activi-
ty of the infective trypomastigotes. Our
observations support this concept (27). In
this context, it is interesting that human
HDL has been reported to have a specific
Iytic effect on trypomastigotes of the African
trypanosome T brucei and to be responsible
for its host specificity (28). In view of these
considerations, our working model is that
HDL participates in the T. cruzi life cycle by
promoting epimastigote multiplication in
the insect vector and trypomastigote infec-
tion in the mammalian host. The results
presented here raise the possibility that
HDL may be one of the factors underlying
the pathogenesis of Chagas’ disease.
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Effect of Membrane Potential Changes on the
Calcium Transient in Single Rat Cardiac Muscle Cells

MARrk B. CANNELL,* JosHUA R. BERLIN, WILLIAM ]J. LEDERER

The mechanism that links membrane potential changes to the release of calcium from
internal stores to cause contraction of cardiac cells is unclear. By using the calcium
indicator fura-2 under voltage-clamp conditions, changes in intracellular calcium
could be monitored in single rat ventricular cells while contro]lmg membrane
potential. The voltage dependence of the depolarization-induced increase in intracellu-
lar calcium was not the same as that of the calcium current (I;), which suggests that
only a small fraction of I; is required to trigger calcium release from the sarcoplasmic
reticulum. In addition, sarcoplasmic reticulum calcium release may be partly regulated
by membrane potential, since repolarization could terminate the rise in intracellular
calcium. Thus, changes in the action potential will have immediate effects on the time
course of the calcium transient beyond those associated with its effects on I siv

TUDIES ON CARDIAC MUSCLE HAVE
shown that the amplitude of the calci-
um current (I) and the strength of
contraction are closely linked (1), support-
ing the idea that the Ca®* flux across the
surface membrane during I; directly trig-
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gers and regulates the release of Ca®* from
the sarcoplasmic reticulum (SR) (2). How-
ever, the change in intracellular Ca®*
([Ca“]) that activates contraction is tran-
sient, so that force dcvclopmcnt will depend
on the time course of the [Ca*"]; transient
as well as the nonlinear Ca®*-force relation
(3). Thus force is, at best, only a qualitative
measure of [Ca®*];, and the relation be-
tween I and [Ca’*]; may not have been
characterized by tension measurements.
We have directly addressed this issue by
recording [Ca®*]; transients from voltage-
clamped single rat ventricular cells with the
fluorescent Ca** indicator fura-2 (4). The
fura-2 was introduced into the cell by in-
cluding the potassium salt of fura-2 in the
patch electrode filling solution. Although
introducing fura-2 into the cell in this way is
more difficult than using the membrane
permeant acetoxymethylester form of fura-2
(fura-2 AM), it ensures that the recorded
fluorescent signals are uncontaminated by
partially deesterified forms of fura-2 AM (5)
and by fura-2 AM entering membrane
bound organelles. After isolation (6), cells
were transferred to the experimental cham-
ber (7) mounted on the stage of a modified
inverted microscope (8). The bathing solu-
tion contained 145 mAM NaCl, 4 mM KCl, 1
mM MgCly, 1 mM CaCl,, 10 mM glucose,
0.03 mM tetrodotoxin, and 10 mAM Hepes
(pH 7.4, 35°C). Cells could be illuminated
by ultraviolet (UV) light via an epifluores-
cence illuminator constructed from fused
silica components and a 100-W mercury arc
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Fig. 1. (A) An in vitro calibration curve for fura-2
fluorescence measured at 505 nm. Fluorescence
intensity during illumination with 340-nm (A)
and 380-nm light (M) and the resulting ratio (V)
of fluorescence intensities (4, 12) are displayed as
a function of Ca>* concentration. The calibration
solution contained 140 mM KCl, 1 mM MgCl,, 5
mM EGTA (K™ salt), 10 pM fura-2 (K* salt), 20
mM Pipes (pH 7.2). CaCl, was added to set the
level of free Ca* concentration (dissociation con-
stant of EGTA, 294 nM). Fluorescence measure-
ments were performed at 35°C on the same
apparatus used for experiments (B) Traces show
(from top to bottom): membrane potential, mem-
brane current, fluorescence at 505 nm during
illumination with 380-nm and 340-nm light, and
[Caz*] The fluorescence records at each illumi-
nation wavelength are dlsplaycd by using an
arbitrary scale. To estimate [Ca®*];, the fluores-
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lamp. Illumination with UV light at a wave-
length of 340 or 380 nm was selected by 10-
nm interference filters (8). Quiescent cells
were voltage-clamped with a single patch
electrode (9). The patch-electrode filling
solution contained an intracellular salt solu-
tion (10) that included 30 pM fura-2 (K*
salt) (11). Fluorescence of the cell at 505 nm
was recorded from a region of the cell about
10 pm in diameter with a photomultiplier
tube. [Ca®"]; was estimated by dividing
fura-2 fluorescence (at 505 nm, after back-
ground autofluorescence subtraction) ob-
tained with 340-nm illumination by that
obtained with 380-nm illumination (4).
This division gives a “fluorescence ratio”
that can be converted to Ca** concentra-
tions with an in vitro calibration curve (Fig.
1A) (4, 12, 13).

Depolarization of the cell by a voltage-
clamp step produced changes in fluores-
cence at both illumination wavelengths (Fig.
1B); fluorescence (at 505 nm) transiently
increased while the cell was illuminated with
340-nm light and decreased while the cell
was illuminated at 380 nm. These changes
in fluorescence would be expected from a
transient increase in [Ca®*]; (4) (Fig. 1A).
Although in opposite directions, the time
course of the transient at each illumination
wavelength was similar and free from detect-
able movement artifacts (14).

The fluorescence signal changes rapidly at
first and then more slowly for the remainder
of the depolarizing pulse. The rate of change
of the fluorescence signal during the rising
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cence record obtained during 340-nm illumina-
tion was divided by the fluorescence record at 380
nm after subtracting autofluorescence back-
grounds at cach wavelength. [Ca®*]; was then
determined from this ratio of fluorescence intensi-
ties with the in vitro calibration curve in (A).

phase of the transient (about 100 sec™')
may be limited by the speed of response of
fura-2 (15). However, once the rapid phase
of the transient is complete, the dye signal
should give a reasonable estimate of the time
course of the underlying [Ca?*]; transient
(Fig. 1B). About 3 msec after depolarization
[Ca”]; started to increase and reached its
peak value at about 40 msec. Upon repolari-
zation [Ca*"]; declined with a half time of
about 50 msec and was still elevated more
than 300 msec after repolarization. Thus the
duration of the [Ca*]; transient is at least as
long as the twitch. Although [Ca®*]; tran-
sients measured by aequorin generally ap-
pear briefer than this (16), the inability to
resolve resting levels of [Ca*"]; with ae-
quorin and the nonlinear dependence of
aequorin light on Ca?* (17) lead us to
believe that there are no fundamental differ-
ences between the [Ca®'); transient mea-
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Fig. 2. Effect of dcpolarlzanon duration on the
time course of the Ca®* transient. The cell was
depolarized from —54 to —24 mV for 100 msec
every 1.5 seconds. Every fourth depolarization,
the duration of the depolarizing pulse was varied
between 5 and 320 msec. (A) Depolarizing pulses
of 5-, 10-, 20-, and 80-msec duration. (B) Pulses
of 40-, 160-, and 320-msec duration. The upper
record in each panel shows membrane potential.
The middle record shows membrane current cor-
rected for capacity and leak currents. The lower
record shows changes in fluorescence measured at
505 nm during illumination with 380-nm light.
The fluorescence record was low-pass filtered (8-
pole Bessel, —6 dB at 80 Hz).
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sured by aequorin and those reported here.
In addition, the estimate of peak [Ca®"];
obtained here is similar to that estimated
from aequorin transients in rat papillary
muscle under similar conditions (18).

The effect of changing the duration of
depolarizing pulses that gave nearly maximal
transient amplitudes is shown in Fig. 2.
Similar results were observed in ten other
cells. Three features of this figure are nota-
ble: (i) Repolarization during the rising
phase of the transient abbreviates the rise in
[Ca®*);. (ii) After about 40 msec [Ca®*];
starts to decline from the peak level even if
the membrane is still depolarized. [A similar
result has been observed in aequorin-inject-
ed Purkinje fibers under voltage clamp (19,
20).] (iii) The rate of decline of [Ca®*]; is
increased if the membrane is repolarized. In
addition, with long depolarizing pulses
[Ca®*]; does not return to resting levels but
is maintained at an elevated level and in
some experiments increased again. This lat-
ter feature is similar to the voltage- which

A

500 50 -40
P,
\i e AN ” T,

Current  [Ca?*);

108 o
—

E—
200 msec

[ i “,
S ,

[
[
A
[
[
[

Fig. 3. An example of the voltage dependence of
the Ca®* transient and I;. (A) The changes in
[Ca**]; (top) and I (bottom) elicited by 200-
msec test depolarizations to various potentials
(shown on the right of each panel). The test
depolarization was given after a train of constant
amplitude depolarizations (at 1 Hz) to place the
cell in the same state before each test pulse. The
currents shown are difference currents obtained
by subtracting records obtained in the presence of
a calcium channel blocker (25 pM D-600) from
control records (30). Calibration scales are the
same for each panel. Note the graded increase in
both the rate of rise of [Ca®*]; and the peak
[Ca®*); reached during the depolarization. In
addition, depolarization to —50 and —40 mV
elicits an increase in [Ca®*]; without activating a
time-dependent inward current. (B) Dchlariza—
tion potential as a function of peak [Ca**]; (cir-
cles) and peak I; (squares) for the experiment in
(A). A modified Boltzmann equation (which
takes account of the variation in driving force
on the activation of the current) has been
fitted to the current data: Ic, o (Eg—V,)/1 +
exp[—(Vim—Vn)/k], where Eg is the extrapolated
reversal potential for the current (+70 mV), V,, is
the membrane potential, V}, is the half maximal
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sodium-dependent  changes in resting
[Ca*"]; which tonic tension observed in
Purkinje fibers and may be due to the Na**-
Ca”" exchange mechanism (20, 21).

It has been suggested that the release of
Ca’* by the SR is regulated by I; and not
by the change in membrane potential per se
(22). In this “calcium-induced calcium re-
lease” (CICR) mechanism, Ca®>" entering
via I; binds to an activator site that causes
the SR Ca®* release channel to open. The
regenerative nature of this mechanism is
suppressed by Ca’" slowly binding to an
inhibitory site that stops Ca®" release (23).
The depression of the rising phase of the
[Ca’*); transient by rapid repolarization
might be due to the more rapid increase of
[Ca?"]; near the regulatory sites upon repo-
larization (thereby inhibiting release more
rapidly). During the few milliseconds that
I; takes to deactivate after repolarization, an
increase in Ca®" influx would be expected
from the increase in the electrochemical
gradient for Ca?* entry. However, repolar-
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activation potential (—23 mV), and % is the slo
factor (5.4 mV). The curve through the [Ca®*];
data points was drawn by eye. (C) Effect of
depolarization to very positive potentials. Super-
imposed records of membrane currents (upper
panel) and fluorescence changes (bottom panel)
(excitation, 380 nm; emission, 505 nm) associat-
ed with a 100-msec depolarization to +10 and
+100 mV (designated with an asterisk). Mem-
brane current and fluorescence changes at +10
mV are similar to those in (A), but d::folarization
to +100 mV (¥) results in no [Ca®"]; transient
during the pulse and a clear transient on repolari-
zation.

izing from —24 to —54 mV would not be
expected to increase the Ca®* influx rate by
more than about 20% (because the Nernst
potential for Ca>* is about +90 mV). It is
difficult to reconcile such a moderate and
short-term increase in Ca** influx with such
a profound depression of release, since de-
polarizations that give a larger I; (see be-
low) increase the amplitude of the [Ca®'];
transient. Alternatively, the occupancy of
activator site might be decreased by the
cessation of the Ca?" influx, so that Ca?*
release is inhibited. However, when repolar-
ization stops the rise in [Ca®*];, Ca’' is
already being released by the SR so that the
occupancy of the activator sites will depend
on the relative contributions of I; and SR
Ca*" fluxes to the local [Ca®*]; around the
SR release sites. Consideration of the ampli-
tude of the I; and the rate of change of the
fura-2 fluorescence signal suggests that the
Ca’" flux from the SR is at least an order of
magnitude greater than that due to I; (24).
Thus once initiated, SR Ca?* release should
dominate [Ca?*]; near the release sites and
removal of the I; Ca*>" flux (by repolariza-
tion) should not lead to a large decrease in
the occupancy of the activator sites. If CICR
alone cannot account for why repolarization
abbreviates the rise in [Ca®"];, then our data
raise the possibility that repolarization may
also directly inhibit SR Ca’" release.
The voltage dependence of the [Ca
transient and Ca®>" currents is illustrated in
Fig. 3. I activates at about —40 mV and
reaches half maximal amplitude at =22 mV.
I; reaches a peak at about —10 mV, and
further depolarization results in a decrease
of the amplitude of I (because of the
decreasing driving force for Ca’* entry).
These characteristics of I are similar to
those reported elsewhere (25). However,
peak [Ca?"]; has a very different voltage
dependence. Detectable increases in [Ca“];
occur when the cell is depolarized to —50
mV, while a half-maximal increase in
[Ca*"]; occurs at about —38 mV. With
larger depolarizations, the peak [Ca®'];
reaches a maximum that becomes relatively
voltage insensitive over the range —20 to 20
mV. Depolarization beyond about 30 mV
results in a decrease in the amplitude of the
[Ca?*]; transient during the pulse and the
development of an additional [Ca?"]; tran-
sient that occurs on repolarization. The ob-
servation that the voltage dependence of
peak [Ca®"]; is quite different from that of
I; [in six experiments, I; was half maximal
at —17.8 = 1.4 mV, whereas the [Ca’'];
transient was half maximal at —30.3 = 1.7
mV (mean + SEM)] suggests that the in-
creases in [Ca?*]; that we have recorded are
not simply a reflection of the contribution of
I; to [Ca®*"];. Thus, the SR Ca®" release

2+]i
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system was functional and not blocked by
the injection of fura-2. In addition, if I
does trigger the release of Ca** from the SR
(2), then only a small fraction of I is
required to initiate Ca’* release (26). The
observation that increasing activation of I
(Between —25 and ¢ mV) has only a small
effect on peak [Ca"]; supports the sugges-
tion that, in rat ventricular cells, the increase
in [Ca®*}; elicited by depolarization is prin-
cipally due to Ca** release from the SR and
Ca®" influx via I is a relatively minor
component (27).

At very positive potentials, there was no
Change in [Ca?"]; during the pulse and a
subsequent [Ca’"]; transient occurred on
repolarization (Fig. 3C). This result sug-
gests that Ca>* entry via the Na**-Ca®*
exchange mechanism during the depolariz-
ing pulse is insufficient to activate Ca®"
release from the SR under these conditions
(assuming that CICR is the mechanism of
Ca*" release). The repolarization transient
could be explained by the tail Ca?* current
activating Ca’* release from the SR by the
CICR mechanism. Alternatively, if the SR
Ca’* release channel rapidly enters an inacti-
vated state at these positive potentials (so
that no transient occurs during the pulse),
then the repolarization transient could be
explained by the return of the channel
through the open state. It is also possible
that Ca’* entering during the depolarizing
pulse is taken up by the SR (which could
also help explain the lack of an appreciable
change in [Ca®*]; during the pulse) and that
this causes the SR to enter a “Ca®* over-
load” state (28) so that spontaneous Ca**
release occurs once inhibition of Ca*" re-
lease is relieved by repolarization.

Our results are compatible with both the
CICR mechanism and a voltage-dependent
SR Ca®* release mechanism. However, the
effect of rapid repolarization appears more
casily explained by voltage directly affecting
Ca®" release than by CICR. Thus, Ca**
release may be mediated by a mechanism
that requires a Ca®* influx but which may
also be modulated by changes in voltage
directly.

Because maintained depolarization slows
the return of [Ca’']; to resting levels,
changes in the duration of the action poten-
tial should affect the time course of the
[Ca?*); transient. Such changes do not arise
from changes in the amount of Ca®" avail-
able for release from the SR (because they
can be observed on the first long pulse in a
train of depolarizations) and represent an
additional regulatory mechanism for force
production. Thus (for example), interven-
tions that increase the duration of the action
potential will tend to increase force produc-
tion immediately by increasing the duration

1422

of the [Ca®*]; transient. Changes in Ca**
influx during the action potential will fur-
ther augment subsequent Ca>" release by
increasing the amount of releasable Ca**
stored within the SR.

Note added in proof: Barcenas-Ruiz and
Wier (29) have recently reported the voltage
dependence of fura-2 fluorescence transients
in guinea pig cardiac myocytes. Their data
suggest that fluorescence transients and I
may activate over the same range of mem-
brane potentials. While this different result
may have arisen from their choice of resting
membrane potential, it is also possible that
there are species differences between rat and
guinea pig cardiac myocytes.
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Technical Comments

Virus-Induced Increases in Plasma Corticosterone

E. M. Smith et al. (I) reported results
consistent with the hypothesis that cells of
the immune system are able to initiate an
adrenocortical stress response by releasing
adrenocorticotropin (ACTH), indicating a
“lymphoid-adrenal axis.” The basis for their
hypothesis was the observation that injec-
tion of hypophysectomized mice with New-
castle disease virus (NDV) elevated plasma
concentrations of corticosterone, together
with their earlier observation that lympho-
cytes in vitro responded to NDV exposure
by releasing ACTH (2).

Smith et al. report testing the complete-
ness of hypophysectomy by visual inspec-
tion of the sella tursica; functional testing by
the stress of cold-water immersion was per-
formed in a separate group of mice that did
not receive NDV. This is important because
Moldow and Yalow (3) have shown that,
unless all corticotrophic tissue is removed,
cells may survive, multiply, and eventually
restore full corticotrophic function. We have
repeated the experiments of Smith et 4l. and
obtained somewhat different results in hy-
pophysectomized mice in which the com-
pleteness of hypophysectomy was verified
by prior restraint or CRF administration.

In our experiments (4), each mouse was
tested for the completeness of hypophysec-
tomy (with restraint) and for adequate adre-
nocortical function (by injecting ACTH)
before we administered NDV. Three days
after hypophysectomy, cach mouse was
placed in a restraining device for 60 min-
utes, after which approximately 150 pl of
blood was collected from the tail vein (in 5
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to 15 minutes). On the next day, each
mouse was injected subcutaneously with
ACTH, .54 (Organon, 1 pg/g), and tail blood
was again sampled 30 minutes latér. On the
fifth day after hypophysectomy, mice were
intraperitoneally injected with NDV (0.3
ml) or control allantoic fluid (5) and were
decapitated 8 hours after injection to collect
trunk blood. Plasma corticosterone was as-
sayed by radioimmunoassay (6).

We present in Table 1 the combined
results of two separate experiments with the
same design (7). Hypophysectomized mice

did not show elevated plasma corticosterone
concentrations after restraint. ACTH-in-
duced concentrations of plasma corticoste-
rone were slightly lower in hypophysec-
tomized mice than in sham-operated con-
trols, consistent with a small loss of adreno-
cortical sensitivity. As would be expected
after removal of the pituitary, the plasma of
hypophysectomized mice contained lower
concentrations of corticosterone than did
sham-operated controls, whether or not
they were injected with NDV. NDV-inject-
ed sham-operated mice showed statistically
significant elevations of plasma corticoste-
rone relative to vehicle-injected controls. In
these two experiments, there was a small
increase in the plasma corticosterone con-
centrations of hypophysectomized mice in-
jected with NDV as compared with vehicle,
but this effect was not statistically signifi-
cant. Thus hypophysectomy prevented the

Table 1. Plasma corticosterone concentrations (nanograms per milliliter) after NDV administration
to hypophysectomized or sham-operated mice. Three days after hypophysectomy mice were tested
for completeness of hypophysectomy by restraining them for 60 minutes and collecting a sample of
blood from the tail vein. Adrenocortical responsiveness was tested the next day 30 minutes after
subcutaneous injection of ACTH .24 (1 ug/g). On the fifth day after hypophysectomy, mice were
injected intraperitoneally with 0.3 ml of NDV (750 hemagglutination units) or with control
allantoic fluid 8 hours before trunk blood was collected for assay of corticosterone by radioim-
munoassay. Three hypophysectomized mice displaying plasma corticosterone concentrations greater
than 50 ng/ml after restraint and two exhibiting corticosterone concentrations less than 100 ng/ml
after ACTH were excluded from the hypophysectomized group. The results after NDV injection
were similar whether or not any mice were excluded.

Plasma corticosterone concentrations (ng/ml)

Treatment-
injection N Priovr ACTH ) NDV
restraint injection injection
Sham-operated
Vehicle 17 284 = 19 409 + 25 85+ 13
NDV 17 284 + 23 448 + 34 167 + 21*
Hypophysectomized
Vehicle 17 19+3 327 + 38t 21+5
NDV 16 24+ 4 336 = 39t 37+9

*NDV injection caused a statistically significant elevation of plasma corticosterone compared with that in the
vehicle-injected group in sham-operated mice [#(df = 32) = 3.29, P < 0.005], but not in hypophysectomized
mice.  1The plasma concentrations of corticosterone after ACTH injection were significantly lower in the
hypophysectomized than in the sham-operated mice [#(df = 65) = 2.86, P < 0.01].

REPORTS

1423





