
Chaos, Strange Attractors, and Fractal Basin 
BoundaAes in Nonlinear Dynamics 

Recently research has shown that many simple nonlinear 
deterministic systems can behave in an apparently unpre- 
dictable and chaotic manner. This realization has broad 
implications for many fields of science. Basic develop- 
ments in the field of chaotic dynamics of dissipative 
systems are reviewed in this article. Topics covered in- 
clude strange attractors, how chaos comes about with 
variation of a system parameter, universality, fractal basin 
boundaries and their effect on predictability, and applica- 
tions to physical systems. 

I N THIS ARTICLE WE PRESENT A REVIEW OF THE FIELD OF 

chaotic dynamics of dissipative systems including recent devel- 
opments. The existence of chaotic dynamics has been discussed 

in the mathematical literature for many decades with important 
contributions by Poincark, Birkhoff, Cartwright and Littlewood, 
Levinson, Smale, and Kolmogorov and his students, among others. 
Nevertheless, it is only recently that the wide-ranging impact of 
chaos has been recognized. Consequently, the field is now undergo- 
ing explosive growth, and many applications have been made across 
a broad spectrum of scientific disciplines-ecology, economics, 
physics, chemistry, engineering, fluid mechanics, to name several. 
Specific examples of chaotic time dependence include convection of 
a fluid heated from below, simple models for the yearly variation of 
insect populations, stirred chemical reactor systems, and the deter- 
mination of limits on the length of reliable weather forecasting. It is 
our belief that the number of these applications will continue to 
grow. 

We start with some basic definitions of terms used in the rest of 
the article. 

Dissipative system. In Hamiltonian (conservative) systems such as 
arise in Newtonian mechanics of particles (without friction), phase 
space volumes are preserved by the time evolution. (The phase space 
is the space of variables that specify the state of the system.) 
Consider, for example, a two-dimensional phase space (g, p), where 
g denotes a position variable and p a momentum variable. Hamil- 
ton's equations of motion take the set of initial conditions at time 
t = to and evolve them in time to the set at time t = tl. Although the 
shapes of the sets are different, their areas are the same. By a 
dissipative system we mean one that does not have this property 
(and cannot be made to have this property by a change of variables). 
Areas should typically decrease (dissipate) in time so that the area of 
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the final set would be less than the area of the initial set. As a 
consequence of this, dissipative systems typically are characterized 
by the presence of attractors. 

Attractor. If one considers a system and its phase space, then the 
initial conditions may be attracted to some subset of the phase space 
(the attractor) as time t -+ a. For example, for a damped harmonic 
oscillator (Fig. la )  the attractor is the point at rest (in this case the 
origin). For a periodically driven oscillator in its limit cycle the limit 
set is a closed curve in the phase space (Fig. lb) .  

Strange attractm. In the above two examples, the attractors were a 
point (Fig, la), which is a set of dimension zero, and a closed curve 
(Fig. lb) ,  which is a set of dimension one. For many other attractors 
the attracting set can be much more irregular (some would say 
pathological) and, in fact, can have a dimension that is not an 
integer. Such sets have been called "fractal" and, when they are 
attractors, they are called strange attractors. [For a more precise 
definition see (1) .] The existence of a strange attractor in a physically 
interesting model was first demonstrated by Lorenz (2). 

Dimension. There are many definitions of the dimension d (3 ) .  
The simplest is called the box-counting or capacity dimension and is 
defined as follows: 

where we imagine the attracting set in the phase space to be covered 
by small D-dimensional cubes of edge length E, with D the 
dimension of the phase space. N(E) is the minimum number of such 
cubes needed to cover the set. For example, for a point attractor 
(Fig. la) ,  N(E) = 1 independent of E, and Eq. 1 yields d = 0 (as it 
should). For a limit cycle attractor, as in Fig. lb,  we have that 
N(E) - (/E, where t is the length of the closed curve in the figure 
(dotted line); hence, for this case, d = 1, by Eq. 1. A less trivial 
example is illustrated in Fig. 2, in the form of a Cantor set. This set is 

Fig. 1. (a) Phase-space diagram for a damped harmonic oscillator. (b) Phase- 
space diagram for a system that is approaching a limit cycle. 
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Fig. 2. Construction of a Can- 0 1 
tor set. 
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formed by taking the line interval from 0 to 1, dividing it in thirds, 
then discarding the middle third, then dividing the two remaining 
thirds into thirds and discarding their middle thirds, and so on ad 
infiniturn. The Cantor set is the closed set of points that are left in 
the limit of this repeated process. If we take E = 3-" with n an 
integer, then we see that N(E) = 2" and Eq. 1 (in which E + 0 
corresponds to n + m) yields d = (In 2)/(ln 3), a number between 0 
and 1, hence, a fractal. The topic of the dimension of strange 
attractors is a large subject on which much research has been done. 
One of the most interesting aspects concerning dimension arises 
from the fact that the distribution of points on a chaotic attractor 
can be nonuniform in a very singular way. In particular, there can be 

an arbitrarily fine-scaled interwoven structure of regions where orbit 
trajectories are dense and sparse. Such attractors have been called 
multifractals and can be characterized by subsidiary quantities that 
essentially give the dimensions of the dense and sparse regions of the 
attractor. In this review we shall not attempt to survey this work. 
Several papers provide an introduction to recent work on the 
dimension of chaotic attractors (3-5). 

Chaotic attyactor. By this term we mean that if we take two typical 
points on the attractor that are separated from each other by a small 
distance A(0) at t = 0, then for increasing t they move apart 
exponentially fast. That is, in some average sense A(t) - A(O)exp(ht) 
with h > 0 (where h is called the Lyapunov exponent). Thus a small 
uncertainty in the initial state of the system rapidly leads to inability 
to forecast its future. [It is not surprising, therefore, that the 
pioneering work of Lorenz (2) was in the context of meteorology.] 
It is typically the case that strange attractors are also chaotic 
[although this is not always so; see (1, 6)]. 

Dynamzcal system. This is a system of equations that allows one, in 
principle, to predict the future given the past. One example is a 
system of first-order ordinary differential equations in time, dx(t)/ 
dt = G(x,t), where x(t) is a D-dimensional vector and G is a D-  
dimensional vector function of x and t. Another example is a map. 

Map. A map is an equation of the form x,+l = F(x,), where the 
"time" t is discrete and integer valued. Thus, given w, the map gives 
xi. Given xi, the map gives x2, and so on. Maps can arise in 
continuous time physical systems in the form of a Poincart surface 
of section. Figure 3 illustrates this. The plane x3 = constant is the 
surface of section (S in the figure), and A denotes a trajectory of the 
system. Every time A pierces S going downward (as at points A and 
B in the figure), we record the coordinates (xl,xz). Clearly the 
coordinates of A uniquely determine those of B. Thus there exists a 
map, B = F(A), and this map (if we knew it) could be iterated to 
find all subsequent piercings of S. 

Chaotic Attractors 
As an example of a strange attractor consider the map first studied 

by Henon (7): 

%"+I = 0. - JZ, + PY" (2) 

Y n + l  = Xn (3) 

Figure 4a shows the result of plotting lo4 successive points obtained 
by iterating Eqs. 2 and 3 with parameters a = 1.4 and P = 0.3 (and 
the initial transient is deleted). The result is essentially a picture of 
the chaotic attractor. Figure 4, b and c, shows successive enlarge- 
ments of the small square in the preceding figure. Scale invariant, 
Cantor set-like structure transverse to the linear structure is evident. 
This suggests that we may regard the attractor in Fig. 4c, for 
example, as being essentially a Cantor set of approximately straight 
parallel lines. In fact, the dimension d in Eq. 1 can be estimated 
numerically (8) to be d = 1.26 so that the attractor is strange. 

As another example consider a forced damped pendulum de- 
scribed by the equation 

where 8 is the angle between the pendulum arm and the rest 
position, v is the coefficient of friction, wo is the frequency of natural 
oscillation, and f is the strength of the forcing. In Eq. 4, the first 
term represents the inertia of the pendulum, the second term 
represents friction at the pivot, the third represents the gravitational 
force, and the right side represents an external sinusoidally varying 
torque of strength f and frequency o applied to the pendulum at the 
pivot. In Fig. 5a, we plot the Poincare surface of section of a strange 
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Fig. 5. (a) Poincark sur- 
face of section of a pendu- 3 

Lum strange amactor. (b) 
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fined by rectangle in (a). 5 1 

% 

0 

-1 

Fig. 6. Chaotic time series - , 

fo; pendulum shown as a 
plot' of angular velocity 
versus time. 

attractor for the pendulum, where we choose v = 0.22, = 1.0, 
o = 1.0, and f = 2.7 in Eq. 4. This surface of section is obtained by 
plotting 50,000 dots, one dot for every cycle of the forcing term, 
that is, one dot at every time t = tn = 2-n (where n is an integer). 
The strange attractor shown in Fig. 5a exhibits a Cantor set-like 
structure transverse to the linear structure. This is evident in Fig. 5b, 
which shows an enlargement of the square region in Fig. 5a. The 
dimension of this strange attractor in the surface of section is 
d ~ 1 . 3 8 .  Figure 6 shows the angular velocity d0ldt as a function o f t  
for the parameters of Fig. 5. Note the apparently erratic nature of 
this plot. 

In general, the form of chaotic attractors varies greatly from 
system to system and even within the same system. This is indicated 
by the sequence of chaotic attractors shown in Fig. 7. All of these 
attractors were generated from the same map (9), 

where PI and P2 are periodic with period one in both their 
arguments. The PI and Pz are the same in all of the cases shown in 
Fig. 7; only the parameters ol, wz, and E have been varied. The 
results show the great variety of form and structure possible in 
chaotic attractors as well as their aesthetic appeal. Since Jl and 0 may 
be regarded as angles, Eqs. 5 and 6 are a map on a two-dimensional 
toroidal surface. [This map is used in (9) to study the aansition 
from quasiperiodicity to chaos.] 

Because of the exponential divergence of nearby orbits on chaotic 
attractors, there is a question as to how much of the structure in 
these pictures of chaotic attractors (Figs. 4, 5, and 7) is an artifact 
due to chaos-amplified roundoff error. Although a numerical trajec- 
tory will diverge rapidly from the true trajectory with the same 
initial point, it has been demonstrated rigorously (10) in important 
cases [including the Htnon map ( l l ) ]  that there exists a true 

trajectory with a slightly different initial point that stays near the 
noisy trajectory for a long time. [For example, for the Htnon map 
for a typical numerical trajectory computed with 14-digit precision 
there exists a true trajectory that stays within lo-' of the numerical 
trajectory for lo7 iterates (1 1 ) .] Thus we believe that the apparently 
fractal structure seen in pictures such as Figs. 4, 5, and 7 is real. 

The Evolution of Chaotic Attractors 
In dissipative dynamics it is common to find that for some value 

of a system parameter only a nonchaotic attracting orbit (a limit 
cycle, for example) occurs, whereas at some other value of the 
parameter a chaotic attractor occurs. It is therefore natural to ask 
how the one comes about from the other as the system parameter is 
varied continuously. This is a fundamental question that has elicited 
a great deal of attention (9, 12-19). 

To understand the nature of this question and some of the 
possible answers to it, we consider Fig. 8a, the so-called bifurcation 
diagram for the map. 

where C is a constant. Figure 8a can be constructed as follows: take 
C = -0.4, set xo = -0.5, iterate the map 100 times (to eliminate 
transients), then plot the next 1000 values-ofx; increase C by a small 
amount, say 0.001, and repeat what was done for C = -0.4; 
increase again, and repeat; and so on, until C = 2.1 is reached. We 
see from Fig. 8a that below a certain value, C = Co = -0.25, there 
is no attractor in -2 < x < 2. In fact, in this case all orbits go to 
x -+ -m, hence the absence of points on the plot. This is also true 
for C above the "crisis value" C, = 2.0. Between these two values 
there is an attractor. As C is increased we have an attracting orbit of 
"period one," which, at C = 0.75, bifurcates to a period-two 
attracting orbit (x, + xe -+ x, -+ xe + . .), which then bifurcates 
(at C = 1.25) to a period-four orbit (x, + xb -+ xc + xd -+ 

x,+xb-+xc+xd-+xa-+ * * * ) .  In fact, there are an infinite num- 
ber of such bifurcations of period 2" to period 2"+' orbits, and these 
accumulate as n + at a finite value of C, which we denote C, 
(from Fig. 8a, C, = 1.4). [The practical importance of this phe- 
nomenology was emphasized early on by May (12).] 

What is the situation for C,< C < C,? Numerically what one 
sees is that for many C values in this range the orbits appear to be 
chaotic, whereas for others there are periodic orbits. For example, 
Fig. 8b shows an enlargement of Fig. 8a for C in the range 
1.72 < C < 1.82. We see what appear to be chaotic orbits below 
C = C,,(3) = 1.75. However, just above this value, a period-three 
orbit appears, supplanting the chaos. The period-three orbit then 
goes through a period-doubling cascade, becomes chaotic, widens 
into a three-piece chaotic attractor, and then finally at 
C = CJ3) = 1.79 widens back into a single chaotic band. We call 
the region Co(3) < C < cJ3) a period-three window. (Such win- 
dows,-but of higher period, appear throughout the region C, 
< C < C,, but are not as discernible in Fig. 8a because they are 

much narrower than the period-three window.) 
An infinite period-doubling cascade is one way that a chaotic 

attractor can come about from-a nonchaotic one (13). There are also . , 

two other possible routes to chaos exemplified in Fig. 8, a and b. 
These are the intermittency route (14) and the crisis route (15). 

Intemittenq. Consider Fig. 8b. For C just above G(3) there is a 
period:three orbit. For C just below co(" there appears to be a 
chaotic orbit. To understand the character of this transition it is 
useful to examine the chaotic orbit for C just below G(3). The 
character of this orbit is as follows: The orbit appears to be a period- 
three orbit for long stretches of time after which there is a short 
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Fig. 7. Sequence of chaot- 1-0 

ic attractors for system 
represented by Fqs. 5 and 
6. Plot shows iterated 
mapping on a torus for 
different values of o,, %, 
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burst (the "intermittent burst") of chaotic-like behavior, followed by 
another long stretch of almost period-three behavior, followed by a 
chaotic burst, and so on. As C approaches CJ3' h m  below, the 
average duration of the long stretches between the intermittent 
bursts becomes Ion er and longer (14), a proaching infinity and R proportional to (CJ') - c ) - I n  as C + CJ . Thus the pure period- 
three orbit appears at C = cJ3). Alternatively we may say that the 
attracting periodic attractor of period three is converted to a chaotic 
attractor as the parameter C decreases through the critical value 
CT). It should be emphasized that, although our illustration of the 
transition to chaos by way of intermittency is within the context of 
the period-three window of the quadratic map given by Eq. 7, this 
phenomenon (as well as period-doubling cascades and crises) is very 
general; in other systems it occurs for other periods (period one, for 
example) in easily observable form. 

Crrces. From Fig. 8a we see that there is a chaotic attractor for 
C < Cc = 2, but no chaotic attractor for C > Cc. Thus, as C is 
lowered through Cc, a chaotic attractor is born. How does this 
occur? Note that at C = Cc the chaotic orbit occupies the interval 
-2 5 x I 2. If C is just slightly larger t h a  C,, an orbit with initial 
condition in the interval -2 < x < 2 will typically follow a chaotic- 
like path for a finite time, after which it finds its way out of the 

interval -2 5 x 5 2, and then rapidly begins to move to large 
negative x values (that is, it begins to approach x = -m). This is 
called a chaotic transient (15). The length of a chaotic transient will 
depend on the particular initial condition chosen. One can define a 
mean transient duration by averaging over, for example, a uniform 
distribution of initial conditions in the interval -2 < x < 2. For the 
quadratic map, this average duration is 

7 - 1/(C - ccy (8) 

with the exponent y given by y = 112. Thus as C approaches Cc 
from above, the lifetime of a chaotic transient goes to infinity and 
the transient is converted to a chaotic attractor for C < C,. Again, 
this type of phenomenon occurs widely in chaotic systems. For 
example, the model of Lorenz (2) for the nonlinear evolution of the 
Rayleigh-BCnard instability of a fluid subjected to gravity and 
heated from below has a chaotic onset of the crisis type and an 
accompanying chaotic transient. In that case, y in Eq. 8 is y - 4 
(20). In addition, a theory for determining the exponent y for two- 
dimensional maps and systems such as the forced damped pendulum 
has recently been published (21). Thus we have seen that the period 
doubling, intermittency, and crisis routes to chaos are illustrated by 
the simple quadratic map (Eq. 7). 

We emphasize that, although a map was used for illustrating these 
routes, all of these phenomena are present in continuous-time 
systems and have been observed in experiments. As an example of 
chaotic transitions in a continuous time system, we consider the set 
of three autonomous ordinary differential equations studied by 
Lorenz (2) as a model of the Rayleigh-Btnard instability, 

where P and b are adjustable parameters. Fixing P = 10 and b = 813 
and varying the remaining parameter, Y, we obtain numerical 
solutions that are clear examples of the intermittency and crisis types 
of chaotic transitions discussed above. We illustrate these in Fig. 9, a - 
through d; the behavior of this system is as follows: 

1) For r between 166.0 and 166.2 there is an intermittency 
transition from a periodic attractor (r = 166.0, Fig. 9a) to a chaotic 
attractor (Y = 166.2, Fig. 9b) with intermittent turbulent bursts. 
Between the bursts there are long stretches of time for which the 
orbit oscillates in nearly the same way as for the periodic attractor 
(14) (Fig. 9a). 

2) For a range of r values below r = 24.06 there are two periodic 
attractors, that represent clockwise and counterclockwise convec- 
tions. For r slightly above 24.06, however, there are three attractors, 
one that is chaotic (shown in the phase space trajectory in Fig. 9c), 
whereas the other two attractors are the previously mentioned 
periodic attractors. The chaotic attractor comes into existence as r 
increases through Y = 24.06 by conversion of a chaotic transient. 
Figure 9d shows an orbit in phase space executing a chaotic 
transient before settling down to its final resting place at one of the 
periodic attractors. Note the similarity of the chaotic transient 
Gajectory in Fig. 9d with the chaotic trajectory in Fig. 9c. 

The various routes to chaos have also received exhaustive experi- 
mental support. For instance, period-doubling cascades have been 
observed in the Rayleigh-Btnard convection (22,23), in nonlinear 
circuits (24), and in lasers (25); intermittency has been observed in 
the Rayleigh-Btnard convection (26) and in the Belousov-Zhabo- 
tinsky reaction (27); and crises have been observed in nonlinear 
circuits (28-30), in the Josephson junction (31), and in lasers (32). 

Finally, we note that period doubling, intermittency, and crises 
do not exhaust the possible list of routes to chaos. (Indeed, the 
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Fig. 8. (Top) Bifbrcation 2,0 
diagram for the quadratic 
map. (Bottom) - Period- 
three window for the qua- 
dratic map. 
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routes are not all known.) In particular, chaotic onsets involving 
quasiperiodicity have not been discussed here (9, 16, 18). 

Universality 
Universality refers to the fact that systems behave in certain 

quantitative ways that depend not on the detailed physics or model 
description but rather only on some general properties of the 
system. Universality has been examined by renormalization group 
(33) techniques developed for the study of critical phenomena in 
condensed matter physics. In the context of dynamics, Feigenbaum 
(13) was the first to apply these ideas, and he has extensively 
developed them, particularly for period doubling for dissipative 
systems. [See (17) for a collection of papers on universality in 
nonlinear dynamics.] For period doubling in dissipative systems, 
results have been obtained on the scaling behavior of power spectra 
for time series of the dynamical process (34, on the effect of noise 
on period doubling (35), and on the dependence of the Lyapunov 
exponent (36) on a system parameter. Applications of the renormali- 
zation group have also been made to intermittency (19,37), and the 
breakdown of quasiperiodicity in dissipative (18) and conservative 
(38) systems. 

As examples, two "universal" results can be stated within the 
context of the b ika t i on  diagrams (Fig. 8, a and b). Let Cn denote 
the value of C at which a period 2" cycle period doubles to become a 
period 2"+' cycle. Then, for the bitkcation diagram in Fig. 8a, one 
obtains 

The result given in Eq. 12 is not restricted to the quadratic map. In 
fact, it applies to a broad class of systems that undergo period 
doubling cascades (13, 39). In practice such cascades are very 
common, and the associated universal numbers are observed to be 
well approximated by means of fairly low order bikat ions (for 
example, n = 2,3,4). This scaling behavior has been observed in 

many experiments, including ones on fluids, nonlinear circuits, laser 
systems, and so forth. Although universality arguments do not 
explain why cascades must exist, such explanations are available from 
bifurcation theory (40). 

Figure 8b shows the period-three window within the chaotic 
range of the quadratic map. As already mentioned, there are an 
infinite number of such periodic windows. [In fact, they are 
generally believed to be dense in the chaotic range. For example, if k 
is rime, there are (2k - 2)1(2k) period-k windows.] Let cJk) and 
Cj) denote the upper and lower values of C bounding the period-k 
window and let c ~ ( ~ )  denote the value of C at which the period-k 
attractor bihcates to period 2k. Then we have that, for typical k 
windows (41). 

cc(k) - c J k )  
lim 
k+m cd(k)  - c (k) + 914 

0 

In fact, even for the k = 3 window (Fig. 8b) the 914 value is closely 
approximated (it is 914 - 0.074 . . .). This result is universal for 
one-dimensional maps (and possibly more generally for any chaotic 
dynamical process) with windows. 

Fractal Basin Boundaries 
In addition to chaotic attractors, there can be sets in phase space 

on which orbits are chaotic but for which points near the set move 
away from the set. That is, they are repelled. Nevertheless, such 
chaotic repellers can still have important macroscopically observable 
effects, and we consider one such effect (42, 43) in this section. 

Typical nonlinear dynamical systems may have more than one 
time-asymptotic final state (attractor), and it is important to consid- 
er the extent to which uncertainty in initial conditions leads to 
uncertainty in the final state. Consider the simple two-dimensional 
phase space diagram schematically depicted in Fig. 10. There are 
two attractors denoted A and B. Initial conditions on one side of the 
boundary, 8, eventually asymptotically approach B; those on the 
other side of 8 eventually go to A. The region to the left or right of 
8 is the basin of attraction for attractor A or B, respectively, and Z is 
the basin boundary. If the initial conditions are uncertain by an 
amount E, then for those initial conditions within E of the boundary 
we cannot say a priori to which attractor the orbit eventually tends. 

)tic Oscillalic 

1 . .///l,I ... 

Fig. 9. Intermittency, crisis, and period doubling in continuous time 
systems. Intermittency in the Lorenz equations (a) r = 166.0; (b) 
r = 166.2. Crisis transition to a chaotic attractor in the Lorenz equations: 
(c) r = 28; (d) r = 22. 
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Fig. 10. A region of phase space divided by 
the bas~n boundary ): into basins of attraction 
for the two attractors A and B. Points 1 and 2 
are initial conditions with error E. 

For example, in Fig. 10, points 1 and 2 are initial conditions with an 
uncertainty E. The orbit generated by initial condition 1 is attracted 
to attractor B. Initial condition 2, however, is uncertain in the sense 
that the orbit generated by 2 may be attracted either to A or B. In 
particular, consider the fraction of the uncertain phase space volume 
within the rectangle shown and denote this fractionf For the case 
shown in Fig. 10, we clearly have f - E. The main point we wish to 
make in what follows is that, from the point of view of prediction, 
much worse scalings o f f  with E frequently occur in nonlinear 
dynamics. Namely, the fraction can scale as 

with the "uncertainty exponent" a satisfjring a < 1 (42,43). In fact, 
a << 1 is fairly common. In such a case, a substantial reduction in 
the initial condition uncertainty, E, yields only a relatively small 
decrease in the uncertainty of the final state as measured by f 

Although a is equal to unity for simple basin boundaries, such as 
that depicted in Fig. 10, boundaries with noninteger (fractal) 
dimension also occur. We use here the capacity definition of 
dimension, Eq. 1. In general, since the basin boundary divides the 
phase space, its dimension d must satisfjr d 2 D - 1, where D is the 
dimension of the phase space. It can be proven that the following 
relation between the index a and the basin boundary dimension 
holds (42, 43) 

For a simple boundary, such as that depicted in Fig. 10, we have 
d = D - 1, and Eq. 15 then gives a = 1, as expected. For a fractal 
basin boundary, d > I1 - 1, and Eq. 15 gives e < 1. 

We now illustrate the above with a concrete example. Consider 
the forced damped pendulum as given by Eq. 4. For parameter 
values v = 0.2, oo = 1.0, o = 1.0, and f = 2.0, we find numerically 
that the only attractors in the surface of section (0, dO/dt) are the 
fixed points (-0.477, -0.609) and (-0.471, 2.037). They repre- 
sent solutions with average counterclockwise and clockwise rotation 
at the period of the forcing. The cover shows a computer-generated 
picture of the basins of attraction for the two fixed point attractors. 
Each initial condition in a 1024 by 1024 point grid is integrated 
until it is close to one of the two attractors (typically 100 cycles). If 
an orbit goes to the attractor at 0 = -0.477, a blue dot is plotted at 
the corresponding initial condition. If the orbit goes to the other 
attractor, a red dot is plotted. Thus the blue and red regions are 
essentially pictures of the basins of attraction for the two attractors 
to the accuracy of the grid of the computer plotter. Fine-scale 
structure in the basins of attraction is evident. This is a consequence 
of the Cantor-set nature of the basin boundary. In fact, magnifica- 
tions of the basin boundary show that, as we examine it on a smaller 
and smaller scale, it continues to have structure. 

We now wish to explore the consequences for prediction of this 
infinitely fine-scaled structure. To do this, consider an initial 
condition (0, dO/dt). What is the effect of a small change E in the 0- 
coordinate? Thus we integrate the forced pendulum equation with 
the initial conditions (0, dO/dt), (0, dOldt + E), and (0, dO/dt - E) 
until they approach one of the attractors. If either or both of the 
perturbed initial conditions yield orbits that do not approach the 
same attractor as the unperturbed initial condition, we say that (0, 
dO1dt) is uncertain. Now we randomly choose a large number of 
initial conditions and letf denote the fraction of these that we find 

to be uncertain. ,4s a result of these calculations, we find that! - E* 

where 6 = 0.275 f 0.005. If we assume that!, determined in the 
way stated above, is approximatelji proportional to f [there is some 
support for this conjecture from theoretical work (441, then a = 6. 
Thus, from Eq. 15, the dimension of the basin boundary is 
d GS 1.725 k 0.005. We conclude, from Eq. 14, that in this case if 
we are to gain a factor of 2 in the ability to predict the asymptotic 
final state of the system, it is necessary to increase the accuracy in the 
measurement of the initial conditions by a factor substantially 
greater than 2 (namely by 2110.275 = 10). Hence, fractal basin 
boundaries (a < 1) represent an obstruction to predictability in 
nonlinear dynamics. 

Some representative works on fractal basin boundaries, including 
applications, are listed in (4247) .  Notable basic questions that have 
recently been answered are the following: 

1) How does a nonfractal basin boundary become a fractal basin 
boundary as a parameter of the system is varied (45)? This question 
is similar, in spirit, to the question of how chaotic attractors come 
about. 

2) Can fractal basin boundaries have different dimension values in 
different regions of the boundary, and what boundary structures 
lead to this situation? This question is addressed in (46) where it is 
shown that regions of different dimension can be intertwined on an 
arbitrarily fine scale. 

3) What are the eKects of a fractal basin boundary when the 
system is subject to noise? This has been addressed in the Josephson 
junction experiments of (31). 

Conclusion 
Chaotic nonlinear dynamics is a vigorous, rapidly expanding field. 

Many important future applications are to be expected in a variety of 
areas. In addition to its practical aspects, the field also has funda- 
mental implications. According to Laplace, determination of the 
future depends only on the present state. Chaos adds a basic new 
aspect to this rule: small errors in our knowledge can grow 
exponentially with time, thus making the long-term prediction of 
the future im~ossible. 

Although the field has advanced at a great rate in recent years, 
there is still a wealth of challenging fundamental questions that have 
yet to be adequately dealt with. For example, most concepts 
developed so far have been discovered in what are effectively low- 
dmensional systems; what undiscovered important phenomena will 
appear only in higher dimensions? Why are transiently chaotic 
motions so prevalent in higher dimensions? In what ways is it 
possible to use the dimension of a chaotic attractor to determine the 
dimension of the phase space necessary to describe the dynamics? 
Can renormalization group techniques be extended past the border- 
line of chaos into the strongly chaotic regime? These are only a few 
questions. There are many more, and probably the most important 
questions are those that have not yet been asked. 
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Actin Polymerization and ATP Hydrolysis 

F-actin is the major component of muscle thin filaments 
and, more generally, of the microfilaments of the dynam- 
ic, multifunctional cytoskeletal systems of nonrnuscle 
eukaryotic cells. Polymeric F-actin is formed by reversible 
noncovalent self-association of monomeric G-actin. To 
understand the dynamics of microfilament systems in 
cells, the dynamics of polymerization of pure actin must 
be understood. The following model has emerged from 
recent work. During the polymerization process, adeno- 
sine 5'-triphosphate (ATP) that is bound to G-actin is 
hydrolyzed to adenosine 5'-diphosphate (ADP) that is 
bound to F-actin. The hydrolysis reaction occurs on the 
F-actin subsequent to the polymerization reaction in two 
steps: cleavage of ATP followed by the slower release of 
inorganic phosphate (Pi). As a result, at high rates of 
filament growth a transient cap of ATP-actin subunits 
exists at the ends of elongating filaments, and at steady 
state a stabilizing cap of ADP . Pi-actin subunits exists at 
the barbed ends of filaments. Cleavage of ATP results in a 
highly stable filament with bound ADP Pi, and release of 
Pi destabilizes the filament. Thus these two steps of the 
hydrolytic reaction provide potential mechanisms for 
regulating the monomer-polymer transition. 

A CTIN, WHICH IS ONF OF THE TWO MAJOR PROTEINS OF 

muscle, occurs in even? eukaniot~c cell, in w h ~ c h  it can 
account for more than 20% of the total cell proteln (1). In 

addition to  betng one of the more abundant protelns In nature, actin 
is also one of the most highlv conserved protelns. From amoebas to  
humans, actins are about95% identical in  amino acid sequence (2); 
yeast and soybean actins (3) are about 85% and Tetvahymena actin 
(4) is about 75% identical t o  muscle actins. Manv of the substitu- 
tions that d o  occur are chemicallv consenlati& [for example, 
aspartate for glutamate) and restricted to  a few reglons of the 
polypept~de chain (2-4) Both its widespread occurrence and the 
wolut~onarv stability of its primaw structure suggest the fundamen- 
tal biological importance of actin. 

Actin is a bilobed, approximately pear-shaped molecule (5) that 
consists of a single polypeptide chain of 42,000 daltons (1, 2) .  
Monomeric at nonph~rsiologicallv low ionic strength, pure G-actin 
polymerizes through reversible noncovalent associations (1, 6) into 
filaments of F-actin that contain thousands of protomers (3, when 
either the Mg2+ concentration or the ionic strength is closer to  
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