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Glycolysis Preferentially Inhibits ATP-Sensitive K+ 
Channels in Isolated Guinea Pig Cardiac Myocytes 

In heart, glycolysis may be a preferential source of adenosine triphosphate (ATP) for 
membrane functions. In this study the patch-clamp technique was used to study 
potassium channels sensitive to intracellular ATP levels in permeabilized ventricular 
myocytes. Activation of these K+ channels has been implicated in marked cellular K+ 
loss leading to electrophysiological abnormalities and arrhythmias during myocardial 
ischemia. The results showed that glycolysis was more effective than oxidative 
phosphorylation in preventing ATP-sensitive K+ channels from opening. Experiments 
in excised inside-out patches suggested that key glycolytic enzymes located in the 
membrane or adjacent cytoskeleton near the channels may account for their preference 
for glycolytic ATP. 

S TUDIES IN INTACT ISOLATED HEART 

and cultured myocytes have suggested 
that glycolysis has a special role in 

maintaining membrane function during 
myocardial ischemia and metabolic inhibi- 
tion (1-5). In the isolated rabbit ventricle, 
selective inhibition of glycolysis resulted in 
much greater extracellular K+ accumulation 
than selective inhibition of oxidative (mito- 
chondrial) metabolism despite similar total 
cellular levels of high-energy phosphates (5). 
Extracellular K+ accumulation during early 
myocardial ischemia results from increased 
K+ efflux (6, 7 )  and activation of adenosine 
triphosphate (ATP)-sensitive K+ channels 
has been implicated as a possible cause of 
this efflux (8-1 0). These channels open only 
when the concentration of ATP falls below a 
critical level. However, the critical level of 
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ATP that completely suppresses ATP-sensi- 
tive K+ channels in excised membrane 
patches from heart is much lower (approxi- 
mately 0.2 mM) than the concentration of 
ATP during ischemia except at very late 
stages (8). Unless either the sensitivity of 
ATP-sensitive K+ channels to ATP concen- 
tration is markedly altered by other sequelae 
of metabolic inhibition or ATP stores are 
compartmentalized in the cardiac cell, it 
seems unlikely that activation of ATP-sensi- 
tive K+ channels could cause marked K+ 
loss beginning after 30 seconds of ischemia 
(6, 7 ) .  The results of this study show that 
under conditions in which cellular ATP 
consumption is intrinsically high, glycolytic 
(anaerobic) metabolism is more effective 
than oxidative (aerobic) metabolism in sup- 
pressing ATP-sensitive K+ channels in 
patch-clamped single ventricular myocytes. 
The preference of ATP-sensitive K+ chan- 
nels for glycolytically generated ATP may be 
due to the presence of key glycolytic en- 
zymes strategically located near K+ chan- 
nels. 

Single ventricular myocytes were isolated 
enzymatically from hearts of guinea pigs 
(300 to 400 g) (11) and studied at room 
temperature by means of the gigaseal patch- 
clamp technique (12). Single-channel re- 
cordings were made with fire-polished patch 
electrodes (tip diameter 1 to 4 pm, resist- 
ance 1 to 3 megohms) mounted to the 
headstage of List EPC-7 patch-clamp ampli- 
fier. Data were recorded on a modified 
videocassette recorder and chart recorder 
and analyzed on a PDP 11-23 computer. 
The experimental chamber (0.5 ml) was 
mounted on the stage of an inverted micro- 
scope and was continuously perfused (1  to 4 
mlimin) throughout the experiment. The 
standard filling solution of the patch elec- 
trode contained (millimolar concentration) : 
KC1, 150; Hepes, 5; and KOH to bring the 
p H  to 7.3. The standard bath solution con- 
tained: KCI, 138 to 147 (total K+ concen- 
tration 150); Hepes, 5; EGTA, 2; CaC12, 
0.5; MgC12, 2; and KOH to bring thepH to 
7.1. Various substrates were added as de- 
scribed later. The free Ca2+ concentrations 
of the patch electrode and bath solutions 
were 4 to 6 lJJM and <0.1 lJJM, respectively. 
For single-channel recordings during multi- 
ple interventions the patch electrode was 
arbitrarily held at +40 mV relative to the 
bath. Results are expressed as mean r stan- 
dard deviation. 

Most single-channel recordings were 
made from "open" cell-attached membrane 
patches (10) in which first a gigaseal was 
formed at one end of a cell with the patch 
electrode. The other end of the cell was then 
exoosed for 10 to 30 seconds to a stream of 
bath solution containing 0.1% saponin de- 
livered by positive pressure through a sec- 
ond electrode positioned just over the sur- 
face membrane, As soon as the membrane in 
this region was locally disrupted (detected 
by a slight swelling of the cell easily visible at 
x 800 magnification), the saponin-contain- 
ing electrode was quickly withdrawn. Under 
these conditions, openings of inwardly recti- 
fying K+ channels were commonly observed 
as long as 2 mM ATP was present in the 
bath solution. The single-channel conduc- 
tance of these channels determined from the 
linear portion of the current-voltage (I-V) 
curve was 39 + 4 picosiemens (pS). Remov- 
al of ATP from the bath solution that per- 
b e d  the cell reversibly activated ATP-sensi- 
tive K+ channels in the membrane patch 
distinguishable from inwardly rectifying K+ 
channils by their larger single-chanhelcon- 
ductance (76 r 5 pS). Permeabilized cells 
were capable of generating ATP endoge- 
nously by a variety of metabolic pathways 
when provided with the appropriate sub- 
strates (Fig. 1). Washout of 2 mM ATP 
from the bath caused multiple ATP-sensitive 
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K+ channels to open (Fig. 1A). Addition of 
mitochondrial substrates to the bath 
promptly caused the channels to close. ATP- 
sensitive K +  channels remained closed in the 
presence of mitochondrial substrates until 1 
p44 FCCP [carbonyl cyanide(4-trifluoro- 
methoxy) phenyl hydrazone, a mitochondrial 
uncoupler] was added (Fig. lA, second trac- 
ing). Either of two combinations of substrates 
for the ATP-producing steps of glycolysis 
(GS1 or GS2) also caused ATP-sensitive K+ 
channels to close in the absence of exogenous 
ATP (Fig. 1B). Adenosine diphosphate 
(ADP; 0.5 miM) alone or other individual 
glycolytic substrate components did not sup- 

Fig. 1. The effect of various metabolic 
substrates on ATP-sensitive K+ channels 
in open cell-attached patches. See text for 
details of each trace. Mitochondrial sub- 
strates (MSs) included 2 mM pyruvate, 
glutamate, and creatine, 1 mM K2HP04, 
and 0.5 mM ADP. Glycolytic substrates 
included either 2 mM fructose-1,6-di- 
phosphate, 1 mM NAD, 1 mM K2HP04 
and 0.5 mM ADP (GSl), or 2 mM PEP 
and 0.5 mM ADP (GS2). CP is creatine 
phosphate (2 mM). The patch electrode 
was held at +40 mV relative to the bath 
(equivalent to a membrane potential of 
-40 mV) throughout. Patch electrode 
contained 150 mM KC1 and 5 mM 
Hepes, and the bath contained standard 
solution plus various substrates as indi- 
cated. Inward current is downward. Fil- 
ter setting, 50 Hz. 

press channel openings. Glycolytic substrates 
remained effective in the presence of 1 p44 
FCCP (Fig. 1C). Creatine phosphate (2 
alone had no effect unless 0.5 mM ADP was 
added (as substrate for creatine kinase). In 
typical permeabilized cells ATP-sensitive K+ 
channels could be activated and suppressed 
repeatedly over as long as 45 minutes by 
transiently removing ATP or various sub- 
strates. 

These observations indicate that my0c)Tes 
permeabilized at one end by saponin remain 
metabolically intact and are capable of gener- 
ating sufficient ATP to prevent ATP-sensitive 
K+ channels from opening via several meta- 

A 
*Washout ATP* MSs 

C 
GS2 CP CP + ADP 

FCCP FCCP FCvCP FCwCP FCFP 
I 

MSs MSs GSs 
HK H K +  2-DG HK +2-DG HK + 2-DG 

v v v 
w- %wbfFw- 

Fig. 2. Effects of mito- 
chondrial versus glycolyt~c 
substrates on ATP-sensl- GSs GSs 
tlve K* channels in an FCCP MSs FCCP MSs 

open ceu-attached patch HK + 2-DG HK + 2-DG HK + 2-DG HK + 2-DG HK 

with hexolunase (HK) Y Y v Y 

plus 2-deowglucose (2- 1 
DG), present. See text for % [ 
deta~ls Mitochondr~al - 
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of 2 mM pyruvate and glu- GSs 
tamate, 1 mM K2HP04, MS s FCCP 
and 0:5 d ADP, p H  HK + 2-DG HK + 2-DG HK +2-DG ATP 
7.1. Glycolytic substrates V V V I 
(GSs) consisted of 2 mM 
fructose - 1,6 - diphosphate 
and PEP. 1 mM NAD and 
K~HPO~;  and 0.5 mM 
ADP,pH 7.1. 

- 
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bolic processes. To determine whether the 
responsiveness of ATP-sensitive K+ channels 
to ATP differed depending on the metabolic 
source of ATP, we comoared the effects of 
glycolytic and &tochon&ial substrates in the 
presence of an exogenous ATP-consuming 
system, hexokmase plus 2-deoq7glucose (Fig. 
2). Hexokmase catalyzes the phosphorylation 
of 2-deoxyglucose to 2-deoxyglucose-6-phos- 
phate (nonmetabolizable) and in the process 
degrades ATP to ADP. Exposure of a per- 
meabilized cell to this ATP-consuming system 
was intended to simulate the competition for 
ATP by the variety of ATP-consuming pro- 
cesses in the working myocardium. 

In Fig. 2, at the beginning of the continu- 
ous trace, openings of a single inwardly recti- 
fying K' channel were occasionally observed 
during exposure to standard bath solution 

- - 

containing mitochondrial substrates and 
hexokinase (10 KJiml). Removal of mito- 
chondrial substrates and addition of 10 m M  
2-deoxyglucose to the hexokinase in the bath 
solution (first arrow) caused many ATP-sensi- 
tive K' channels to open. Reexposure to 
mitochondrial substrates (second arrow) in 
the presence of both hexoknase and 2-dkox- 
yglucose now resulted in only a partial tran- 
sient suppression of ATP-sensitive K' chan- 
nel activity, presumably because ATP generat- 
ed by mitochondria was being degraded by 
the reaction with hexokinase and 2-deoxyglu- 
cose before it could reach the ATP-sensitive 
K+ channels in the patch. However, glycolytic 
substrates (third arrow) continued to effec- 
tively suppress ATP-sensitive K' channels in 
the presence of hexokmase plus 2-deoxyglu- 
cose, even after 1 (*M FCCP (fourth arrow) 
was added to inhibit mitochondrial ATP pro- 
duction. The inwardly-rectifying K' channel 
remained active with glycolytic substrates pre- 
sent. The findings were reproducible (second 
and third tracing), and mitochondrial sub- 
strates remained effective in the presence of 
hexokinase when 2-deoxyglucose was omitted 
(eighth arrow), although transient openings 
of ATP-sensitive K+ channels were observed 
until the effects of FCCP from the previous 
intervention wore off ATP (2 mM, without 
hexokinase plus 2-deoxyglucose) also was 
effective (twelfth arrow). In 15 permeabilized 
cells the average current through ATP-sensi- 
tive K+ channels in the patch with hexokinase 
plus 2-deoxyglucose present fell to 81 i 35% 
of the control value when mitochondrial sub- 
strates were added and to 34 +. 29% when 
glycolytic substrates and FCCP were added (P 
< 0.005 by paired t test). In eleven of these 
cells 2 nuZil creatine was included with mito- 
chondrial substrates to facilitate high-energy 
phosphate transfer from the mitochondria to 
the cytoplasm via the phosphocreatine shuttle. 
The reduction in average current through the 
ATP-sensitive K+ channels was similar to 
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those experiments without creatine present 
(82 2 34 and 81 5 43%). In all of these cells 
kitochonhrial substrates had completely sup- 
pressed ATP-sensitive K' channels in the pres- 
ence of hexokinase without 2-deoxyglucose, 

The greater effectiveness of glycolytlc than 
of mitochondrial substrates at suppressing 
ATP-sensitive K+ channels when hexokinase 
plus 2-deoxyglucose was present could be due 
to several factors. For example, an intermedi- 
ate of glycolytic metabolism might directly 
block the channels or increase their sensitivity 
to ATP, or glycolytic enzymes located in close 
proximity to the channels might generate a 
higher local ATP concentration than mito- 
chondria. Therefore, the effects of various 
glycolytic intermediates on ATP-sensitive K+ 
channels were studied in excised (cell-free) 
inside-out patches. In the absence of exoge- 
nous ATP none of the following compounds 
( 1 to 2 mM) alone or in various combkations 
.&pficantl; affected the average current 
through ATP-sensitive K+ channels: fruc- 
tose-1,6-diphosphate, glyceraldehyde-3-phos- 
phate, glyceraldehyde-3-phosphate plus gly- 
ceraldehyde-3-phosphate dehydrogenase (2 to 
10 IUld) plus nicotinamide adenine dinucle- 
otide (NAD) plus K2HP04 (to generate gly- 
cerate-1,3-diphosphate), NAD or its reduced 
form (NADH), glycerate-3-phosphate, gly- 
cerate-Zphosphate, phosphoenolpyruvate 
(PEP), pyruvate, or ADP (0.5 mM). Howev- 
er, in 5 of 27 inside-out patches, a combina- 
tion of all the necessary substrates for the 
ATP-producing steps of glycolysis (mediated 
by the enzymes phosphoglycerokinase and 
pyruvate kinase) reversibly and reproducibly 
suppressed ATP-sensitive K+ channels and 
reduced the average current through the chan- 
nels (relative to the control value with 0.5 
mMADP present) to 1.6, 3.3, 7.1, 13.6, and 
64%, respectively. In 1 of 11 inside-out patch- 
es, substrates for the second ATP-producing 
step alone (involving pyruvate kinase) re- 
duced the average current through ATP-sensi- 
tive K+ channels to zero. The effects of 2 rnM 
glyceraldehyde-3-phosphate and PEP, 2 IU 
glyceraldehyde-3-phosphate dehydrogenase 
per milliliter, 1 mM NAD and K2HP04, and 
0.5 mM ADP on ATP-sensitive K+ channels 
in one of these excised inside-out patches are 
shown (Fig. 3). Replacement of 2 mM ATP 
with 0.5 mM ADP in the bath solution (first 
arrow) caused multiple ATP-sensitive K+ 
channels in the patch to open. Addition of 
glycolytic substrates for the ATP-producing 
steps of glycolysis (second arrow) promptly 
shut the ATP-sensitive channels. The se- 
quence was then repeated. 

The abiliq of the appropriate combination 
of glycolyuc substrates to suppress ATP-sensi- 
tive K+ channels in some excised ~atches is 
consistent with the hypothesis that phospho- 
glycerate kinase or pyruvate kinase, or both, 

ADP 
V 

GSs ADP 
v v 

GSs 
Y 

u 
30 sec 4 0  rnv, 50 Hz 

Fig. 3. Effect of glycolytic substrates (GSs) on 
ATP-sensitive Kt channels in an excised inside- 
out patch. See text for details. Glycolytic sub- 
strates included 2 mM glyceraldehyde-3-phos- 
phate and PEP, 2 IU of glyceraldehyde-3-phos- 
phate dehydrogenase per milliliter, 1 mM NAD 
and K2HP04, and 0.5 mM ADP. 

are located in the sarcolemrna or cytoskeleton 
in the immediate vicinity of K+ channels. The 
ineffectiveness of the substrates in the majority 
of patches may be related to damage or loss of 
enzymes during patch excision. Alternatively, 
the geometry of individual patches may deter- 
mine whether ATP generated locally by glyco- 
lytic enzymes can accumulate sufficiently to 
suppress ATP-sensitive K+ channel activity, 
since electronmicrographs of excised patches 
have shown variability in the amount of cyto- 
skeleton and cytoplasm retained (13). 

These findings suggest that under condi- 
tions of high intrinsic ATP consumption gly- 
colysis is more effective than mitochondrial 
metabolism in suppressing ATP-sensitive K+ 
channels in permeabilized myocytes. Several 
limitations of this interpretation should be 
mentioned. We cannot exclude the possibility 
that saponin damaged the mitochondria, al- 
though exposure to saponin was brief and was 
localized to one end of the cell and mitochon- 
drial membranes are considered more resistant 
to the detergent effects of saponin than is 
sarcolernma. Furthermore, the extent of mito- 
chondrial damage would have to be severe for 
mitochondrial ATP-generating capacity to fall 
below that of glycolysis, since one molecule of 
mitochondrial substrate generates approxi- 
mately 17  ATP molecules, compared to only 
2 ATP for each molecule of glycolytic sub- 
strate. It is also conceivable that the exoge- 
nous ATP-consuming system, hexokinase 
plus 2-deoxyglucose, was distributed inhomo- 
geneously throughout the cell in a manner 
that favored access to mitochondrial ATP. 
Although we cannot exclude this possibility, 
the results with excised inside-out patches 
suggest that a close proximity between key 
glycolytic enzymes and ATP-sensitive K+ 
channels is a plausible explanation for their 
preference for glycolyuc ATP. We have not 
systematically tested the possibility that cer- 
tain glycolytic intermediates may alter the 
sensitivity of ATP-sensitive K+ channels to 
ATP concentration. None of these intermedi- 
ates directly blocked the channels in the ab- 

sence of exogenous ATP in excised inside-out 
patches, and in open-cell attached patches 
substrates for the last step of glycolysis alone 
(PEP and ADP) effectively suppressed ATP- 
sensitive K+ channels together but not indi- 
vidually, which suggests that no glycolytic 
intermediates were necessary. 

Our findings are consistent with several 
observations in intact isolated beating heart 
(S), including the marked cellular K+ loss 
caused by selective inhibition of glycolysis 
despite normal total cellular levels of ATP and 
creatine phosphate, and the rise in extracellu- 
lar K+ concentration when glucose was re- 
placed with pyruvate or acetate as myocardial 
substrate. Glycolysis may play a special role in 
maintaining membrane h a i o n s  in other tis- 
sues (14, 15). This is a particularly intriguing 
possibility in the pancreas, in which insulin 
release by beta islet cells is regulated by ATP- 
sensitive K+ channels (16-18). In heart, acti- 
vation of ATP-sensitive K+ channels during 
ischemia depresses excitability and probably 
shortens the time window during which the 
heart is susceptible to lethal arrhythmias. A 
preferential role of glycolysis in regulating the 
activity of these channels and perhaps other 
membrane functions may have important im- 
plications for attempts to improve myocardial 
function during ischemia and reperfusion. 
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