
Toward a Universal Law of Generalization 
for Psychological Science 

A psychological space is established for any set of stimuli 
by determining metric distances between the stimuli such 
that the probability that a response learned to any stimu- 
lus will generalize to any other is an invariant monotonic 
function of the distance between them. To a good approx- 
imation, this probability of generalization (i) decays expo- 
nentially with this distance, and (ii) does so in accordance 
with one of two metrics, depending on the relation 
between the dimensions along which the stimuli vary. 
These empirical regularities are mathematically derivable 
from universal principles of natural kinds and probabilis- 
tic geometry that may, through evolutionary internaliza- 
tion, tend to govern the behaviors of all sentient orga- 
nisms. 

T HE TERCENTENARY OF THE PUBLICATION, IN 1687, OF 

Newton's Princzjia (1) prompts the question of whether 
psychological science has any hope of achieving a law that is 

comparable in generality (if not in predictive accuracy) to Newton's 
universal law of gravitation. Exploring the direction that currently 
seems most favorable for an affirmative answer, I outline empirical 
evidence and a theoretical rationale in support of a tentative 
candidate for a universal law of generalization. 

Primacy of Generalization 
Because any object or situation experienced by an individual is 

unlikely to recur in exactly the same form and context, psychology's 
first general law should, I suggest, be a law of generalization. 
Learning theorists have seemed to suppose that a principle of 
conditioning (through contiguity or reinforcement) could be pri- 
mary and that how what is learned then generalizes to new 
situations could be left for later formulation, as a secondary princi- 
ple. Unfortunately, a full characterization of the change that even a 
single environmental event induces in an individual must entail a 
specification of how that individual's behavioral dispositions have 
been altered relative to any ensuing situation. Differences in the way 
individuals of different species represent the same physical situation 
implicate, in each individual, an internal metric of similarity between 
possible situations. Indeed, such a metric exists at birth, when 
habituation to one stimulus already exhibits unequal generalization 
to different test stimuli (2). 

Recognition that similarity is fundamental to mental processes 
can be traced back over 2000 years to Aristotle's principle of 
association by resemblance. Yet, the experimental investigation of 
generalization did not get under way until the turn of this century, 
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when Pavlov found that dogs would salivate not only at the sound of 
a bell or whistle that had preceded feeding but also at other 
sounds-and more so as they were chosen to be more similar to the 
original sound, for example, in pitch (3). Since then, numerous 
experimenters have obtained empirical "gradients of stimulus gener- 
alization," relating the strength, probability, or speed of a learned 
response to some measure of difference between each test stimulus 
and the original training stimulus. 

However, methods yielding reliable gradients of generalization 
were not perfected until the middle of this century. In 1956, 
Gurtman and Kalish (4) demonstrated that Skinner's operant condi- 
tioning technique of intermittent reinforcement (5) could be used to 
obtain orderly gradients of generalization for animals. A pigeon that 
was only intermittently permitted access to grain for pecking a 
translucent key illuminated by light of a particular wavelength 
would continue to respond long after termination of all reinforce- 
ment (6). Gutman and Kalish could then measure stable rates of 
responding to many different test wavelengths. And between 1955 
and 1958, I established that orderly gradients of generalization 
could be obtained from humans during identification learning-in 
which subjects acquired, through correction of incorrect responses, 
a one-to-one association between n stimuli (Munsell color chips, for 
example) and n arbitrarily assigned verbal responses (7-9). The 
frequency with which any stimulus led to the response assigned to 
any other provided the measure of generalization between those two 
stimuli. 

Apparent Noninvariance of Generalization 
In striving to establish psychology as a quantitative science, 

researchers had traditionally preferred to choose, as the independent 
variable, a phvsical measure of stimulus difference-such as the . i d  

difference in wavelengths of lights, frequencies of tones, or angular 
orientations of shapes. However, quantification does not in itself 
guarantee invariance. Probability (0; rate) of a generalized response 
reliably decreased with physical difference from the training stimu- 
lus. However, the way it decreased varied from one training 
stimulus, senson7 continuum, or species to another. ~eneralization 

, L 

could even exhibit a nonmonotonic increase between stimuli sepa- 
rated by certain special intervals-for example, between tones 
separated by an octave ( l o ) ,  between hues at the opposite (red and 
violet) ends of the visible spectrum ( l l ) ,  and between shapes 
differing by particular angles related to inherent symmetries of those 
shaues (12). 

1 \ ,  
At midcentury, influential behavioral scientists (including the 

neurophysiologist Karl S. Lashley and the mathematical learning 
theorists Robert R. Bush and Frederick Mosteller) were reaching 

V 

the discouraging conclusion that there could be no invariant law of 
generalization (13). If we took physical difference as the indepen- 
dent variable, gradients of generalization, reflecting properties of the 
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particular animal as much as the physically measured differences 
between the stimuli, could not be expected to be uniform or even 
monotonic. If, instead, we sought a psychological measure of 
difference as the independent variable, the most basic such measure 
would surely be the generalization data themselves-apparently 
rendering the attempt to determine a functional law entirely circular. 

Invariance in Psychological Space 
What is sometimes required is not more data or more refined data 

but a different conception of the problem. Newton arrived at 
universal laws of motion only by departing from Aristotle's and 
Ptolemy's choice of the concretely given earth as the fixed reference 
and by choosing, instead, an abstractly conceptualized absolute 
space, with respect to which all objects including the earth move 
according to the same laws (1). And 230 years later, in order to 
ensure that the laws of physics are invariant for all observers 
regardless of their own relative motions, Einstein had to replace 
Newton's Euclidean space with an even more abstract four-dimen- 
sional Riemannian manifold (14). 

Analogously in psychology, a law that is invariant across percep- 
tual dimensions, modalities, individuals, and species may be attain- 
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Fig. 1. Twelve gradients of generalization. Measures of generalization 
between stimuli are plotted against distances between corresponding points 
in the psychological space that renders the relation most nearly monotonic. 
Sources of the generalization data Cq) and the distances (d) are as follows. (A)  
8 ,  McGuire (33); d, Shepard (7, 18). ( B ) 8 ,  Shepard (7, 17); d, Shepard (7, 
18). (C) 8; Shepard (17); d, Shepard (8) .  (D) 8, Attneave (25); d, Shepard 
(8).  (E) 8, Gutunan and Kalish (4) ;  d, Shepard (1 1 ) . (F)  8, Miller and Nicely 
(2); d, Shepard (35). (G) 8 ,  Attneave (25); d, Shepard (8).  (H) 8, Blough 
(36); d, Shepard (11). ( l ) ~ ,  Peterson and Barney (37); d, Shepard (35). (J)B 
and d, Shepard and Cermak (38). (K) 8 ,  Ekman (39); d, Shepard (1 8) .  (L) 8 ,  
Rothkopf (40); d, Cunningham and Shepard (41). The generalization data in 
the bottom row are of a somewhat different type. [See (39) and the section 
"Limitations and Proposed Extensions."] 

able only by formulating that law with respect to the appropriate 
abstract psychological space. The previously troublesome variations 
in the gradient of generalization might then be attributable to 
variations in the psychophysical function that, for each individual, 
maps physical parameter space (the space whose coordinates include 
the physical intensity, frequency, and orientation of each stimulus) 
into that individual's psychological space. If so, a purely psychologi- 
cal function relating generalization to distance in such a psychologi- 
cal space might attain invariance. 

Instead of starting with a physical parameter space, I proposed to 
start with the generalization data and to ask: Is there an invariant 
monotonic function whose inverse will uniquely transform those 
data into numbers interpretable as distances in some appropriate 
metric space? The requirement that the resulting numbers approxi- 
mate distances in a metric space breaks the circularity (7, 15). Thus, 
in a I<-dimensional space, the distances between points within each 
subset of I< + 2 points must satisfy definite conditions, expressible, 
in the Euclidean case, in terms of certain Cayley-Menger determi- 
nants (1 6). Moreover, the lower the dimensionality of the space, the 
stronger these constraints become. In a one-dimensional space, the 
distances must satisfy the following very strong additivity condition 
(9, 15,17): For each subset of three points, the distance between the 
two most widely separated points equals the sum of the distances of 
those two points to the third point that lies between them. 

The uniqueness of the function that satisfies such constraints is 
implicit in the following geometrical consequence of those con- 
straints (18, 19): Provided that the number, n, of points in a space is 
not too small relative to the number of dimensions of the space, the 
rank order of the n(n - 1)/2 distances among those n points permits 
a close approximation to the distances themselves, up to multiplica- 
tion by an arbitrary scale factor. Through Monte Carlo investiga- 
tions I found that for random configurations of ten points in a two- 
dimensional space, distances inferred from their rank orders had an 
average correlation with the true distances of 0.998, and that for 45 
points, the correlation exceeded 0.999,999 (19). 

The actual determination of the unknown function (and, hence, 
of the associated distances) implied by a matrix of generalization 
data is achieved by numerical methods developed by Shepard (18) 
and Kruskal (20) and known as "nonmetric" multidimensional 
scaling. In a specified type of space, such methods move n points 
representing the n stimuli (usually by steepest descent) until the 
stationary configuration is achieved that minimizes an explicitly 
defined measure of departure from a monotonic relation between 
the generalization measures gv and the corresponding distances do. 
Configurations can be obtained in spaces with different numbers of 
dimensions, and even with different metrics, until the most parsimo- 
nious representation is found for which the residual departure from 
monotonicity is acceptably small. The plot of the generalization 
measuresgv against the distances dij between points in the resulting 
configuration is interpreted as the gradient of generalization. It is a 
psychological rather than a psychophysical function because it can 
be determined in the absence of any physical measurements on the 
stimuli. 

Intimations of an Exponential Law 
For a given set of n stimuli, an appropriate generalization 

experiment yields, for every ordered pair of these stimuli, an 
empirical estimate of the probability pij that a response learned to 
stimulus i is made to stimulus j. The multidimensional scaling 
method is usually applied to an n -X n symmetric matrix of general- 
ization measures, gv ,  obtained from such probabilities through a 
normalization such asgij = [(pU . pji)/(pii .pi)] *, wherepii andpjj are 

4 
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Fig. 2. (A) A centrally symmet- A Region around c 
( l a i l l ng  In over lap)  

ric convex region shown as cen- 
tered on 0, as centered on x, and 
as having a center, c, falling 
within the intersection of the 
regions centered on 0 and on x. 
(B) For an illustrative noncon- 
vex region centered on 0, the 
locus of centers, c, of similarly 
shaped regions having a constant ~ ~ , " ~ ~ ~  
(approximately 20%) overlap 
with the region centered on 0 
(dotted curve); and an ellipse 
corresponding to the Euclidean 
metric (smooth curve). 

the probabilities that stimuli i and j each evoke their originally 
associated responses (8, 15). 

A sample of the plots relating such generalization measures to the 
distances in the configurations that I obtained by applying multidi- 
mensional scaling to those measures is presented in Fig. 1. The 
spatial configurations themselves are presented elsewhere (9, 11 ) . 
The data are from a number of researchers, who tested both visual 
and auditory stimuli, and both human and animal subjects. Yet, in 
every case, the decrease of generalization with psychological distance 
is monotonic, generally concave upward, and more or less approxi- 
mates a simple exponential decay function-the smooth curve fitted 
to each plot solely by adjustment of its slope parameter. Moreover, I 
have verified that multidimensional scaling does not impose this 
form of the function but, by means of the assumed geometrical 
constraints, merely renders explicit whatever form is implicitly 
contained in the data (1 1, 18). 

Multidimensional scaling does, however, impose monotonicity. 
When monotonicity was not achievable in one dimension, recourse 
was taken to a higher dimensional space. The increase in generaliza- 
tion between the red and violet ends of the visible spectrum was thus 
accommodated in a two-dimensional space, where the continuum of 
hue curves to form a circle (9, 18), in fact, the color circle originally 
described by Newton (21 ) . Heightened generalization between 
tones separated by an octave was accommodated in a three- 
dimensional space, where the continuum of pitch twists into a helix 
(1 0, 11 ) . And augmented generalization between all planar orienta- 
tions differing by 180°, in the case of a polygon approximating 
central symmetry, was accommodated in a four-dimensional space, 
where the 360" circle of orientations deforms into the edge of a 
Mobius band (12). Only in relation to such abstract spatial represen- 
tations can we achieve an invariant law. 

Two Metrics for Psychological Space 
When generalization data require a psychological space of more 

than one dimension, they also provide evidence about the metric of 
that psychological space (22,23). For unitary stimuli, such as colors 
differing in perceptually integral attributes of lightness and satura- 
tion, the closest approximation to an invariant relation between 
generalization data and distances has uniformly been achieved in a 
space endowed with the familiar Euclidean metric (17, 20, 23, 24). 
For analyzable stimuli, such as shapes differing in perceptually 
separable attributes of size and orientation, the closest approach to 

invariance has generally been achieved with a different, Minkow- 
skian metric (23-25), approximating what is sometimes referred to 
as the "city-block" metric, because distances between points in an 
orthogonal grid of streets conform with that non-Euclidean metric. 
These two metrics are also associated with what mathematicians call 
the L2-norm and L1-norm for the space. In terms of the coordinates 
xik (for stimulus i on dimension k )  of a I<-dimensional space, these 
metrics are obtained by setting r = 2 or 1, respectively, in the 
Minkowski power metric formula: 

, v , llr 

In a two-dimensional coordinate space, these two metrics are 
distinguished by the fact that around any point, the contours of 
equal distance, and hence of equal generalization, are circular if 
r = 2 (the L2-norm), and rhombic if r = 1 (the L1-norm). 

Are these regularities of the decay of generalization in psychologi- 
cal space and of the implied metric of that space reflections of no 
more than arbitrary design features of some terrestrial animals? Or 
do they have a deeper, more pervasive source? I now outline a theory 
of generalization based on the idea that these regularities may be 
evolutionary accommodations to universal properties of the world. 

A Theory of Generalization 
An object that is significant for an individual's survival and 

reproduction is never sui generis; it is always a member of a 
particular class-what philosophers term a "natural kind." Such a 
class corresponds to some region in the individual's psychological 
space, which I call a consequential region. I suggest that the 
psychophysical function that maps physical parameter space into a 
species' psychological space has been shaped over evolutionary 
history so that consequential regions for that species, although 
variously shaped, are not consistently elongated or flattened in 
particular directions. 

The problem that a positive or negative encounter with an 
unfamiliar object poses for an individual is just the problem of 
inferring the consequential region to which that object belongs. A 
bird that ingested a caterpillar bearing particular coloration and 
markings and found it delectable or sickening, must decide whether 
another object of more or less similar visual appearance is of the 
same natural kind and should therefore be seized or avoided, 
respectively. Generalization is thus a cognitive act, not merely a 
failure of sensory discrimination. Indeed, an animal would be ill 
served by the assumption that just because it can detect a difference 
between the present and a previous situation, what it learned about 
that previous situation has no bearing on the present one. 

In finding a novel stimulus to be consequential, the individual 
learns only that there is some consequential region that overlaps the 
point in psychological space corresponding to that stimulus. In 
accordance with whatever probabilities the individual imputes to 
nature, a priori, the individual can only assume that nature chose the 
consequential region at random. Such an individual can nevertheless 
obtain an estimate of the conditional probability, given that the 
consequential region overlaps the first point, that it also overlaps a 
second, by integrating over all (probabilistically weighted) possible 
locations, sizes, and shapes of the consequential region. 

Mathematical Formulation 
For the present, I suppose psychological space to be a coordinate 

space of some dimensionality, I<. The space of objects differing only 
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in color, for example, might be the three-dimensional space of 
lightness, hue, and saturation. I represent any test stimulus by the 
vector of its coordinates, x = (xl, XZ, -, x K )  If the coordinate 
system is chosen so that the origin corresponds to the stimulus 
found to be consequential, that stimulus is represented by the null 
vector 0 = (0, 0, . ., 0). I then make the following provisional 
specifications concerning what an individual assumes about the 
disposition of a consequential region in this space: (i) all locations 
are equally probable; (ii) the probability that the region has a sizes is 
given by a density function p(s) with a finite expectation p; and (iii) 
the region is convex, of finite extension in all directions, and 
centrally symmetric. 

Now, if the individual were to assume that the consequential 
region has some particular shape and, also, a particular size s, then 
the constraint of central symmetry entails that the set of such regions 
that overlap the original point 0 or the test point x would be just the 
set of such regions whose centers fall within a region of this size and 
shipe centered on 0 or on x, respectively. Therefore, the set of such 
regions that overlap both 0 and x would be the set of regions whose 
cekers, c, fall in the intersection of such regions centered on 0 and 
on x (see Fig. 2A). Because all locations of the consequential region 
are taken to be equally likely, the conditional probability that x is 
contained in the consequential region, given that 0 is, is just the 
ratio m(s,x)/m(s) of the (volumetric) measure of the overlap to the 
measure of a whole such region (Fig. 2A). 

Normallzed distance, d (p s 1) 

Fig. 3. Six generalization functions,d(d), relating probability of generaliza- 
tion to normalized distance in psychological space, derived by substituting 
into Eq. 6 the functions p(s) shown in the shaded insets, and integrating 
(dotted curve); and the corresponding simple exponential decay function 
(smooth curve). In (C), the function Ei is defined as follows 

By hypothesis, however, the individual does not know the size, s, 
of the consequential region. In order to obtain the individual's 
estimate of the conditional probability that x falls in this region, 
given that 0 does, the product of the ratio m(s,x)/m(s) and the 
individual's corresponding a priori probability p(s)ds (that the size 
lies between s and s + ds) must be integrated over all possible sizes, s. 
I take the result to be the probabilityg(x) that a response learned to 
the stimulus 0 will generalize to x 

Because the size of the consequential region cannot be negative and 
is assumed to have finite expectation p, p(s) is zero for all s < 0, and 
(in addition to being nonnegative itself) satisfies the two conditions 

Derivation of the Exponential Law 
In the unidimensional case, a convex consequential region is 

simply an interval of a certain length, m(s) = s, and the measure of 
the overlap m(s,x) is then s - 1x1, if s r XI, or zero, if s < 1x1. 
Accordingly, Eq. 2 reduces to 

The distance between the two stimuli 0 and x is now just d = 1x1. 
Separating terms and successively differentiating with respect to d, 
we obtain, forg(d) and its first and second derivatives, 

Regardless of the form assumed for the probability density function 
p(s), then, generalizationg(d) has unit value at d = 0 (Eqs. 3 and 6), 
monotonically decreases with increasing d (Eq. 7), and is concave 
upward, unless rendered linear in those intervals, if any, where 
p(d) = 0 (Eq. 8). 

The exact form for the generalization functiong(d) depends on 
the particular probability density functionp(s). However, a sensitiv- 
ity analysis suggests that this dependence is rather weak. The dotted 
curves in Fig. 3 are the hnctionsg(d) obtained by integration after 
substituting, for p(s) in Eq. 6, the six quite different density 
functions shown in the shaded inserts, namely, functions p(s) that 
are rectangular (A), triangular and decreasing (B), exponential (C), 
triangular and increasing (D), parabolic (E), and Erlangian (F). At 
least for these six shapes, g(d) is not only monotonic decreasing and 
concave upward but reasonably close to a simple exponential decay 
function (the smooth curve). Evidently, the form of g(4 is a 
relatively robust consequence of the probabilistic geometry of 
consequential regions. 

The Erlang probability density function (the shaded inset in Fig. 
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3F), in particular, yields exactly the exponential decay function for 
~ ( d ) .  This choice for p(s) has, moreover, a unique theoretical 
justification: In the absence of any information to the contrary, an 
individual might best assume that nature selects the consequential 
region and the first stimulus inde~endentlv. In this case. the 
prgbability that that first stimulus w&ld fall k i n  the consequen- 
tial region is proportional to its volumetric measure m(s), which, 
here, is simply s. According to Bayes's rule (26), an individual who 
assumed a probability density function q(s) before encountering the 
first stimulus, should revise that function, after finding that stimulus 
to be consequential, to a density function p(s) = C .  m(s) . q(s). 
Here, C is the normalizing constant determined by Eq. 3, and q(s) is 
assumed to be subject to the constraints already stated for p(s) in 
Eas. 3 and 4. 

In addition, if q(s) is to represent a condition of minimum 
knowledge about the size of the consequential region, q(s) should 
maximize the Shannon-Wiener entropy measure of uncertainty (27). 
The function q(s) that both satisfies the stated constraints and 

A \ ,  

maximizes this entropy measure is an exponential probability densi- 
ty function (28) of the form displayed in the shaded inset in Fig. 3C. 

Fig. 4. Equal generaliza- 
tion contours plotted in 
one quadrant of two-di- 
mensional psychological 
space. The contours on the 
left were derived on as- 
sumptions that the conse- 
quential region is either 
square (A) or circular (B) 
and, hence, that the exten- 
sions, s, of the consequen- 
tial region in the two di- 
rections of the space are 
perfectly correlated. The 
contours on the right were 
derived on assumptions 
that the consequential re- 
gion is rectangular and 
that its possible exten- 
sions, s  and t, along the 
two directions are uncor- 
related and have density 
functions, p(s)  and p( t ) ,  
that are either rectangular 
(C) or Erlangian (D). In 
all panels, equal general- 
ization contours are dot- 
ted lines, with associated 
levels of generalization 
8(x ,  y )  indicated by adja- 
cent numbers. In (A) and 
(C) Lz-norm is indicated 
by a solid curve; L1-norm 
by a dashed line. 

Substituting such a function for q(s) and solving for C, we obtain for 
p(s), in the one-dimensional case, exactly the Erlang probability 
density function with shape parameter 2 

This is just the density function that is displayed as the shaded inset 
in Fig. 3F and that yielded the exponential decay for the generaliza- 
tion function 

A Square consequential region 
(correlated dimensions) 

''\ Rectanguiar size distribution, p (s) 
\* 

Derivation of the Two Metrics 
In the multidimensional case, the consequential region is no 

longer merely an interval of a certain length s. However, just as the 
shape assumed for the density function p(s) had little effect on the 
derived generalization function ~ ( d ) ,  the shape assumed for the 

B 
Circular consequential region 

(correlated dimensions) 

3 Rectangular size distribution, p (s ) 

C Rectangular consequential region 
(uncorrelated dimensions), 

Rectangular size 

D Rectanguiar consequential region 
(uncorrelated dimensions) 

Y Erlang size distributions 

y = + ( + l o g g -  1x1) 
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consequential region has (up to an affine normalization) little effect 
on the contours of equal generalization. This, too, is a consequence 
of a geometrical fact. The region can be quite irregular and even 
nonconvex but, as long as it is centrally symmetric, the locus of 
centers of such a region having a specified overlap with a given such 
region approximates the ellipse of the Euclidean metric (Fig. 2B). 

Figure 4A shows, for one quadrant of a two-dimensional space, 
the contours of equal generalization around the stimulus (0, 0) that 
are obtained by carrying out the integration of Eq. 2 under the two 
assumptions (i) that the consequential region, though still of 
unknown size and location, has the shape of a square aligned with 
the coordinate axes, and (ii) thatp(s) is the rectangular distribution. 
Except for the (rhombic) contours very close to the original stimulus 
(0, O), the resulting contours are more circular than square. The 
same is true when other density functions are substituted for p(s). 

For stimuli, like colors, that differ along dimensions that do not 
correspond to uniquely defined independent variables in the world, 
moreover, psychological space should have no preferred axes. The 
consequential region is then most reasonably assumed to be circular 
or, whatever other shapes may be assumdd, to have all possible 
orientations in the space with equal probability. Symmetry then 
entails strictly circular contours of equal generalization (Fig. 4B) 
and, hence, the Euclidean metric (or L2-norm). 

For stimuli that differ along dimensions, such as size and orienta- 
tion, that correspond to uniquely defined independent variables in 
the world, however, psychological space should possess, corre- 
sponding preferred axes. Whatever type of shape is then assumed for 
the consequential region, the degree to which that region is 
extended along one preferred axis should not be correlated with the 
degree to whGh it extended along another such axis. Instead of 
assuming that the region is a square or circle, in the two-dimensional 
case, the individual might assume that it is a rectangle or an ellipse 
aligned with the preferred axes of the space. Integration must then 
be-carried out over the two independently variable size dimensions 
of the consequential region, say s and t (as indicated on the right in 
Fig. 4), with corresponding probability density functions, p(s) and 
. \ r 

As before, the curves of equal generalization depend very little on 
either the form chosen for these density functions or the shape 
chosen for the conseauential region.   ow ever. in the absence of a " 
correlation between the two size dimensions of the consequential 
region, the contours no longer approximate the circles associated 
with the L2-norm. Instead, they approximate the rhombs associated 
with the L1-norm. This is illustrated in Fig. 4C, for the assumptions 
that the consequential region is rectangular and thatp(s) andp(t) are 
both the rectangular probability density function. Indeed, when the 
probability density &ctionsp(s) andp(t) are taken to be the Erlang 
function (Eq. 9) derived from the assumption of maximum uncer- 
tainty about the two size dimensions of the consequential region, 
generalization falls awav with distance in exact accordance both with 
z e  exponential decay knction (Eq. 10) and with the metric of the 
L1-norm (Fig. 4D). 

Limitations and Proposed Extensions 
The theory of generalization, as set forth here, strictly applies only 

to the highly idealized experiment in which generalization is tested 
immediately after a single learning trial with a novel stimulus. 
Existing evidence and theoretical considerations indicate that in the 
cases either of protracted discrimination training with highly similar 
stimuli (29, 30) or of delayed test stimuli (8) ,  "noise" in the internal 
representation of the stimuli will manifest itself in two deviations 
from the functional relations derived here. The first is a deviation 

away from the simple exponential and toward an inflected, Gaussian 
function. In Fig. 1 such a deviation is evident in L, where the data 
(probabilities that similar stimuli were judged to be identical) do not 
represent generalization so much as failure of discrimination, and 
perhaps in E and H,  where test stimuli continued to be presented 
long after the termination of reinforcement. The second is a 
deviation away from rhombic and toward elliptical curves of equal 
generalization, even for analyzable stimuli. To the extent that 
primitive organisms do not support the distinction between general- 
ization and failure of discrimination, they too may manifest these 
deviations. Moreover, under the most natural extension of the 
present theory to multiple learning trials, differential reinforcement 
could shape the generalization function and contours around a 
particular stimulus into a wide variety of forms. 

Here, space does not permit more than a brief mention of a few 
such directions in which I am currently extending the theory. (i) 
Phenomena of discrimination and classification learning, and possi- 
bly the asymmetries of generalization described by Tversky (31), 
require that over a series of trials, the probabilities that an individual 
associates with the alternative candidates for a consequential region 
are modified on the basis of the frequencies with which positive and 
negative stimuli fall inside or outside each such candidate region 
(32). In this connection, the assumption of sharply bounded 
consequential regions has the advantage that solely through this 
process of probability adjustment, an individual could come to 
discriminate stimuli that do from those that do not belong to such a 
sharply bounded region. (ii) Nevertheless, preliminary mathematical 
investigations indicate that the robust exponential function and two 
metrics are also derivable if the probability or magnitude of a 
consequence, instead of being assumed to drop off discontinuously 
at the boundary of a discrete consequential region, is assumed to 
decline gradually, in accordance with a continuous, unimodal 
distribution of, for example, Gaussian form but unknown location 
and dispersion. (iii) If the possible dispersions of the consequential 
region (or of the unimodal distribution) along preferred dimensions 
are assumed to be negatively correlated, the curves of equal general- 
ization obtained by integration take on a concave, star-shaped form 
corresponding to a value r < 1 in Eq. 1. Such curves imply a 
violation of the triangle inequality for psychological distances, a 
violation for which Tversky and Gati have reported evidence with 
stimuli having highly separable dimensions (30). (iv) Finally, the 
idea of candidate regions hrnishes a basis for explaining, also, a very 
prevalent chronometric finding, namely, that the time to discrimi- 
nate between two stimuli is reciprocally (not exponentially) related 
to the distance between those stimuli in psychological space. We 
need merely suppose that a stimulus elicits internal representational 
events corresponding to candidate regions in accordance with 
probabilities, per unit time, proportional to the probabilities already 
defined, and that discrimination is precipitated by the first such 
event that corresponds to a region that includes one but not both of 
the two stimuli. 

Conclusions 
We seneralize from one situation to another not because we " 

cannot tell the difference between the two situations but because we 
judge that they are likely to belong to a set of situations having the 
same consequence. Generalization, which stems from uncertainty 
about the distribution of consequential stimuli in psychological 
space, is thus to be distinguished from failure of discrimination, 
which stems from uncertainty about the relative locations of individ- 
ual stimuli in that space. Empirical results and theoretical derivations 
point toward two pervasive regularities of generalization. First, 
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probability of generalization approximates an exponential decay 
function of distance in psychological space. Second, to the degree 
that the spreads of consequentiai stimili along orthogonal dimen- 
sions of that space tend to be correlated or uncorrelated, psychologi- 
cal distances in that space approximate the Euclidean or non- 
Euclidean metrics associated, respectively, with the LZ- and L1- 
norms for that space. I tentatively suggest that because these 
regularities reflect universal principles of natural kinds and of 
probabilistic geometry, natural selection may favor their increasingly 
close approximation in sentient organisms wherever they evolve. 

Undoubtedly, psychological science had lagged behind physical 
science by at least 300 years. Undoubtedly, too, prediction of 
behavior can never attain.the mecision for animate that it has for 
celestial bodies. Yet, psychology may not be inherently limited 
merely to the descriptive characterization of the behaviors of 

terrestrial species. Possibly, behind the diverse behaviors 
of humans and animals, as behind the various motions of planets 
and stars, we may discern the operation of universal laws. 
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