
Indeed, a new observation by Alan 
Dressler of the Mount Wilson and Las 
Campanas observatories, one of the original 
Seven Samurai, suggests that the trans-Hy- 
dra-Centaurus region may be richer than it 
seems. In a recent nine-night observing run 
he obtained redshifts for some 600 galaxies 
in this part of the sky. Plotting the data 
along with 300 redshifts already available in 
the literature, he found that the distribution 
had two peaks. One, as expected, was at the 
distance of Hydra-Centaurus. But the other 
was 50% further away, at roughly 150 
million light years.  moreo over, it contained 
just as many points as the first. 

Dressler, for one, argues that this second 
peak is exactly what it seems to be: the Great 
Attractor. To begin with, he says, galaxies 
are fainter when they are farther away, and 
we therefore see fewer of them. Correcting 
for that effect, one can argue that the second 
peak actually represents about four times as 
many galaxies as the first. Next, he says, one 
can convert the estimated number density of 
galaxies into an estimated mass density, and 
thereby come out with a mass for the region 
as a whole. The result works out to about 
ten times the mass of the Local Superclus- 
ter-which is just about what is needed for 
the Great Attractor. 

Dressier's argument is clearly intriguing. 
But it is hardly proof-especially consider- 
ing that it depends upon a series of assump- 
tions about numbers and masses that other 
observers may want to question. Moreover, 
as Dressler himself points out, "to prove that 
the overdensity is doing the pulling you 
have to study other nearby mass distribu- 
tions to make sure they aren't equally mas- 
sive," he says. "Also, you have to study the 
velocities within this cluster to make sure it 
isn't moving." Nonetheless, he says, finding 
a major group of galaxies sitting in roughly 
the right place is an important step. 

Assuming for the sake of argument that 
the Great Attractor does exist, then astrono- 
mers have to face a final question: how 
could such a thing form? It may not be an 
easy question to answer. The uniformity of 
the 2.7 K microwave background radiation 
implies that the universe was quite homoge- 
neous when the radiation was emitted, 
about 100,000 years after the Big Bang. 
And yet, as observers have mapped our 
present-day universe on larger and larger 
scales, they have continued to find that 
matter is clustered on larger and larger 
scales. The theorists have been having 
enough trouble trying to explain the forma- 
tion of clusters and superclusters of galaxies. 
The existence of structure on the scale of the 
Great Attractor may only make the chal- 
lenge that much tougher. 
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Causality, Structure, and 
Common Sense 
Ordinmy comon sense turn out t o  be far too subtle for 
conventional theories o f  lomic; at a mi~imum it demands a 
much better acc0unti6~ $such everyday notions as causality 

I N their efforts to teach computers how 
to show "common sense," artificial in- 
telligence (AI) researchers in recent 

years have found themselves paying more 
and more attention to such everyday notions 
as causality, structure, process, and time. 
These are the notions that underlie our 
intuitive understanding of the world. They 
seem easy and straightforward. And yet they 
turn out to be surprisingly difficult to pin 
down in any theoretical sense. Indeed, the 
struggle to capture these concepts in a com- 
puter-usable form proved to be one of the 
strongest undercurrents in the work present- 
ed at the recent annual meeting of the 
American Association for Artificial Intelli- 
gence (AAAI), which was held this July in 
Seattle. The very profusion of names for this 
research-qualitative process theory, naive 
physics, and temporal logic, to mention just 
a few-was a testament to just how broad- 
ranging, how pervasive, and how unsettled 
the problem really is. 

TWO survey talks presented at the meeting 
gave some of the flavor of these efforts. The 
first, which addressed the critical role of 
causality in common sense reasoning, was 
given by Judea Pearl of the Cognitive Sys- 
tems Laboratory at the University of Cali- 
fornia, Los Angeles (UCLA). 

Consider the following situation, said 
Pearl: you go outside in the morning and 
you notice that the grass is wet. The obvious 
inference is that it Fained during the night. 
In fact, you are almost sure that it rained. 
However, suppose that you now learn that 
someone left the lawn sprinkler on during 
the night. Suddenly, said Pearl, your confi- 
dence in the rain goes down considerably. In 
other words, upon receiving a new fact, you 
withdraw your original conclusion. 

This kind of logical flip-flop, which is 
known in the A1 community as "nonmono- 
tonic" reasoning, is the epitome of common 
sense. Unfortunately, it is also a blatant 
violation of the conventional theory of logic, 
which is the first and most obvious place 
that one might look for a theory of automat- 
ed computer reasoning. As formulated by 
generations of philosophers and mathemati- 

cians, the standard formalism of logic does 
offer an elegant way to represent facts about 
the world-as axioms-and it does provide 
a well-defined method for drawing conclu- 
sions from those facts: state each conclusion 
as a theorem and then prove that theorem. 
Indeed, it is for precisely this reason that A1 
researchers have spent so much time devis- 
ing fast and powerful algorithms for com- 
puter theorem-proving. However, the stan- 
dard theory of logic also implies that a new 
axiom (a new fact) can never change the 
validity of a previously proved theorem (a 
previous conclusion); the most it can do is 
allow the computer to prove new theorems 
that it could not prove before. In a word, 
conventional logic is "monotonic." 

Clearly, then, something more flexible is 
needed for common sense reasoning. The 
question is what? Fool around with the rules 
of logical inference and it is all too easy to  
prove that grass is simultaneously green and 
purple. 

This question of nonmonotonic reason- 
ing has become something of a cause ctlkbre 
in the AI community during the past dec- 
ade, and not only because of its deep theo- 
retical significance. Those same 10 years 
have also seen a sharp rise of commercial 
interest in the so-called expert systems, 
which are programs that are supposed to 
give expert-level advice in fields such as 
medical diagnosis or tax planning. The ex- 
pertise in these systems is ultimately provid- 
ed by human specialists in consultation with 
the programmers. But because the knowl- 
edge is often uncertain ("If the patient has 
symptoms X, Y, and Z, then he most likely 
has disease Dm), the program will almost 
always arrive at conclusions that are tenta- 
tive-just as the human experts do. And for 
that very reason, expert systems have to be 
able to revise their conclusions ("The pa- 
tient's nausea is caused by something she 
ate") on the basis of new evidence ("The 
patient is pregnant"). In other words, some 
approximation of common sense is absolute- 
ly critical. 

To get a feel for the difficulty, said Pearl, 
consider the aforementioned lawn: after 
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walking absent mindedly through the grass 
one morning, you look down and notice 
that your shoes are wet. The obvious infer- 
ence is that the grass is wet. In addition, 
suppose that you now glance back and 
notice that the grass seems cold and shiny- 
that is, wet-looking. Your obvious impulse 
is to be more certain than ever that the grass 
is wet. After all, it is only common sense. 

But therein lies the problem, said Pearl. In 
the first example, a new fact led to a retrac- 
tion of the previous conclusion. Yet in this 
second example, the new fact reinfarces the 
previous conclusion. In other words, two 
arguments that seem to have exactly the 
same logical form lead to radically different 
results. So how can this kind of reasoning 
ever be captured in a formal theory? And 
how can a computer ever reproduce it? 

Pearl's answer, reduced to its essence, is to 
pay careful attention to the difference be- 
tween cause and effect-certain aspects of 
which, he said, "have not received due treat- 
ment by logical formalisms of common 
sense reasoning." 

In the first anecdote about the soggy 
lawn, for example, the wet grass was an 
observed phenomenon-that is, an effect- 
whereas the rain and the sprinkler were two 
potential causes competing to explain it. 
Indeed, said Pearl, causes almost always 
compete: support for one tends to under- 
mine our belief in any others. 

In the second anecdote, however, the wet 
grass was the cause, whereas the wet shoes 
and the cold and shiny appearance of the 
grass were effects. That is, they could both 
be taken as evidence for the wet grass. Thus 
the asymmetry in the two cases, said Pearl: 
although causes compete, evidence cooper- 
ates. The more clues we have to support a 
given hypothesis, the more confident we are 
that the hypothesis is true. 

These relations are illustrated in the ac- 
companying diagram, where the arrows run 
from cause to effect. The diagram, in turn, is 
a simple example of a sophisticated con- 
struct that Pearl and his UCLA colleagues 
call "belief networks," which are intended as 
models of the way human beings draw 
causal inferences about the world. 

In the full theory, which is still under 
development, these networks can become 
very complicated indeed, in keeping with 
the fact that the world-and our under- 
standing of it-is also very complicated. As 
in real life, any given event can be the result 
of any number of possible causes, and can 
likewise produce a multiplicity of effects. 
Consider that many different medical condi- 
tions can produce a fever, for example, and 
that conversely, many different symptoms 
can be produced by a cold virus. (Statisti- 
cians and social scientists will recognize the 

resemblance between belief networks and 
path diagrams based on Bayesian probability 
theory. This is no accident: Pearl's work was 
originally inspired by Bayesian analysis and 
can be seen as an attempt to un ie  probabih- 
ty-based theories of common sense reason- 
ing with theories based on classical logic.) 

Nonetheless, said Pearl, no matter how 
complex a given belief network may be, the 
process of reasoning with those beliefs will 
still be governed by the same simple princi- 
ples that illuminated the wet-grass example. 
The distinction in the way we reason about 
causes and consequences can be codified 
into a few straightforward rules of inference, 
rules that allow a computer to reach plausi- 
ble conclusions on the basis of available 
evidence-and, of course, to revise those 
conclusions when new facts arise. 

/ "The grass is wet" I 

"It rained last night" 

AAAl 

Reasoning from causality. The 
arrows zn this diayam Yunfi.om cause to 
effect. Accovdzng to AI researcher Judea Pearl 
of the Unzversity of Califavnza, Los Angeles, 
such "belief netwarlux allow computers to  
exhibzt many ofthe subtleties of comnwn sense 
reasoning. 

"The sprinkler was on 
last night" 

Shortly after Pearl's talk, the AAAI partic- 
ipants heard a second survey talk that dealt 
with the issues of causality and process, 
albeit from a very different perspective. The 
speaker was University of Illinois-Urbana 
psychologist Dedre Gentner, and her topic 
was analogy. 

Analogy is clearly a powerful tool in 
human thought. We reason by analogy. We 
learn by analogy. ("A motorcycle is like a 
bicycle, but with a gasoline engine.") And 
our language is rife with analogy in the form 
of metaphors. ("His face was set like gran- 
ite.") So it is hardly surprising that this 
subject has become a major area of research 
within AI: if computers are ever going to 
exhibit common sense in the way that hu- 
mans do, they are going to have to master 
analogy. 

Nor is the researchers' interest purely 
theoretical. When programmers get togeth- 
er with human specialists to create a new 
expert system, the specialists will often artic- 
ulate their knowledge as a series of anec- 
dotes and specific cases. ("I remember one 
patient who . . . .") Indeed, this is typical of 
the way humans think: when confronted 

with a new situation, we often recall a 
similar situation that we have experienced in 
the past and then reason by analogy to apply 
that experience to the present. Unformnate- 
ly for the programmers, however, current- 
generation expert systems cannot do that. 
Instead, the programs have to have a set of 
clear-cut, general-purpose rules that can be 
used in a wide variety of situations. This 
means in turn that the programmers and the 
experts have to go through a long, painstak- 
ing process of trial and error to pin down 
what those rules reallv are. It would be far 
easier if the computer could just take the 
experts' anecdotes and cases as they are 
given, and then use analogical reasoning to 
apply them. 

However, said Gentner, although analogy 
is obviously a very important tool in human 
thought, it is also a vev tricky and danger- 
ous tool. An analogy can all too easily be 
misunderstood-especially by a computer. 
When a machine is told that John w a bear of 
a man, for example, it may very well con- 
clude that John is covered with thick black 
fur. And therein lies one of the central 
problems of analogy: how can computers 
(and for that matter, humans) sort out use- 
ful analogical inferences from those that are 
trivial, o r  misleading, or simply wrong? 

Gentner's answer is her "structure map- 
ping theory," which she developed in the 
early 1980s from extensive psychological 
studies of human analogizing. More recent- 
ly she has implemented it as a computer 
p rogramthe  Structure Mapping Engine- 
in collaboration with Illinois A1 researcher 
Kenneth D. Forbus and graduate student 
Brian Fakenhainer. (Forbus, as it happens, 
is also her husband.) 

In essence, ~ e n t n e r  argues that the 
soundest analogies tend to be those that take 
account of the causal and structural parallels 
between two situations, as opposed to the 
superficial details. This is true even if the 
corresponding objects are utterly different in 
appearance or character; what matters is the 
roles they play. 

A simple example is the analogy between 
fluid flow and heat flow, which is illustrated 
in the diagram on page 1299. To begin 
with, said Gentner, the computer (or the 
human learner) is given a description of the 
two situations and a set of facts about each, 
as shown in the bottom half of the diagram. 
Then the computer is told that heat flow is 
analogous to fluid flow; its task is to make 
the correct analogical mapping between the 
two situations and to draw the correct infer- 
ences. 

To accomplish that task, said Gentner, the 
computer has to do four things, not neces- 
sarily in order. First, it has to find corre- 
spondences between the entities in the two 
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domains. For example, heat corresponds to 
water, and large beaker corresponds to warn 
coffee. This is trickier than it seems, because 
a priori, heat might just as easily correspond 
to pipe. In practice, said Gentner, the com- 
puter is given a handful of heuristic rules 
that help it home in on the most reasonable 
choices. 

Second, the computer discards isolated 
attributes such as ~ ~ ~ u ~ u ( w a t e r ) - t h a t  is, 
"Water is a liquid"-and FLAT- coffee). 
By definition, these are the attributes that 
bear little relation to anything else in the 
situation; moreover, thep tend to describe 
the superficial appearance of things. For 
both these reasons, said Gentner, they are 
probably not important for making the anal- 

OgY. 
Third, the computer looks in the water- 

flow domain for relations such as GREATER- 
TH~~[~REssuRE(beaker), PREssURE(V~P~)] 
-that is, "The pressure in the beaker is 
greater than the pressure in the vial." Then it 
maps them onto corresponding relations 
in the heat-flow domain: GREATER-THAN 

[TEMPERATURE(CO~~'X), TEMPERATURE(~CC 
cube)]. Once again, a number of different 
mappings may be possible. 

Finally, the computer resolves any re- 
maining ambiguity by what Gentner calls 
the "systematicity principle": it looks for 
higher order relations, and keeps only those 
mappings that fit them. In the case of water 
flow, the GREATER-THAX relation between 
diameters is an isolated one and is therefore 
discarded. The only higher order structure is 
one governed by a CAUSE relation between 
the pressure differential and the water flow, 
which can be paraphrased in English as "The 
pressure differential between the beaker and 
the vial causes water to flow through the 
pipe." 

As it happens, the computer has been 
given no such CAUSE relation in the heat- 
flow situation. However, this is not a prob- 
lem, but an opportunity. The computer has 
been told about temperature differentials, 
and it has likewise been told about the flow 
of heat along the silver bar. So it makes an 
analogical inference: it conjectures that a 
causal relation does exist, and is identical in 
structure to the one in the water-flow exam- 
ple. In short, said Gentner, the computer 
uses the causal and structural relations in the 
problem to learn a new and potentially 
valuable fact: that the flow of heat is caused 
by a difference in temperature. 

To date, the Structure Mapping Engine 
has successfully been applied to more than 
40 different examples; these range from an 
analogy between the solar system and the 
Rutherford model of the atom to analogies 
between fables that feature different charac- 
ters in similar situations. It is also serving as 

Reasoning by 
analogy 

As illustvated in the top 
half of this diagram, heat 
pow is analgous to water 
pow. According to the 
Stvueture-Mapping 
Theoty of University of 
Illinozs psychologist Dedre 
Gentner, the essence of 
that analogy can be found 
in the causal and 
stvuctural relations 
illustrated in the bottom 
half of the diagyam. 
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Greater FIow(beaker.vial. 1 ~ e m ~ e r a k r e  ~ e m ~ e r a t u r e  
wa te r ,p ipe )  ( co f fee )  ( ice cube) 
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one module in a larger program known as 
PHIKEAS, which is being developed by Fal- 
kenhainer as a model of scientific discovery. 
Basically, PHIKEAS tries to explain newly 
observed physical phenomena in analogy 
with previously understood phenomena. To 
do so it couples the Structure Mapping 
Engine to another program module based 
on Qualitative Process Theory, which was 
devised by Forbus several years ago to pro- 
vide a more formal account of structure and 
causality in such physical processes as mo- 
tion, boiling, and liquid flow. 

Finally, said Gentner, the Structure Map- 
ping Engine has been used as a model of 
human cognition. In one recent experiment, 
Gentner and her colleagues first asked their 
subjects to read a set of 18 short fables 
featuring characters such as Karla, the hawk 
who gave some feathers to a hunter, and 
Zerdia, the country that sold some of its 
computers to a neighboring country. A 
week later, the subjects were given 18 new 
stories featuring similar characters and situa- 
tions; any time that the subjects were re- 
minded of one the old stories, they were to 
write it out in as much detail as they could 
remember. Next, the subjects were given 
pairs of stories and asked to rate the sound- 
ness of the analogy in each case. 

As the theory predicts, said Gentner, the 
subjects agreed that the soundest analogies 
were between fables that shared many un- 
derlying relations, even though their surface 
attributes were quite different. (The stories 
about Karla the hawk and Zerdia the coun- 
try were one such pair.) Moreover, the 
Structure Mapping Engine reproduced the 
subjects' rankings quite closely. 

Surprisingly, however, the subjects did 
just the opposite in the reminding task: they 
tended to recall stories that shared many 
superficial attributes with the current one, 

even if the analogy itself was weak. Gentner 
called such comparisons "mere appearance" 
matches (example: "Her eyes were as blue as 
the sky") and conjectured that thep play an 
important role in identifying analogous situ- 
ations in the first place. 

In retrospect, of course, such a result is 
not so unreasonable. The superficial attri- 
butes of an object or situation tend to be its 
most obvious and easily recognized features; 
thus, they may be the most natural features 
to look for when one is searching through 
memory. 

Nonetheless, said Gentner, this result 
does suggest that human performance in 
this area is governed by two very different 
set of rules: one concerning access to analo- 
gies, and the other concerning inference 
from analogies. Indeed, the Structure ~Map- 
ping Engine can reproduce the human sub- 
jects' performance during recall, but only if 
the researchers turn off its ability to search 
for deep structural analogies and instead tell 
it to look only at the superficial details. On 
the other hand, intelligent programs are 
ultimately going to have to work at every 
level: accessing analogies, creating the prop- 
er map from one situation to the other, and 
then evaluating the quality of the map. The 
Structure Mapping Engine has already 
shown that it can model human perfor- 
mance in at least some of these areas. Per- 
haps these new experiments provide a clue 
for how such programs can go even 
hrther. m M. MITCHELL WALDROP 
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