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Developmental Stability of the Tonotopic hair cell. HRP was taken up differently in 

Organization of the Chick's Basilar Papilla P21 animals (7), and we found only one case 
of single-fiber staining. In P21 animals, we 
measured eight marked regions, each of 

G. A. MANLEY, J. BRIX, A. KAISER which did not exceed 10% of the length of 
the papilla (the actual extents are given in 
the figure as bars). Cases of more extensive 

In the past, the damage patterns produced on the papilla of the chick by loud pure staining were eliminated from the analysis, 
tones of different frequencies have been used to study the development of sound even though their distribution was consist- 
analysis by the hair cells of the basilar papilla. One conclusion from these data was that ent with the other data. 
the best response frequency of individual hair cells changes substantially with age. We could generally follow fibers from 
However, this method has been criticized as unreliable. Now experiments have been their synaptic contact with a hair cell to the 
performed in which single characterized nerve fibers were stained with horseradish habenula perforata. When one or only a few 
peroxidase to permit the unequivocal localization of specific frequency responses in the fibers were stained, the fibers contacted only 
papillae of chicks of different ages (2 and 21 days after hatching). There was no a single tall hair cell (10). This is interesting 
statistically significant change in the tonotopic organization of the papilla between the because of the parallels that can be drawn 
two groups of animals. between tall and short hair cells of birds and 

inner and outer hair cells of mammals, re- 

0 N THE BASIS OF ACOUSTIC TRAU- were embedded in Spurr, and, after they spectively (11). 
ma and brain mapping experiments were measured and scale drawings of the For comparison, we present the data on 
( I ) ,  it has been suggested that the stain and papilla in the whole preparation the localization of stained fibers under hair 

developmental changes in damage patterns were made, they were cut into 20-p,m sec- cells as a percentage of the length of the 
on the basilar papilla of chicks indicate that tions. We attempted to cut all cochleae with papilla from the apical end (Fig. 1, A and 
the hair cells change their preferred response the same orientation to minimize possible B). In each case, we calculated both simple 
frequencies with age. This conclusion im- errors from different section orientations. regression lines and the polynomial best fit 
plies that the entire frequency distribution We took great care to accurately localize the to the data (12). The lines in the figure 
on the basilar papilla changes with time (2). marked fibers (9).  represent the best-fit polynomial (second 
Because noise-damage experiments are diffi- Whereas, in a few cases marked cells could order) and are compared in Fig. 1C. The 
cult to interpret unambiguously, we have be easily identified in whole mounts, the greatest difference between the curves is at 
carried out a series of experiments in which dark staining of endogenous enzymes in hair low frequencies. At the 500-Hz position, 
we marked frequency-characterized primary cells usually made this impossible. Thus, the the difference represents 5.8% of the length 
auditory neurons with horseradish peroxi- positions of stained nerve fibers in the papil- of the papilla. These values are well within 
dase (HRP) in newly hatched [postnatal day lae were, in general, only determined from the potential measurement errors, and the 
2 (P2)] and older [postnatal day 21 (P21)l careful serial reconstructions of sectioned nvo cunres are not significantly different 
chicks to trace directly the peripheral origins material. If we add the values of all potential (12). In Fig. lC,  the data of Rubel and 
of cells of the same characteristic frequency. sources of error in our technique, we arrive Ryals ( I )  are also reproduced. We did not 
The frequency distribution on the basilar at a maximal error of about 10% of the see a difference comparable to that seen by 
papilla for birds of these two age groups was papillar length. However, we estimate the Rubel and Ryals-more than 20% of the 
not statistically different. typical case to be less than half of this. papillar length for the ages E20 (just before 

Our experiments were carried out on 29 In P2 animals, we found 13 cases of hatching) to P30 or 10% between P10 and 
Selected Leghorn chicks (Gallus   all us ah- unambiguously stained (well-localized) fi- P30. 
mesticus) of age P2 ( 2  1 day) and 24 chicks bers or small groups of fibers. In two cases, Simple regression slopes of these data 
of the identical breed of age P21 (+ 1).  They the stain was also found in the innervated represent a frequency distribution of about 
were anesthetized (3), warmed, and respirat- 
ed via a tracheal cannula with a continuous 
stream of moist air. After immobilizing the 4,000 - A  
head, we exposed the cochlear ganglion by 
the same technique as that reported for the 
starling We recorded (4). 

in different regions of the g A I,ooo - 
ganglion with glass microelectrodes (5). Di- 
rectly after primary auditory units were en- J 

u 
countered, their frequency response was in- ; 
vestigated (6). After electrophysiological 
characterization, we attempted to fill the 
nerve fiber with HRP (7). After subsequent 
survival of the animal for at least 2 hours, 
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the chick was perfused, and the cochlea was 
removed and processed to allow visualiza- Distance from apical end (%) 

tion of the labeled fibers (8 ) .  The cochleae Fig. 1. Distribution of characterized, HRP-stained auditov nerve fibers in the papillae of (A) P2 and 
(B) P21 animals expressed in terms of their position with respect to the apical end. Crosses indicate that 
staining was present in only a single section. Bars indicate the extent of marked fiber regions in cases 

lnstimt fir Zooiogie, Technische Uni,,ersitat where cells in more than a single section were stained. In (B) there are two o\rerlapping data points at 
Lichtenbergstrasse 4, 8046 Garching, Federal Republic 900 Hz. Second-order polynomial fits are plotted for each set of data (12). In (C) these two functions 
of Germany. (solid lines) are compared to the data of Rubel and Ryals (dashed lines labeled E20, P10, and P30). 



0.5 mm per octave, although the P2 data do 
suggest a break in the slope near 800 Hz. 
This fbnction does not differ greatly from 
that determined for the chicken by von 
BCkisy, although his data indicate a some- 
what steeper slope (13). 

We conclude from our data that the distri- 
bution of the best frequencies of tall hair 
cells in the chick basilar papilla does not 
change significantly between the ages P2 
and P21. We do not have any data from 
fibers innervating short hair cells, so we 
cannot discuss possible developmental 
changes in that hair cell area. The fact that 
we do not know the functional significance 
of the presence of two hair cell populations 
in birds complicates the comparison of our 
data with those of the noise-damage experi- 
ments. 

At low levels of damaging sounds, Co- 
tanche et al. (2) describe damage to the 
papilla only in an area of hair cells abneural 
to the inner edge of the basilar membrane. 
The nerve fibers described in our study 
innenrated hair cells neural to this area, so 
that we may in fact be describing the devel- 
opment of a different group of cells to those 
primarily damaged by loud sounds, which 
presumably contributed to the total hair cell 
losses described by Rubel and Ryals (1). 
According to Cotanche e t  al. (2 ) ,  the 
changes that can be observed in sound- 
induced damage patterns in the chick such as 
those also observed by Rubel and Ryals are 
correlated more with stimulus intensity and 
a change in the middle-ear admittance than 
with age. This change in middle-ear admit- 
tance is such that the effective intensity of a 
standard stimulus changes with age. 

Whether there is a change in the tonoto- 
pic organization of the papilla before hatch- 
ing cannot be determined from our results. 
Our data do indicate, however, that the 
source of the well-known increase in sensi- 
tivity to higher characteristic frequencies in 
the developing chick after hatching (14) 
must be sought in phenomena that do not 
require a change in the peripheral distribu- 
tion of characteristic frequencies. 
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