
The Shapes of Random Walks 

A theoretical description of the shape of a random object 
is presented that is analytically simple in application but 
quantitatively accurate. The asymmetry of the object is 
characterized in terms of the invariants of a tensor, 
analogous to the moment-of-inertia tensor, whose eigen- 
values are the squares of the principal radii of gyration. 
The complications accompanying ensemble averaging be- 
cause of random processes are greatly reduced when the 
object is embedded in a space of high dimensionality, d. 
Exact analytical expressions are presented in the case of 
infinite spatial dimensions, and a procedure for develop- 
ing an expansion in powers of lld is discussed for linear 
chain and ring-type random walks. The first two terms in 
such an expansion lead to results for various shape 
parameters that agree remarkably well with those calcu- 
lated by computer simulation. The method can be extend- 
ed to yield an approximate, but extremely accurate, 
expression for the probability distribution function di- 
rectly. The theoretical approach discussed here can, in 
principle, be used to describe the shape of other random 
fractal objects as well. 

T HE SHAPE OF AN OBJECT IS ONE OF THE FIRST OF ITS 

properties to be noted in a casual observation. It is also one 
of the most important gross physical characteristics of an 

object. For example, the shape of an object is often a macroscopic 
manifestation of the microscopic principles that control its forma- 
tion. The slightly aspherical shape of a planet results from and points 
to the balance between self-gravitational, tidal, and centrifugal 
forces. The shape of a crystal mirrors the regular microscopic 
arrangement of its constituent molecules. One observes simulta- 
neously in the snowflake the consequences of molecular crystalline 
ordering and the, as yet, incompletely understood growth process 
that gives rise to its beautifully complex and symmetrical structure. 
The shapes of objects that are the result of random processes are also 
worthy of consideration. These shapes are a manifestation of the 
nature of the underlying random process, which, in addition, will 
influence important macroscopic properties of the object. In this 
article, we will outline some progress that has been achieved recently 
in the study of the shapes generated by a particularly simple, but 
important, random process. We will mention, in addition, other 
kinds of randomly generated objects, but the prima? focus here will 
be the random walk. 

The random walker officially arrived on the scene in a 1905 article 
by Pearson (1, p. 294): "A man starts from a point 0 and walks t 
yards in a straight line: he then turns through any angle whatever 
and walks another C yards in a second straight line. He repeats the 
process n times. I require the probability that after these n stretches 
he is at a distance between r and r + dr from the starting point 0." 
Since then the random walk, as a model of random processes, has 
been pervasive. The random walk is relevant to a wide variety of 

disciplines, including the mathematics of game theory, biology, 
chemistry, physics, and economics (2). Most scientists know of the 
random walk because of its connection with the phenomena of 
Brownian motion and diffusion. Biologists have even encountered it 
in the meanderings of some foraging species and the migrations of 
certain bacteria (3). A variant of the random walk, the self-avoiding 
random walk, is important to physical chemists because it properly 
weights the conformations available to a chain polymer containing a 
large number of monomeric units whose mutual interactions occur 
over sufficiently short range (4-6); the trail left by a self-avoiding 
random walk can be thought of as a representation of one possible 
configuration of a long macromolecule. In mathematics, the random 
walk is recognized as the simplest example of a random fractal 
(7). 

Many topics of interest to condensed matter scientists involve 
random fractals. Examples include percolation clusters (8) ,  lattice 
animals ( 9 ) ,  and various kinds of aggregates such as clusters of 
correlated spins that are characteristic of disordered magnetic sys- 
tems as found in spin glasses (10). Since the simplest example of a 
random fractal is the random walk, we have chosen it as our object 
of study. We shall limit our discussion to some of the current 
notions that have proven to be amenable to analytical analysis and 
that appear to be useful in describing the shapes of random walks. 
Of course, the general concepts and the analytical approach present- 
ed in this article have direct application in characterizing the 
anisotropy of other random fractals as well (11, 12). 

It is common to use averages over ensembles when discussing 
random walks, and, as a result, those who are not intimately familiar 
with the subject tend to visualize the trail left by the walker as a 
spherically symmetric object. However, this is not a general feature 
of random walks. Indeed, the trail tends to be somewhat elongated. 
In Fig. 1, several two-dimensional random walks, each of several 
thousand steps, are illustrated. The asymmetry of each is immediate- 
ly evident. The fact that the path of a random walker is highly 
anisotropic has been known to physical chemists for some time and 
dates back to the early investigations of I<uhn over a half century ago 
(13). Over the years, a variety of studies exploring the shapes of 
random walks have appeared in the literature (14). In them can be 
found the development of useful analytical techniques and numerical 
algorithms to address this problem (15). 

This article outlines a newly developed analytical approach that 
has yielded a number of new results and additional insights into the 
shapes of the trail left by a random walker. The approach presented 
is based on an analysis of random walks that are embedded in high 
spatial dimensions. Results are obtained in the form of a power 
series expansion in powers of one divided by dimensionality of the 
space in which the walk takes place, henceforth to be called a l i d  
expansion. A random walk in high dimension may seem far removed 
from the real physical situation of a walker in three spatial dimen- 
sions, but many of the predictions yielded by such an expansion, 
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even when truncated at very low order, especially regarding such a 
strongly dimensional dependent concept as shape, are remarkably 
accurate in three dimensions (16). 

Characterizing the Shape of a Random Walk 
There are many ways to characterize the shape of an object, and 

no measure is both simple and complete. The quantities we will be 
considering describe the mean square extension of a d-dimensional 
object in d-orthogonal directions, one of which is the direction of 
the largest extent and another of which is the direction of the 
smallest extent. These quantities are the square of the principal radii 
of gyration of the object and they are the eigenvalues of a d x d 
tensor, T, called the radius of gyration tensor and defined by 

where the object in question is assumed to consist o f N  parts, the t th  
of which is located at xe. The quantity xei is the ith component of xe 
and (x i )  is the ith component of the mean or center of mass position 

Figure 2 illustrates the vectors x and (x) for a nvo-dimensional e 
random flight. The tensor, T, is simply related to the moment-of- 
inertia tensor encountered in elementary classical mechanics. The 
gyration tensor was first introduced by Solc and Stockmeyer in their 
study of random flights (1 7). The eigenvalues of T are the squares of 
the principal components of the radius of gyration, R:, 1 5 i < d. 

The gross shape of any d-dimensional object can be obtained from 
appropriate ensemble averages of the eigenvalues of T. If the object 
in question possesses the d-dimensional version of spherical symme- 
try, then all the R: are equal. In the case of a set of randomly 
generated objects, the values of the R,'s can be found for each 
member of the set, ordered by magnitude and then averaged over 
the set. In this way, the average intrinsic anisotropy of the object 
persists and is not washed away through orientational averaging. 
This procedure has been carried out numerically for three-dimen- 
sional unrestricted walks or walks that are not self-avoiding, and in 

Fig. 1. Sample random walks in two dimensions of several thousand steps. 

the case of long walks, the following limiting ratios have been found 
to be approached (18) 

where the brackets stand for averages over many walks. Random 
walks are therefore far from spherical on the average. The diagonal- 
ization of a d x d matrix is by no means a trivial task in general, but 
for three-dimensional walks the eigenvalues can be solved algebra- 
ically as roots to the cubic secular equation. The complicated 
expressions that relate the eigenvalues to the various elements of T 
have so far resisted attempts at averaging over ensembles of random 
walks by analytical methods. Certain combinations of eigenvalues, 
however, are related in a simple and straightforward way to the 
invariants of T and contain information regarding the average form 
of the random walk. The averaging process yields to analytical 
techniques for these quantities. For example, we have 

This combination of principal radii of gyration is known as the 
sauare of the radius bf wlation and i t s  average value for long, ", " ". 
drestricted open chain walks is the well-known results (R2) = Nl6 
(19) and for closed walks (R2) = Ni l2  (20, 21). The radius of 
gyration is a measure of the average extent of a random walk, 
however, and not its shape. A measure of the latter property is 
provided by the quantitydd, called the asphericity or the asymmetry 
(22-24). Mathematically expressed, 

This quantity has zero as its lower bound, achieved for a walk that is 
spherical, and has an upper bound of one, a limit that is reached 
when the walk is extended in one dimension only. Thus, Ad is an 
excellent one-parameter measure of the walk's average deviation 
from sphericity. It can be calculated exactly for unrestricted walks, 
either open (23, 24) or closed (16). One finds, Ad = 2(d + 2)l 
(5d + 4) for linear chains and& = (d + 2)1(5d + 2) for walks that 
close on themselves. In the case of a self-avoiding walk, renormaliza- 
tion group calculations by Aronovitz and Nelson (24) yield the 
following result for Ad in 4-E dimensions 

with E = 1 for three dimensions. The first term corresponds to an 
unrestricted walk, and the second term is the correction due to the 
requirement that the walk be nonintersecting. The correction factor 
in three dimensions is small, and somewhat larger in two dimensions 

/ 

Fig. 2. The position vector of the eth 
segment of the walk, xt, and the 
mean position {x). CM is the center 
of mass. 
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but still small. and when couoled with the fact that d = 4 is the 
critical dimensionality in which random walks become asymptotical- 
ly Gaussian (25), it is fair to say that requiring the walk to be self- 
avoiding has very little effect on the form of its trail for all spatial 
dimens~nalities.Thus, as far as average shapes are concerned, the 
random walk can be taken to be unrestricted. 

Although the quantity Ad describes the gross anisotropy of a 
random walk, it provides no further details concerning the shape of 
this object. Ideally, the most complete information would be 
obtained from a knowledge of the combined probability distribu- 
tion function for all the princi a1 radii of gyration, that is, a function P of the form P(R:,R:, . . .,Rd). Such a function would provide 
complete information on the shapes of random walks as quantified 
bv the eigenvalues of T. This distribution function in three dimen- " 
sions has resisted theoretical analysis for over 50 years, but impor- 
tant information can be obtained to arbitrary high accuracy in high 
spatial dimensions. Indeed, the combined probability distribution 
function can, in principle, be calculated to any givenorder in lid. 

Random Walks in High Spatial Dimension 
The key to the analysis of high-dimensional random walks is the 

fact that in infinite spatial dimensionality there is essentially only one 
kind of walk for linear chains. Consider a walker taking a total o f N  
steps on a hypercubic lattice that has links along the d principal axes 
in a Cartesian representation of the space. Each step is along a link. 
At the nth step, the walker can move along a direction already taken 
in at most n - 1 ways, but there are (d - n + 1) ways of taking a 
step that is orthogonal to all of the previous ones. As d -+ the 
walker will with probability of one choose the latter course. All 
walks will consist of a set of mutually orthogonal steps. A re- 
ordering and, where necessary, reflection of axes maps each of them 
into a single walk: one in which the first step is in the positive "1" 
direction, the second is in the positive "2" direction, and so on. 

This single dominant random walk yields a relativel~i simple 
matrix T, (26), 

where N is the number of steps. Its eigenvalues are, for large N, 
R i  = iV/nzn2. Because all walks of this type are topologically 
equivalent, there is no s read about these values. The distribution P .  function P(R:,R$, . . .,Rd) 1s a product of delta functions. Note that 
the ratio of the largest to the next largest eigenvalue R:/R$ = 4 (for 
d = 03) .  This is compared with the ratio from Eq. 2, R$R$ = 4.35, 
in three dimensions. The difference benveen the infinite d result and 
the true d = 3 result is slightly less than 10%. Indeed, in testing this, 
prediction in two dimensions, a comparison with data obtained 
from numerical simulation by Bishop and Saltiel ( 2 7 ,  from which 
one obtains R:/R; = 5.23, yields an error of about 31%. The 
limiting ratio of the infinite dimensional random walk is preserved 
remarkably well down to the lowest dimension. Even closer agree- 
ment is expected by including the next order term in the lid 
expansion. Careful analysis yields (26) 

This means that the limiting ratio, (R:)/(R;), is equal to 4 to within 
correction of order lid?-, which accounts to some extent for the 
remarkable accuracy of the infinite dimensional ratios when applied 
to d = 3. Simulations in four and five dimensions have been carried 
out by Bishop and Saltiel (27). They find for a 32-step walk in five 
dimensions (R:) = 3.95 f 0.17 and (Rz) = 0.99 + 0.05, which 
implies that (R:)/(R;) = 3.99, a ratio that is within 1% of the order 
lid prediction. In four dimensions, simulations give (R:) = 4.04 
+ 0.28 and (R;) = 0.96 i 0.03 so (R:)I(R;) = 4.2 and the error is 
about 5%. We can do more than test ratios, however. Applying Eq. 
7 to d = 5, we find that for a 32-step walk (R:) = 3.74. The 
prediction thus differs from the numerical results by about 6%. In 
four dimensions, we predict (R:) = 3.85, yielding a difference with 
the results of simulation, again of about 6%. 

With the results for the eigenvalues, it now becomes feasible to 
apply a lid expansion to the average of the invariants of the matrix 
T. For example, with the aid of Eq. 7, the asphericity parameter is 
easily expanded to first order in lid. One obtains 

= 0 otherwise 
which yields a value ofAd = 0.56 in three dimensions, whereas the 
exact expression gives Ad = 0.525-the error being slightly more 
than 6%. I t  should be noted that Eq. 8 can also be obtained by 
expanding the exact expression to order lid. Another quantity that is 
similar to Ad and that also measures the walk's asymmetry but 
cannot be calculated exactly is 

Fig. 3. The probability distribution, PN(R:), of the largest principal radii of 
gyration, R:, for d = 3. The smooth curve is the theoretical prediction given 
by Eq. 15. A sample of 30,000 100-step walks was used to generate the 
histogram. 

That is, (Ad) differs from Ad in that the asphericity of each walk in 
the ensemble is calculated first and then the result averaged. In many 
ways, this quantity is the more appropriate measure of anisotropy, 
but, because averaging the ratio precludes the application of the 
techniques that were used to obtain exact results for Ad, it can only 
be evaluated by numerical means. Bishop and Michels have recently 
computed (Ad) numerically (28) and these calculations can be 
compared to the results of a lid expansion. To the two lowest orders 
(161, 
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so that 

(A3) = 0.377 + 0 - 
(:21 

Simulations yield (A3) = 0.39 + 0.004; thus, the percentage error 
in the lid expansion is, once more, of order 5 to 6%. 

The Probability Distribution Function 
The information that can be gained from the lid formalism is not 

restricted to averages. One can extract full information regarding the 
probability distribution of the principal components of the radius of 
gyration, order by order in lid, from a consideration of the 
imaginary part of the resolvent function (29) 

where h is a complex scalar constant and I is the unit matrix. A class 
of terms contributing to all orders in lid (in fact, the equivalent of 
selective summation to all orders in perturbation theory) yields the 
following result for the probability distribution (16), 

where 

From this result, one immediately obtains the distribution function 
governing the square of the radius of gyration itself, 
R2 = R: + R$ + . + .  + R;,. We have 

P(R2) = ! P ( R ~ , R ~ ,  . . ,R&)6(R2 - R: - R: - . . . - R:,) 
x d ~ : d ~ ;  . . . d ~ ;  (13) 

where 6 is the Dirac delta function. With the integral representation 
of the delta function and Eq. 12, P(R2) becomes 

with 

This result (Eq. 14) for the probability distribution function for the 
radius of gyration itself is an exact formula first derived by Fixman 
(30). It is gratifying that our approximate expression for 
P(R:,@, . . . ,Rk) leads to an exact expression for P(R2). 

The distribution function for the individual principal components 
represents a considerable success of the lld formalism. The distribu- 
tion function for the individual principal components can also be 
compared with numerical simulations. Figure 3 compares the 
distribution of the largest principal component of R2, obtained by 
generating 30,000 samples of 100-step walks in d = 3 dimensions, 
with PN(Ri) derived from Eq. 12 by steepest descents integration, 
which is asymptotically accurate in the large d limit. We find 

where (R$ = ~ / ~ i ~ n ~ .  Note that the average (R;) for this distribu- 

tion is the zero order result whereas the variance of the distribution 

is exactly the first-order (in lid) result obtained by considering high 
dimensional walks directly, as described in the previous section. In 
Fig. 3, the predicted cunie was obtained from Eq. 15, with the 
constant of proportionality determined to match the peak value of 
the numerical result. Overall, the fit is remarkably good. The 
discrepancy between the theoretical and the numerical distributions 
at small R: is not a reflection of shortcomings of the theory. The 
counting procedure used to generate the -histogram does not 
discriminate between eigenvalues. Thus, for finite d, eigenvalues of 
the ensemble with values greater than R: are included in the 
numerical result whereas the-theoretical cunre is the distribution of 
R: alone. In a strict sense, the distributions are similar but different. 
They both are asymptotically exact for large R: but differ at small 
R?. It is a straightforward calculation to include in the distribution " 
the contribution of other eigenvalues, and when this is done the 
agreement between the theoretical predictions and the results of 
simulations is greatly improved (Fig. 4). 

A more direct, if less comprehensive, comparison can be made 
between the variances of the numerical distribution and that predict- 
ed by the lid expansion. For a 100-step walk in d = 3 dimensions, 
Eq. 16 ives AR~IN' = 6.8 x while the simulation results 9 have AR,ip = 6.13 x for a percentage difference of about 
11%. The agreement is encouraging and it appears that the lid 
formalism works well, but additional numerical studies are needed 
before we can fully understand its limitations (31). 

The Shapes of Other Random Fractals 
Random walks are not the only randomly generated fractals 

whose shapes can be studied with a lid expansion. A variation of the 
open or chainlike random walk, the "ring," or self-closing walk, can 
also be analyzed in high dimension. It is not immediately apparent 
that the simplification of a single walk dominating all others in 
infinite dimension is correct for self-closing walks. This is because 
the self-closing walk can be broken up, in high dimensions, into 
steps "out" and steps "back." Each of the out steps is in a direction 
that is orthogonal to all the other out steps and the same holds for 
the back steps, each of which is in the opposite direction to an out 

Flg. 4. The theoretical probability distribution in Fig. 3 is modified to 
include contributions from the second largest principal radii of gyration, R:. 
The histogram, which includes these contributions, is the same as that drawn 
in Fig. 3. 
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step. However, the shape of the ring is dependent on the order of particular, using renormalization group techniques, they have calcu- 
the back steps, which is a r b i t r a ~ .  Indeed, the walker can step out lated the asymmetry parameters Ad to first order in an interdimen- 
and back in-a given direction before stepping out in another one. sional expansion. They find 
One finds statistically, though, that rings in high dimensions are 
almost all of the same shape, as parameterized in terms of the Ad = - 2 + d +- 607 d(d + 2) 
individual principal radii R: (1 6). In infinite dimension, as in the 2 + 6d 4410 (1 + 3d)2 EpercO'atlOn 

case of open chain walks, the problem has an exact solution. For (21) 
rings in infinite dimension, the principal radii of gyration are doubly - -- 2 + d 29 d(d + 2) + -  
degenerate and one-fourth the value of their chain counterparts. 2 + 6d 288 (1 + 3d)2 

1 N N +  1 
(Ri) = 4 ;,i;;i (twofold degenerate), 1 r n r - 

2 
(17) 

= 0 otherwise 

The asymptotic ratios of the three largest R: are 
(R!) : (R;) : (R:) = 4 :4 : 1. One sees that in high dimension rings 
become "oblate" whereas chain walks retain their "prolateness." The 
double degeneracy of (R:) for d = leads to some difficulties in the 
development of a lid expansion, but one can nevertheless obtain 
some usehl results. For example, the average principal components, 
to order lid, are 

with a variance 

As we mentioned earlier, the asphericity can be calculated exactly for 
rings, Ad = (d + 2)1(5d + 2) and the lid series becomes 

which differs from the exact expression by 3.5%. The average 
fluctuation in Ad, as measured by the quantity (Ad), cannot be 
calculated exactly but can be expressed as a lid expansion, 

where ~~~~~~~~~i~~ = 6 - d and ~ ~ ~ i , ~ ~  = 8 - d. From these results, it 
is seen that, in three dimensions, both kinds of clusters are anisotro- 
pic but less so than random walks. Lattice animals are a bit more 
anisotropic than percolation clusters. Whether it is possible to go 
beyond this gross description of the shapes of these clusters and 
develop a theory of the probability distribution of shapes, similar to 
what has been done for random walks, is an open question. If this 
program is indeed feasible, then the anisotropy of these random 
objects will be more completely specified and we can begin to 
develop a quantitative theon of the effects of shape on the physical 
properties of systems that they represent. 

A guide to theoretical endeavors is provided by some recent 
numerical investigations. Straley and Stephen (32) have calculated 
various anisotropy parameters for percolation clusters in two and 
three dimension, and Quandt and Young (33) have evaluated the 
asphericity and its distribution for both percolation clusters and 
Ising spin clusters in two dimension. In both cases, the agreement 
between the numerical results and the E-expansion prediction of 
Aronovitz and Stephen (12) is quite good. Also, Bishop and Saltiel 
(34) have computed shapes and shape distribution for open and 
closed random walks in two, four, and five dimensions. When 
comparison with results of lid expansion can be made, the agree- 
ment is also quite good. 

We are encouraged by the progress made in developing analytical 
approaches useful to the study of random fractal objects. Renormali- 
zation group methods and the lid expansion have led to a greatly 
increased ability to characterize the anisotropy of mathematical 
objects of interest to physical scientists, and we expect significant 
progress to be made in this field in the near future. 
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The 30=I(ilodalton Gene Product of Tobacco 
Mosaic Virus Potentiates Virus Movement 

The proposed role of the 30-kilodalton (kD) protein of 
tobacco mosaic virus is to facilitate cell-to-cell spread of 
the virus during infection. To directly define the function 
of the protein, a chimeric gene containing a cloned 
complementary DNA of the 30-kD protein gene was 
introduced into tobacco cells via a Ti plasmid-mediated 
transformation system of Apobacterium tumefaciens. 
Transgenic plants regenerated from transformed tobacco 
cells expressed the 30-kD protein messenger RNA and 
accumulated 30-kD protein. Seedlings expressing the 30- 
kD protein gene complemented the Lsl mutant of TMV, 
a mutant that is temperature-sensitive in cell-to-cell 
movement. In addition, enhanced movement of the Lsl 
virus at the permissive temperature was detected in seed- 
lings that express the 30-kD protein gene. These results 
conclusively demonstrate that the 30-kD protein of to- 
bacco mosaic virus potentiates the movement of the virus 
from cell to cell. 

T HE INITIAL ENTRY AND REPLICATION OF A PLANT VIRUS IN 

a susceptible host is followed by movement of progeny virus 
into adjacent healthy cells, a process that is necessary for 

spread of the infection. In many virus-host interactions, movement 
(transport) also includes the systemic spread of the virus (that is, 
into other leaves) via the conductive tissues. In contrast, in nonhost 
plants the virus either fails to replicate or replicates in initially 
infected cells but fails to move to neighboring cells. If the virus 
replicates but fails to spread the plant remains healthy with only the 
few initially infected cells containing viral progeny (1). Effectively, 
the infection is aborted, and the plant reacts as if resistant to the 
virus. 

Little is known about how plant viruses move in their hosts, 
either cell-to-cell or systemically. However, in recent years evidence 
has accumulated which suggests that a specific virus-encoded prod- 
uct is involved in the movement process. Such a virus-encoded 

function could be instrumental in determining the host range of the 
virus (2, 3), and within a given virus-host interaction it may be an 
important factor in determining virulence. In the case of tobacco 
mosaic virus (TMV) it has been suggested that the virus-encoded 
30-kD protein is responsible for the movement function. 

The genome of TMV is a single-stranded RNA of positive 
polarity encapsidated by a single type of capsid protein. The 
complete nucleotide sequence of the U1 (common) strain has been 
determined (4), and shown to encode at least four proteins. 
Translation of the genomic RNA in vitro directs the synthesis of the 
1 2 6 - 0  and 183-kD proteins. The 183-kD protein is a readthrough 
product of the amber termination codon of the 126-kD protein. 
Both proteins are postulated to be subunits of the TMV replicase (5, 
6), and have been identified in virus-infected cells (7). Translation of 
two other open reading frames to produce the 30-kD and coat 
proteins requires the formation of two subgenomic RNA's, the 30- 
kD protein messenger RNA (mRNA), designated I2 RNA (8 ) ,  and 
the coat protein mRNA (6, 9). 

Evidence implicating the 30-kD protein of TMV in movement 
comes from studies with temperature-sensitive (ts) mutants ofTMV 
that are defective in cell-to-cell movement (10, 11). One well- 
characterized ts mutant is the Lsl strain of TMV, a spontaneous 
mutant of the tomato strain L. At nonpermissive temperatures, the 
Lsl strain replicates and assembles normally in inoculated leaves and 
in leaf protoplasts, but is not capable of moving from cell to cell in 
inoculated leaves (1 0, 12). When two-dimensional peptide mapping 
analysis was used to compare the 30-kD proteins encoded by I2 
RNA's obtained from Lsl and L virus preparations, only a minor 
difference was detected (13). A comparison of the nucleotide 
sequences of the L and the Lsl strains revealed that the the Lsl virus 
had a single base change in the 30-kD protein gene which substitut- 
ed a serine for a proline residue (14). Using the Lsl mutant, 
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