
5'-GGTGAAGCTGTCATCACGTGC-3'; 22. We wish to thank D. Shub and J. Gott for a critical 
2 (s lice junction) = S1~AGTAAAGGTAC*~% reading of the manuscript, for many productive 
C&GATAC.~' (the asterisk represents the discussions, and for providing the T4 izniB clones. 
splice junction); probe 3 (intron, noncoding, 73 to We are also thankful to D.  McPheeters and L. Gold 
95 nucleotides from 5' splice site) = 5'- for commutlicatin unpublished results. Supported 
GGTGCAAGCAAAACCTTGGCTGC-3'; probe 4 by grants from t fe  National Science Fbundatiofi 
(intron, ORF, 239 to 258 nucleotides from 5' splice (DMB-8502961 and DMB-8505527) and the Na- 
site) = 5'-GTCCCGTCTThACCA??TCc3'. The tional Institutes of Health (GM 33314). 
sequence of the nrdB gene has been described 
( 9 ) .  4 March 1987; accepted 20 May 1987 

The Inversion of Sensory Processing by Feedback 
Pathways: A Model of Visual Cognitive Functions 

The mammalian visual system has a hierarchic sttudture with extensive reciprocal 
connections. A model is proposed in which the feedback pathways serve to modify 
afferent sensory stimuli in ways that enhance and complete sensory input patterns, 
suppress irrelevant features, and generate quasi-senkory patterns when afferent s t i m ~ -  
lation is weak or absent. Such inversion of sensory coding and feature extraction can be 
achieved by optimization processes in which scalar responses derived from high-level 
neural analyzers are used as cost functions to modify the filter properties of more 
peripheral sensory relays. An optimization algorithm, Alopex, which is used in the 
model, is readily implemented with known neural circuitry. The functioning of the 
system is investigated by computer simulations. 

N UCLEI I N  THE THALAMUS TRANS- 

mit information received from the 
senses to appropriate centers in the 

neocortex. These thalamic relays are also 
affected by reafferent neural pathways ema- 
nating from the neocortex and the brainstem 
reticdar formation. The function of these 
feedbacks has long been a puzzle to neuro- 
physiologists. In the visual system the cortex 
exhibits a variety of neural maps that pre- 
serve to some extent the retinotopic charac- 
ter of the stimulus: neighboring neurons 
represent neighboring points in sensory 
space. At the same time, feature-analyzing 
networks will tend to transform the initially 
retinotopic pattern into one in which codes 
are substituted for particular sensory fea- 
tures. Thus, at the cortical level, we know 
that single neurons express by their activity 
very specific features of the visual input and 
may be presumed to form part of feature 
analyzing systems (1). In the present model 
we propose a mechanism whereby central 
coded responses are able to recreate periph- 
eral retinotopic activity. Both corticofugal 
fibers and brainstem afferents to the dorsal 
lateral geniculate nucleus (dLGN) play a 
role in this process. 

In the mammalian visual system the 
dLGN is more than a passive relay between 
the retina and the visual cortex. The cortico- 
fugal fibers make up a large fraction of all 
inputs into the dLGN (2). In addition, 
fibers from centers in the brainstem and 
midbrain reticular formation are synaptically 
connected to neurons in the dLGN (3). 

Figure 1 shows the connections between 
neurons in the dLGN, the pefigeniculate 
nucleus (PGN), visual cortex, and afferents 
from the retina and reticular formation. 
Circles represent populations of neurons. 
The diagram shows the retinal afferents to 
geniculate relay cells (G) and interneurons 
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Fig. 1. Neural connectivity in the mammalian 
visual system. G, relay cells in dLGN; I, interneu- 
rons in dLGN; P, cells in PGN; C, cells in visual 
cortex. Open circles represent populations of neu- 
rons. Arrows represent excitatory synapses and 
filled circles represent inhibitory synapses. 

(I). Fibers ascending from the dLGN to the 
cortex make collateral connections with 
PGN cells (P), and corticofugal fibers syn- 
apse with PGN cells on their way back to the 
dLGN (4). PGN cells are inhibitory on relay 
cells in the dLGN and receive diffuse i n ~ u t s  
from the brainstem reticular formation. We 
have taken these inputs to be inhibitory (2). 
Unlike the corticofugal fibers, which are 
retinotopically arranged, afferents from the 
reticular formation, at least those emanating 
from the locus coeruleus, appear to be dif- 
fusely distributed over the dLGN (5). 

Visual information is evidently modified 
on its way to the cortex, and the modifica- 
tions carrv with them information derived 
from higher level cortical analyzers and the 
presumably more global information from 
the reticular core. 

Visual centers in the cortex also exhibit 
reciprocal innervation (6)) and are affected 
by reafferents from the reticular formation 
(7). The mammalian visual pathway, after 
the retina, thus appears as a succession of 
mutually interacting centers, which are also 
subjected to the global influence of the 
reticular core. 

Figure 2A illustrates the mechanism by 
which inverse sensory processing may be 
achieved through feedback. This was dis- 
cussed in earlier versions of the model (8). 
Here, an array {x} is incident on a sensory 
relay (a) that passes the information in 
modified form Cy) to a set of analyzers (b). 
The responses of these analyzers form a new 
array {Y) whose components reflect the pres- 
ence of particular features in Cy). Responses 
are calculated as inner products between (y) 
and static templates, i d  are multiplied by 
coefficients that define the sensitivities of the 
analyzers (9). All responses are summed in 
(s), producing a scalar quantity p. The sum- 
mation is nonlinear, so that p is sensitive to 
the emergence of a single component of {r}, 
rather than to a superposition of many 
weaker responses. This is accomplished, for 
example, by adding the responses raised to a 
power greater than one. 

Modification of {x) proceeds by an itera- 
tive optimization process. Maximizing the 
global feedback p will have the following 
conseauences: 

1) If {x} has some initial resemblance to 
one of the features defined by the analyzers 
and if the sensitivities of the analvzers are all 
the same, the pattern should converge on 
that feature. Missing parts of the pattern will 
be completed and extraneous features sup- 
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Fig. 2. Information A 
flow in the model. (A) 
single-stage system. cma i- 

Input array {x} is inci- {XI 
dent on a relay, a, 1x1 
transmitting the modi- 
fied information (y} to .- 
analyzers in b. Re- B 
sponses in the array r 
are summed in s; the 
global response p pro- 
vides feedback to a. 
(B) Hierarchic system. D 
Subfields {xi}, . . . ,{xj} 
of input array {X} are 
transmitted by relays 
at ,  . . . ,aj to analyzers 
b,, . . . ,bj. Second lev- - 

el relays c,, . . . ,cj 
transmit the modified responses {t,} to global analyzers in D. Responses itj} and {P} are summed 
nonlinearly in sj and S to produce the responses pj and R, respectively. (C) Visual field {X} and subfields 
{XI. 

2) If the input is featureless and if one of 
the analvzers has an enhanced sensitivi~, the . , 
input pattern should converge on the feature 
selected by the more sensitive analyzer. 

3) If the inout is featureless and if the 
sensitivities of the analyzers are all the same, 
the system will exhibit initial "frustration," 
an unstable condition that is resolved bv the 
presence of noise. Again, Cy) will converge 
on a single feature. 

The hierarchic system shown in Fig. 2B is 
~atterned after the mammalian visuafsvstem 
and uses structures similar to those in Fig. 
2A as building blocks. Here {X) represents 
i n ~ u t  over the entire visual field, as con- 
tained in the activities conveyed to the 
dLGN by the optic nerve. The field is 
divided into subfields that corres~ond 
roughly to the areas "seen" by a typical 
complex cell in the visual cortex (1). Each 
subfield is made up of an array of pixels 
(Fig. 2C). Activities in the pixels of the jth 
subfield form the pattern {x,}. The relay aj 
transforms {x,} into Cy,), which it transmits to 
the feature analyzers i n  bj. The responses of 
these analyzers form the array {q). In a 
second stage of modification, {r;} is trans- 
formed inc j  to itj}. These transformed re- 
sponses are summed in sj, and the scalar 
results pj are returned to the relays aj. The 
same arrays are also transmitted to a set of 
global analyzers in D that "see" the respons- 
es from the entire visual field and form the 
output array {P). The components of {P) are 
again summed nonlinearly in S, generating 
the global response R. The same R is used in 
all relays cj and-together with the respons- 
es p,--in all relays aj. Optimizations are 
carried out in the relays aj and cj, modieing 
the comDonents of their i n ~ u t s  so as to 
maximize the scalar feedbacks they receive. 

We draw the following analogy to the 
visual system: aj may represent a group of 
relay neurons in the dLGN whose activities 

are received by the cortical analyzers in bj. In 
the optimization algorithm, arrays Cy) are 
stored and updated iteratively. The cortico- 
fugal fibers may sene this storage function 
by returning these arrays to the thalamic 
relays. Unit D in Fig. 2B represents higher 
cortical analyzers that are sensitive to large 
portions of the visual field. Finally, a global 
response R emanates from the brainstem 
and is diffusely transmitted to the thalamus 
and areas in the cortex. 

In many optimization problems a single 
scalar function FOl, . . . ,yA7), called the cost 
function, is to be maximized or minimized 
by choosing the best set of parameters 
yl, . . . , y ~ .  When multiple extrema exist, 
simple hill-climbing algorithms are generally 
inadequate. Iterative procedures are often 
used, in which one parameter at a time is 
changed by small increments. In a procedure 
introduced by Metropolis et al. ( lo ) ,  a sto- 
chastic algorithm decides acceptance or re- 
jection of a particular step and thus avoids 
trapping in secondary extrema. The method 
has recently been developed further and 
applied to various optimization problems 
(11). 

Alopex (12), the optimization algorithm 
we use here, was first designed to aid in the 
experimental determination of visual recep- 
tive fields (13). It differs from other algo- 
rithms in that the cost function is computed 
after all parameters are changed synchro- 
nously. Also, the changes, which are always 
accepted, depend on ;he recent history of 
the system. 

Different forms of the Alopex algorithm 
have been used (8, 13,14). They all have the 
following in common. The parameters y; 
determining the cost function F are changed 
simu~taneois~y by small amounts that i r e  
determined in part by noise, in part by the 
cross-correlation between the previous 
change in the parameter, and the change in 

the cost function. Noise is represented by an 
effective temperature that can be lowered 
gradually to improve convergence. In the 
version of Alopex used in the present work, 
the relays aj and cj in Fig. 2B are considered 
filters that modify the components of the 
afferent arrays. We write for the nth itera- 
tion of the process: 

where the filter coefficient kj") is a slowly 
changing variable 

and 

+ S with probability p j") 
8j") = 

-6 with probability [l - pj")] 

and 

where 

In this formulation the filter coefficients 
execute random walks with a suoerim~osed 
bias that tends to maximize F. Trapping in 
local maxima is avoided by the presence of 
noise. More detailed descriotions of Alooex 
algorithms, including choice of parameters, 
have been presented elsewhere (8, 13, 14). 

In Fig. 3 we present a neuronal circuit 
patterned after known connectivity in 
dLGN. The proposed circuit is made up of 
three relay cells GI,  G2, G3 in the dLGN: 
one ON- (GI)  and one OFF-response cell 
(G3) whose inputs x l  and x3 are 
al to the rates of increase and decrease of a 
retinal stimulus, respectively, and a sus- 

dLGN PGN 

R-1 If?' 
From brainstem 

Fig. 3. Proposed connectivity of afferents and 
reafferents to dLGN. x,, x2, x3: retinal afferents; 
yl, yz, y3: thalamocortical fibers and corticothala- 
mic returns; R', R-: brainstem afferents to PGN; 
dLGN relay cells: G I  (ON response), G j  (OFF 
response), and G2 (sustained response). 
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tained cell GZ, whose input xz is proportion- 
al to the retinal stimulus. These three relay 
cells form one element in a retinotopically 
arranged array. The thalamocortical axons of 
GI,  GZ, Gj, carrying the modified inputs yl, 
y2, y3, make collateral excitatory connections 
as shown with four PGN cells (PI-P4). 
Excitatory, retinotopically arranged cortico- 
hgal fibers return to the dLGN, where they 
synapse again with relay cells. PGN cells 
produce recurrent inhibition on dLGN relay 
cells. Ascending fibers from centers in the 
brainstem reticular formation make inhibi- 
tory connections with PGN cells. 

The putative circuit in Fig. 3 uses some of 
the known anatomical features shown in 
Fig. 1. We have retained the excitatory 
collateral inputs of thalamocortical fibers to 
neurons in the PGN and the inhibitory 
action of PGN cells on dLGN relay cells; the 
double arrows from dLGN to cortex in Fig. 
3 indicate retinotopic excitatoq corticotha- 
lamic feedback. Ascending fibers from the 
brainstem reticular formation are shown to 
be inhibitory on PGN cells. 

We have hrther assumed that the inhibi- 
tot37 reafferents from the reticular formation 
contain nvo distinct pathways, one signaling 
an increase (R +), the other a decrease (R-) 
in activity at a particular brainstem center. 

Fig. 4. Templates of 
feature and pattern an- 
alyzers. (A) Sixteen 
features defined by an- 
alyzers b, in Fig. 2B. 
(B) Global patterns 
PI-P4 in visual space 
defined by templates in 
D. (C) Templates to 
detect visual patterns 
in (B). Each row repre- 
sents one of 25 sub- 
fields, each column 
one of 16 features as 
defined in (A). Blank 
elements in templates 
are zeroes, shaded ele- 
ments are ones. 

Whereas the retinal afferents, thalamocorti- 
cal, and corticothalamic connections are dis- 
tinct for every element in the dLGN, we 
assume that all returns from the brainstem 
to the thalamic neurons are the same. 

The circuitry in Fig. 3 satisfies qualitative- 
ly the Alopex optimization conditions of 
Eqs. 1 to 4 for each of the three signals to be 
relayed to the cortex, except for the fact that 
the probabilistic hnction pj") (Eq. 3) is here 
replaced by a step hnction. The necessary 
nonzero temperature that determines p y )  
mav be due to inherent randomness of neu- 
ral ;esponses (15). 

As an example, the activity of the relay cell 
G2 will have a substantial increase only when 
an increase in x2 is accompanied by activity 
in R+  (which inhibits PZ, thus disinhibiting 
G2). We see that, in general, the pattern of 
changes in xl, x2, x3 is more likely to be 
transmitted to the cortex whenever it is 
correlated with input on the R +  line, and 
blocked when R- is activated. The short- 
term memory contained in the cumulative 
values of the filter coefficient kj") in Eq. 2 
can be expressed in terms of the preceding 
activity yjn-'). For the case of a stationary 
stimulus {xi}, we obtain from Eqs. 1 and 2 

2 l0OOL 

tc 1 
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00- 3200 
Iterations 

Fig. 5. Computer sim- 
ulation of nvo-stage 
system with initially 
featureless input and 
heightened sensitivity 
of analyzer for pattern 
P4 in Fig. 4. (A and 6) 
Modified stimulus { Y }  
and response array {Q 
after 2000 iterations; 
(C and D) same after 
4000 iterations; (E) 
global response R (top 
trace) and pattern re- 
sponses PI-P4 versus 
iteration number. 

This expression illustrates the h c t i o n  of 
the retinotopic feedback yj"- ' )  in our model. 

In our computer simulation of the hierar- 
chic system ( ~ i ~ .  2B), we have chosen a 
visual field made up of 25 subfields, each of 
which consists of 16 pixels (Fig. 2C). Each 
of the 25 units b; contains 16 analvzers 
defined by the temilates shown in ~ i ~ :  4A. 
These were chosen to represent linear fea- 
tures of different orientations and locations 
within a given subfield, analogous to simple 
cortical fields (1 ) . The responses {yj} of these 
analyzers are again modified by an Alopex 
process in cj, &d the modified outputs, 400 
in all, go to a bank of global analyzers in D. 

We have chosen four global patterns 
shown in visual space in Fig. 4B. Templates 
shown in Fig. 4C are designed to give 
maximal responses for the corresponding 
patterns in Fig. 4B. Here, the rows repre- 
sent the 25 different subfields and the col- 
umns the responses of the 16 analyzers in 
Fig. 4A. 

We carried out comDuter simulations un- 
der all three conditions: (i) sustained senso- 
ry inputs {X} of partial patterns; (ii) feature- 
less inputs with enhanced sensitivity on one 
of the analyzers; and (iii) featureless input 
without detection bias. In all cases we ob- 
senred convergence on a response pattern at 
the second level and enhancement of the 
corresponding visual pattern at the first lev- 
el. The system readily converged on the 
preferred pattern under conditions (i) and 
(ii), and somewhat more slowly, as expect- 
ed, under condition (iii). 

In Fig. 5 we show the results of a run 
under condition (ii). The global analyzers 
selected the four patterns shown in Fig. 4B 
by using the templates shown in ~ i &  4C. 
Sensitivity of analyzer P4 was set at nvice 
that of the others. The initial pattern {X} was 
featureless. Figure 5E shows the global re- 
sponse R (top trace) and the four analyzer 
responses P1-P4 as hnction of iteration 
number. The modified stimulus pattern {v 
and the response array {T) are shown (Fig. 
5 ,  A through D) after 2000 and 4000 
iterations. Convergence on the preferred 
stimulus is evident at both the visual and the 
higher level representation. 

We have shown that optimization pro- 
cesses, in which responses derived from 
higher level analyzers act as cost functions, 
are able to modify stimulus patterns at pe- 
ripheral sensory stations through inversion 
of sensory processing. The existence of such 
feature-specific feedback could in principle 
be demonstrated by physiological studies. 
The Alopex process is iterative and inherent- 
ly slow and may supplement other suggested 
cognitive mechanisms (1 6). The present 
model is not concerned with the formation 
or the functioning of neural analyzers, how- 
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ever. Many mechanisms for learning and 
pattern recognition have been proposed 
(17) and may be incorporated into this 
model. central analvzers-in our model are 
no longer the last neuronal processing stage. 
Instead, their responses are directed periph- 
erally, where the; select, modify, or generate 
stimulus patterns. 
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Localization, Secretion, and Action of 
Inhibin in Human Placenta 

Inhibin is a gonadal glycoprotein hormone that regulates the production of follicle- 
stimulating hormone (FSH) by the anterior pituitary gland and exhibits intragonadal 
actions as well. The present study shows that inhibin-like immunoreactivity (inhibin- 
LI) is present in cells of  the cytotrophoblast layer of human placenta at term and in 
primary cultures of human trophoblasts, Human chorionic gonadotropin (hCG) 
stimulated secretion of inhibin-LI from these cultured placental cells. This effect was 
mimicked by 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP), forskolin, 
and cholera toxin, suggesting that the mechanism of hCG induction of placental 
inhibin-LI secretion is CAMP-dependent. Incubation with an antiserum that binds the 
a-subunit of human inhibin increased the secretion of hCG and gonadotropin- 
releasing hormone-like immunoreactivity (GnRH-LI) from trophoblast cells in cul- 
ture, suggesting a local tonic inhibitory action of endogenous inhibin on hCG and 
GnRH-LI release. The action of inhibin on hCG secretion may partially require the 
presence of placental GnRH, as suggested by evidence that a synthetic GnRH 
antagonist partially reverses the hCG increase induced by inhibin irnmunoneutraliza- 
tion. Results suggest paracrine roles for both inhibin and GnRH in the regulation of 
placental hCG production. 

T HE PLACENTA SYNTHESIZES AND SE- 

cretes protein and peptide hormones 
that are active both in the maternal- 

fetal compartment and within the placenta. 
Human' chorionic gonadotropin (hCG) is 
the polypeptide hormone that regulates pro- 
gesterone production from corpus luteum 
and placenta (1); a placental gonadotropin- 
releasing hormone (GnRH) has been pro- 
posed as a local modulator of hCG secretion 
(2). Because peptides participate in the 
mechanism of control of hormonogenesis in 
the chorionic system (3), the presence of 
inhibin-like bioactivity and immunoreactiv- 

ity in rabbit and human placenta at term (4, 
5) suggests a possible role for inhibin in the 
endocrinologgr of pregnancy. Inhibin, a het- 
erodimeric protein with a and p subunits, 
has been isolated from porcine and bovine 
follicular and ram rete testis fluids; it selec- 
tivity inhibits the release of follicle-stimulat- 
ing hormone (FSH) from the pituitary (6). 
The amino acid structure of porcine, bovine, 
and human inhibin has been determined 
from complementary DNA (cDNA) se- 
quences (7). We have also identified the 
human inhibin a-chain messenger RNA 
(mRNA) in a term placental cDNA library 

(8). The aim of the present study was to 
localize placental inhibin and explore its 
local action and regulation. 

T o  determine where inhibin-like immu- 
noreactivity (inhibin-LI) is present in pla- 
cental cells, we conducted immunohis- 
tochemical localization studies on immer- 
sion-fixed samples of three fresh human 
placentas collected at term. Indirect immu- 
nofluorescence staining (9) with antiserum 
to porcine inhibin-a-(1-25)-Gly-Tyr re- 
vealed numerous in~rnunoreactive cells in 
the placental villi (Fig. 1). These appeared to 
be localized in the central (cytotrophoblast) 
layer of the villi. When the antiserum was 
adsorbed with rat synthetic corticotropin- 
releasing factor (CRF) or GnRH, other 
peptides present in cytotrophoblasts (2, 3, 
10) did not interfere with staining for inhib- 
in-LI. The antisera used to detect inhibin- 
LI in human placenta were used previouslv 
to stain porcine and rat ovarian follicular 
granulosa cells, which are widely acknowl- 
edged to be the principal site of inhibin 
production in the female. Trophoblasts pro- 
duce placental hormones (I) ,  and cvtotro- 
phoblast cells show intense positive staining 
for GnRH, CRF, and somatostatin (2, 3, 
10). 

To study the regulation of inhibin secre- 
tion from the placenta, we developed a 
monolayer primary culture of human tro- 
phoblasts. Placenta collected from pregnan- 
q7 at term was minced, rinsed, and dissected 
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