
phenomenon (5), which required that the 
transitions and the remainder of the pattern 
be presented to different ears, the one re- 
ported here puts all parts of the pattern 
equally into both ears. It thereby avoids 
such complications of interpretation as may 
arise with dichotic stimulation and so makes 
more straightforward the inference that du- 
plex perception reflects distinct auditory and 
phonetic ways of perceiving the same stimu- 
lus. Beyond that, the results obtained with 
the new form of the duplex phenomenon 
support the hypothesis that the phonetic 
mode takes precedence in processing the 
transitions, using them for its special lin- 
guistic purposes until, having appropriated 
its share, it passes on the remainder to be 
perceived by the nonspeech system as audi- 
tory whistles. Such precedence reflects the 
profound biological significance of speech. 
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Precipitation Fluctuations over Northern Hemisphere 
Land Areas Since the Mid-19th Century 

An extensive array of measurements extending back to the mid-19th century was used 
to investigate large-scale changes in precipitation over Northern Hemisphere land 
areas. Significant increases in mid-latitude precipitation and concurrent decreases in 
low-latitude precipitation have occurred over the last 30 to 40 years. Although these 
large-scale trends are consistent with general circulation model projections of precipi- 
tation changes associated with doubled concentrations of atmospheric carbon dioxide, 
they should be viewed as defining large-scale natural climatic variability. Additional 
work to refine regional variations and address potential network inhomogeneities is 
needed. This study attempts to show secular precipitation fluctuations over hemispher- 
ic- and continental-scale areas of the Northern Hemisphere. 

C LIMATOLOGISTS HAVE FOCUSED AT- 
tention on the surface air tempera- 
ture record (1,2) because of concern 

over the potential climatic effects of increas- 
ing C 0 2  and other radiatively active trace 
gases in the atmosphere. Virtually all com- 
puter models of the climatic effects of in- 
creased C 0 2  indicate that significant in- 
creases in temperature will occur as C 0 2  
levels rise (3); some evidence indicates that a 
small increase may have already taken place 
(4). However, a change in temperature is 
not the only consequence of increasing C 0 2  
levels. Major changes in the hydrological 
cycle (for example, in evaporation and pre- 
cipitation rates) are likely to have regional 
and global effects (5, 6), and such changes 

may be of profound social and economic 
significance (7). General circulation models 
(GCMs), which have been applied to the 
problem of the effect of increasing C 0 2  
levels on climate, do not give an unequivocal 
picture of how precipitation might be ex- 
pected to change (5, 8). 

Nevertheless, some conclusions are rea- 
sonably well established. For example, with 
a doubling of C 0 2  levels, global mean pre- 
cipitation rates increase in all GCM models 
by 3 to 11 % (5) .  However, the geographical 
distribution of the change in precipitation 
rate is not the same in all models. Even the 
simulation of the precipitation rate for pre- 
sent-day conditions may be significantly in 
error for certain regions (5, 8). Because of 

these problems, projections of the potential 
effects of increased concentrations of C 0 2  
on precipitation distribution have been giv- 
en less credence than projected changes in 
temperature. However, certain generaliza- 
tions can be made. The larger the increase in 
temperature projected by the GCMs, the 
larger the increase in simulated (global) 
precipitation rate. Precipitation increases are 
generally predicted poleward of 30" to 35"N 
and 30" to 35"s and in the immediate 
vicinity of the equator (5"N to 5"s). In the 
intervening zone, the results are more vari- 
able, but a tendency for a decrease in precip- 

- - 

itation rate in one or more seasons is gener- 
ally apparent. 

To assess the significance of any projected 
climatic change, the historical record of vari- 
ability must be examined so that the predict- 
ed conditions can be placed in a longer term 
perspective. Many studies of large-scale tem- 
perature variations over the last 100 to 130 
years have been made (2), but relatively little 
attention has been paid to large-scale 
changes in precipitation (9). We report on 
precipitation fluctuations over continental 
regions of the Northern Hemisphere since 
the mid- to late 19th century and then 
compare the observational record with 
GCM projections of changes expected with 
increases in greenhouse gases. 

Previous studies of large-scale changes in 
precipitation have been hampered by the 
lack of a database that is geographically and 
temporally extensive. Moreover, method- 
ological problems related to the high spatial 
variability of precipitation make it difficult 
to construct indices that are not dominated 
by precipitation in areas with either very 
high or very low amounts of precipitation 
(10). We used a comprehensive set of pre- 
cipitation station data that includes long- 
term records from continental regions of the 
Northern Hemisphere (11 ). Few precipita- 
tion data exist for open ocean areas, and data 
for the continental areas of the Southern 
Hemisphere are limited geographically. 
Therefore, we have focused on continental 
regions of the Northern Hemisphere (12). 

Because of the nonuniform distribution 
of long-term precipitation stations, the data 
were gridded to avoid unduly weighting 
regional and hemispheric averages by small 
areas with many long-term records. In view 
of large spatial variations in precipitation, 
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often over short distances, it is not appropri- 
ate simply to interpolate precipitation totals 
between stations. Some analysts (9) have 
used percentage departures from a reference 
period as the basis for interpolation, but this 
method poses problems when precipitation 
data are not normallv distributed. In fact, 
precipitation data are often positively 
skewed; to accommodate this problem, we 
converted the data for each station to uroba- 
bility estimates, based on the gamma distri- 
bution (13). The gamma distribution pro- 
vides a good fit to precipitation data and - - 
enables ireciuitation amounts to be accu- 

L 

rately expressed in terms of probabilities at 
each location (14). 

Shaue and scale uarameters were calculat- 
ed for monthly, seasonal, and annual precip- 
itation at 1487 stations (Fig. 1A) from data 
for the reference ueriod 1921 to 1960 (the 
optimum number of station records were 
available for this period). On the basis of 
these parameters, individual monthly, sea- 
sonal, and annual precipitation amounts 
were then converted to percentiles of the 
appropriate gamma probability distribu- 
tions computed for each site. For example, 
in these transformations, a seasonal value of 
0.6 in any given year at a particular site 
means that precipitation in that season can 
be considered as greater than in 59% of 
other values for the same season at that site. 

The resulting series of percentiles were 
interpolated onto an equidistant grid net- 
work with nodes 400 km apart (Fig. 1B) 
(15). The number of valid gridded points 
for various regions and latitudinal zones is 
shown by year in Fig. 2. When this gridding 
scheme is used, the maximum number of 
points for the entire Northern Hemisphere 
is 3077. However, because of the large areas 
of ocean and the limited data from some 
areas of the continents, a maximum of 1410 
gridded values could be calculated. These 
values were then averaged to produce indi- 
ces of Northern Hemisphere continental 
and regional precipitation variability over 
the last 130 years (16). 

Annual precipitation index values for the 
Northern Hemisphere are shown in Fig. 3. 
The gridded network did not reach 50% of 
its maximum coverage until 1883; thus the 
low mean values in the early part of the 
record (which represent mainly European 
data) should be evaluated on this basis. The 
record shows marked fluctuations between 
decades and on longer time scales. The level 
of the precipitation index decreased from 
the late 1870s to around 1920 by approxi- 
mately 0.08. Values then increased to the 
early 1950s (when they approached levels of 
the late 1870s) and declined again through 
the late 1970s. In the 15-year period from 
1949 to 1964, precipitation was continu- 

ously above average; there has been no 
comparable period in the last 130 years. 

An examination of extremes in the last 
100 vears shows that the 1950s were ex- 
tremely anomalous, with four of the "wet- 
test" years (16) occurring in close succession 
(1953, 1954, 1956, and 1957) (Fig. 3). 
Some exceptionally "dry" years were also 
clustered; three of the driest years occurred 
sequentially in 1918, 1919, and 1920, 
shortly after two other years with extremely 
low precipitation (1912 and 1913). The 
large peak in 1878 is of interest as it coincid- 
ed with the very strong El Nifio Southern 
Oscillation (ENSO) event of 1877-1878 
and associated atmospheric circulation 
anomalies (17). However, there was a re- 
duced data set for that ueriod (which tends 
to increase interannual variability), and no 

such large anomaly is apparent for the recent 
1982-1983 ENS0  event of comparable 
magnitude. 

Autumn and winter precipitation show a 
trend toward higher levels when the entire 
period of record is considered. No such 
trend is apparent in the spring and summer 
data (Fig. 4). However, if only the period of 
>50% gridded data is considered (that is, 
since 1883), a trend toward lower index 
values from the early 1880s to the late 1920s 
is discernible in the spring and summer data, 
with an upward trend thereafter. Two peri- 
ods were generally drier than average in all 
seasons-those centered on 1917 i 5 years 
and 1943 t 5 years. All seasons were gener- 
ally wetter than average in the 1950s. 

Five major subregions were selected from 
the gridded data set (the Soviet Union, the 

Fig. 1. (A) Location of 1487 
precipitation recording stations 
that had data for the reference 
period 1921-1960. These data 
were used in the calculation of 
shape and scale parameters for 
the gamma probability distribu- 
tions of monthly, seasonal, and 
annual precipitation. ( 6 )  Grid 
network used in interpolation 
scheme. 
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United States, Europe, Southeastern Asia, 
and Northern Africa-Middle East) and pre- 
cipitation variability in those areas was ex- 
amined (Fig. 5 )  (18). In addition, for com- 
parison with GCM model results, data were 
zonally averaged around discrete latitude 
bands. The major characteristics of each 
region are summarized below. 

In Europe, annual precipitation has 
steadily increased since the mid- 19th centu- 
ry, with well above average precipitation 
since the dry spell of the 1940s (Fig. 6) .  
Highest values overall were recorded in 
1979. Most of the upward trend in annual 
precipitation has resulted from increases in 
winter precipitation; fall and spring seasons 
show small upward trends, but summer 
rainfall has actually declined slightly over the 
past 130 years (19). 

Fig. 2. Number of valid grid points for different 
latitudinal zones and regions. The years in which 
the number of points reached 50% of the maxi- 
mum for each region are as follows: Europe, 
1851; Soviet Union, 1881; United States, 1868; 
North Africa, 1901; Southeast Asia, 1879; 35" to 
70°N, 1877; and So to 3S0N, 1895. 

Precipitation over the Soviet Union has occurred from 1978 to 1984. Examination 
increased dramatically since the 1880s with of seasonal data indicates that the increase in 
most of the change occurring before 1900 annual precipitation is related to increases in 
and after 1940 (Fig. 6). As in Europe, autumn, winter, and spring precipitation. 
precipitation in 1979 was far above average. Summer rainfall exhibits very little trend. 
In fact, half of the upper decile of values Abrupt increases in winter precipitation oc- 
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Fig. 3 (left). Annual precipitation index (mean of percentiles of the gamma 0.60 
probabiltv distribution at all valid arid points) for Northern Hemisohere 
;ontit~entd regions. Dashed line sho\\.s !.;ar in \\.hich 50% of grid poir;ts are 
available for anal\.sis. Cunzed line sho\\,s the smooth trend line fitted throueh 0.50 
individual value; Fig. 4 (right). Seasonal precipitation index (mean:f 
percentiles of the gamma probability distribution at all valid grid points) for 
Northern Hemisphere continental regions. Spring includes March, April, 0.40 

and May; summer is June, July, and August; autumn is September, October, 
and November; and winter is December, January, and February (plotted as 
year in which January occurs). 
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curred during the 1890s and 1950s. The 
increase recorded in the 1950s was partly 
due to changes in observational techniques 
involving the widespread introduction of 
more efficient precipitation gages (20). 

Precipitation in the United States de- 
clined from about 1880, reaching a low in 
the 1930s, and generally increasing thereaf- 
ter (Fig. 6). The 1930s and 1950s were 
relatively dry throughout much of the year, 
but in the 1920s and 1960s, winter and 
spring seasons were drier than fall and sum- 

Fig. 5. Location of regions selected for regional 
precipitation analysis. 

mer (21). Precipitation has increased mark- 
edly in the last 30 pears, principally as a 
result of autumn through spring precipita- 
tion increases. Summer rainfall has exhibited 
no comparable trend over this interval. 

In Northern Africa and the Middle East. 
there was little trend in precipitation until 
the 1950s when, after a relatively wet epi- 
sode, precipitation declined drast~callp (Fig. 
6). This decrease is mainly a characteristic of 
summer and, to some extent, autumn rain- 
fall (the wet season in northern tropical 
Africa); neither spring nor winter precipita- 
tion has declined in recent decades. The 
lowest mean annual and mean summer val- 
ues on record were in 1983 (22). 

A relatively wet episode in Southeast Asia 
in the 1920s and early 1930s separated two 
drier periods; the former centered on 1900 
and the latter was from the mid-1960s 
through the present (Fig. 6). The general 
trend of the last 40 years has been a slight 
decline in precipitation, which does not 
appear to be related to any systematic 
change in monsoon precipitation. Summer 
rainfall in the area shows virtually no trend 
since the 1870s. 

Precipitation data were also averaged 
within three latitude bands to compare over- 
all variations with changes simdated by 
GCMs for conditions with doubled COz 

concentrations (Fig. 7) (23). In the lower 
latitude zone (5" to 35"N), precipitation 
showed no systematic trend until the early 
1950s when a pronounced downward trend 
began. By contrast, in the higher latitude 
zone (35" to 70°N), precipitation has in- 
creased markedly in the last 30 to 40 years. 
This recent upward trend is apparent in all 
seasons 124). In the low-latitude zone, the \ ,  

recent decrease is mainly a characteristic of 
summer and fall months and is strongly 
dominated by the African sector. In the 
north equatorial region (0" to 5"N) (Fig. 7), 
there is a very slight upward trend in annual 
precipitation over the last 80 years, but the 
trend is downward when the last 30 vears 
alone are considered. The effects of: the 
1982-1983 ENS0  episode are evident in 
this equatorial region in the very low value 
for 1983 (the lowest value in the record) 
(25). However, since there are few long- 
term records from this region, any conclu- 
sions are subject to the limitations imposed 
by the poor data coverage there compared to 
other regions. 

Analysis of precipitation data on a hemi- 
spheric basis has revealed important changes 
in climate, which, apart from the well- 
known declines in North African rainfall, 
have gone generally unnoticed over the past 
few decades. Such large-scale shifts in pre- 

Year 

Fig. 6 (left). Precipitation indices for Europe, the United States, the Soviet 
Union, Northern Africa and the Middle East, and Southeastern Asia. 

1900 1940 1980 Fig. 7 (right). Precipitation indices for zones 35" to 70°N, 5" to 35"N, and 
Year O" to 5" N. 
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