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Localization of Amyloid fl Protein Messenger RNA in Np formation (10). It has been suggested 
that the fibrillary amyloid deposits that are Brains from Patients with Alzheimer's Disease present in intracellular NFT, extracellular 

The distribution of cells containing messenger RNA that encodes amyloid f3 protein 
was determined in hippocampi and in various cortical regions h m  cynomolgus 
monkeys, normal humans, and patients with Alzheimer's disease by in situ hybridiza- 
tion. Both 3sS-labeled RNA antisense and sense probes to amyloid f3 protein messenger 
RNA were used to ensure specific hybridization. Messenger RNA for amyloid f3 
protein was expressed in a subset of neurons in the prehntal cortex from monkeys, 
normal humans, and patients with Alzheimer's disease. This messenger RNA was also 
present in the neurons of all the hippocampal fields h m  monkeys, normal humans 
and, although to a lesser extent in cornu ammonis 1, patients with Alzheimer's disease. 
The distribution of amyloid f3 protein messenger ~ N A  was similar to that of the 
neurofibrillary tangles of Alzheimer's disease in some regions, but the messenger RNA 
was also expressed in other neurons that are not usually involved in the pathology of 
Alzheimer's disease. 

W E HAVE USED THE COMPLEMEN- 

tary DNA (cDNA) clone AAm4 
(1) encoding amyloid P protein 

( 1 4 )  as a template to generate 3SS-labeled 
RNA probes for localization by in situ hy- 
bridization of the messenger RNA (mRNA) 
encoding amyloid P protein in the cerebral 
cortex and hippocampus of cynomolgus 
monkeys, normal human subjects, and pa- 
tients with Alzheimer's disease (AD). We 
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Gajdusek, hboratory of fk ntral Nervous S stem Stud- 
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found that, in all cases, the mRNA encoding 
arnyloid P protein was expressed in specific 
subpopulations of neurons in the neoiortex 
and hippocampus. In some regions, the size 
and laminar distribution of these neurons 
were similar to those of the subset of neu- 
rons that develop neurofibrillary tangles 
( N E )  in AD. But the mRNA encoding 
arnyloid P protein was also expressed in the 
neurons of other regions of ;he neocortex 
and hippocampus that are relatively pre- 
served in AD. 

The cortical distribution Datterns of NFT 

NP, and the cerebral vasculake in AD all 
arise from the same amyloid P protein (2, 
11, 12). In addition, this same protein oc- 
curs in the NFT and NP in brains of patients 
with Down syndrome (1 1,13). The vascular 
and extracellular amyloid might enter the 
brain from the circulation (14); however, 
the recent molecular characterization of am- 

and neuritic plaques (NP) suggest that cer- I 

tain cortical cell types and their associated Fig. 1. In situ hybridization of amyloid P protein 
circuits are devastaied in AD, whereas 0th- mRNA the Verier gYrus from a 

patient with AlzheimeZs disease (counterstained are 'pared (54). In certain with cresyl violet and eosin). Note preferential 
c~toskeletal proteins, as well as the myloid cellular labeling (dark silver grains) on pyramidal 
p protein, have been implicated in NET and ceh of layer V. 



yloid P protein and preliminary analysis of 
its distribution suggest that the mRNA cod- 
ing for a putative precursor to the amyloid P 
protein is present in both the central ner- 
vous system and several peripheral organs 
(193). . -  . 

Brain tissue for in situ hybridization was 
obtained from three cynomolgus monkeys 
(Macam fm&laric), from three adults with 
no neurological disorders, and from two 
patients in whom neuropathological evalua- 
tion confirmed the clinical diagnosis of AD 
(15, 16). Transcription of 35~-labeled RNA 
probes (17) and in situ hybridization (18) 
was performed as described. To provide a 
probe for detection of amyloid P protein 
mRNA, a 1-kb Eco RI restriction fiagrnent 
from the human brain cDNA clone AAm4 
encoding amyloid P protein was subcloned 
in the pGEM-3 plasmid (Promega Biotech) 
(1). T7 RNA polymerase was used for gen- 
eration of the antisense probe, and SP6 
RNA polymerase was used for generation of 
sense probe. In addition, SP6 RNA tran- 
scripts homologous to mouse proteolipid 
protein mRNA were generated from the 
pMuBr2 plasmid vector (19) to serve as an 
oligodendrocyte-specific marker. 

Tissue sections from neocortex and hip- 
pocampus fiom monkeys, normal humans, 
and patients with AD incubated with the 
antisense strand complementary to amyloid 
p protein mRNA showed extensive cellular 
labeling, as evidenced by clustered silver 
grains (Fig. 1). To ensure that the signal 
obtained with antisense probe reflected the 
presence of amyloid P protein mRNA and 
was not due to nonspecific effects of RNA 
or cellular density (20), control hybridiza- 
tions were performed with both a sense 

probe of amyloid P protein mRNA (Fig. 2, 
A through D) and an antisense probe com- 
plementary to proteolipid mRNA 
(19). Sense strand hybridizations, with a 
probe of the same mass and specific activity 
as that used in the antisense hybridization, 
failed to produce any discernible cellular 
hybridization in any of the tissues (Fig. 2). 
Antisense probe hybridization with the pro- 
teolipid probe produced positive hybridiza- 
tion within oligodendrocytes, especially in 
white matter, but no hybridization was ap- 
parent within neurons. 

In area 9 (dorsomedial convexity) and 
area 46 (principal sulcus) of the cynomolgus 
prefrontal cortex, labeled cells were present 
in all six layers, with a distinctive laminar 
pattern of cell density and size. In both 
areas, superficial layer V (VA) consistently 
had the greatest density of labeled cells. The 
deep portion of layer I11 also had a high 
density of labeled cells, although it was 
consistently lower in density than superficial 
layer V (Fig. 3A). The overall cellular densi- 
ty of layer IV (as seen in a conventional 
Nissl stain) is much higher than that of 
layers I11 or V; however, when the hybrid- 
ized sections were counterstained with cre- 
syl violet, it was evident that layers V and I11 
contain the highest density of grain clusters 
due to selective hybridization of these neu- 
rons and not to a.higher cell density. Layer 
11, superficial layer 111, and deep layer V had 
the next highest density, followed by layers 
IV and VI. Layer I only occasionally con- 
tained cellular labeling. 

The superior frontal gyms of normal hu- 
man brain also contained numerous labeled 
cells in layers I1 through VI; the highest 
density of labeled cells was in the infragranu- 

Fig. 2. Specificity of in situ hybridization with the amyloid P protein probe. (A and 6) Adjacent coronal 
tissue sections of frontal cortex from normal human brain were hybridized with either S-labeled (A) 
antisense RNA probe complementary to amyloid P protein mRNA or (B) sense strand RNA probe for 
the amyloid mRNA. Photographs of x-ray film images at x4 inagnification with the position of tissue 
sections indicated by arrows show (A) specific hybridization with antisense RNA probe and (B) lack of 
specific hybridization with sense strand RNA probe. (C and D) Adjacent coronal tissue sections of 
frontal cortex from cynomolgus monkey brain were hybridized with either 3SS-labeled (C) antisense 
RNA probe complementary to amyloid P protein mRNA or (D) sense strand RNA probe for the 
amyloid mRNA. Hybridized slides were counterstained with cresyl violet and eosin, photomicrographs 
at ~ 2 0 0  show (C) specific hybridization with antisense RNA probe and (D) lack of specific 
hybridization with sense strand RNA probe. Calibration bar, 32 pm. 

lar layers (V and VI), although laminar 
differences in the density of labeled cells 
were less distinct than in monkey prefrontal 
cortex (Fig. 3B). 

The superior frontal gyrus of brains from 
patients with AD also contained dense grain 
clusters suggestive of cellular labeling, and 
the laminar pattern was similar to that of 
cynomolgus monkey and normal human 
brain in that layer V had the highest density 
of grain clusters (Fig. 3C). However, the 
relative density of labeling in layer I11 was 
lower than in the same region of normal 
human cortex. The lower density of labeled 
cells in layer I11 may reflect the neuronal loss 
in AD brain. On one section from superior 
frontal gyrus of brain from a patient with 
AD, the cellular grain clusters had the fol- 
lowing laminar densities: layer I, 19 clusters/ 
mm2; layers I1 through IVY 137 clusters1 
mm2; layer V, 309 clusters/mm2; and layer 
VI, 104 clusters/mm2. In the same region of 
normal human brain, laminar densities for 
layer V showed no significant difference, but 
the densities of layers I1 through IV were 
constantly 30 to 50% higher than in AD 
brain. Adjacent sections stained for thiofla- 
vine-S showed that superficial layer V also had 
the highest density of NFT in this case of AD. 

Within the hippocampal formation of cy- 
nomolgus monkey, neurons in the pyrami- 
dal cell layer of all cornu ammonis (CA) 
fields exhibited a strong hybridization sig- 
nal. In CA3, occasional cells in the stratum 
oriens were also labeled. The CA fields 
contained dense grain clusters, indicative of 
cellular hybridization that reflect the distri- 
bution of large pyramidal neurons (Fig. 4, A 
and B). Examination of normal human hip- 
pocampal formation showed similar abun- 
dant expression of amyloid P protein 
mRNA within all the CA fields (Fig. 4, C 
and D). Unlike normal human and monkey 
hippocampus, where the hybridization sig- 
nal was high in both CA3 and CAI, in AD 
hippocampus there were fewer grain clusters 
in CA1 than in CA3 (Fig. 4, E and F). The 
difference in CA1 neuronal density and con- 
sequent loss of amyloid P protein mRNA 
hybridization was due to the selective loss of 
neurons within CA1 in AD (21). This inter- 
pretation was supported by the Nissl-stained 
sections of AD hippocampus (Fig. 4F). The 
results of in situ hybridization were constant 
and reproducible in all of the normal control 
or AD brain tissue. 

These data have several implications for 
the cellular pathology of AD. First, the 
mRNA encoding amyloid P protein is pres- 
ent in neurons of normal cynomolgus mon- 
key brain, normal human brain, and brains 
from patients with AD. This finding sug- 
gests that the mRNA for the precursor 
protein that is the source of pathologic 
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Fig. 4. In situ hybridization of amyloid P protein mRNA in pyramidal Nissl-stained sections confirm that apparently all of the large pyramidal 
neurons of the hippocampal formation. Dark-field photomicrographs of the neurons in the CA fields in monkey (B), normal human (D), and the patient 
hippocampal formation show that amyloid P protein mRNA is expressed with AD (F) contain the mRNA. Note the relatively decreased signal 
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age-matched normal human (C and D), and a patient with AD (E and F). 
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Fig. 5. In situ hybridization of amyloid P protein 
mRNA in the infragranular layers (V and VI) of 
primary visual cortex (Brodmann's area 17) of 
normal human brain. Note the presence of labeled 
cells in this region of brain, which lacks neurofi- 
brillary tangles in Alzheimer's disease. Calibration 
bar, 120 km. 

amyloid protein in AD is a natural constitu- 
ent of certain cortical cells. Further, the 
mRNA for this protein does not appear to 
be present in all cells and, at least in prefron- 
tal cortex, it is preferentially expressed by the 
large pyramidal cells of layers I11 and V. The 
large pyramidal neurons of these layers are 
also prone to NFT formation and degenera- 
tion in AD (5, 22). However, this correla- 
tion between the pathology of AD and 
amyloid P protein mRNA distribution is 
not evident in all brain regions. For exam- 
ple, in the hippocampal formation, the 
expression of amyloid P protein mRNA 
does not reflect the reported distribution of 
neuropathological markers in AD (21). That 
is, in AD, there are large amounts of amy- 
loid P protein mRNA within pyramidal cells 
of CA3, a region relatively preserved in AD, 
as well as within surviving neurons of CA1. 
A similar distribution is apparent within the 
CA fields of cynomolgus monkey and with- 
in the dentate gyms and temporal cortices of 
both species (23). In addition, although the 
primary visual cortex in AD brains contains 
almost no NFT (5, 8), it does contain 
positively hybridizing neurons in layers V 
and VI (24) (Fig. 5). Thus, it appears that 
certain neurons can express a high level of 
amyloid P protein and yet be spared the 
overt pathology of cell loss and amyloid 
complex deposition in AD. Purkinje cells of 
the cerebellum, and a class of glial cells, 
oligodendrocytes, also express the amyloid P 
protein mRNA (25). 

The presence or absence of an additional 
molecular factor in the affected cells may 
confer vulnerability. For example, in both 
normal human and monkey prefrontal cor- 
tex, neurons with anatomical characteristics 
similar to those containing amyloid P pro- 
tein mRNA also contain high levels of non- 
phosphorylated neurofilament protein, 
which has also been implicated in the cellu- 
lar pathology of AD (6). The pyramidal 
neurons, which appear to be vulnerable to 
NIT formation in AD, may require the 
combined expression of several related 

genes. Because duplication of amyloid P 
protein gene (26) on chromosome 2 1 (1-3, 
27) may be the genetic defect in Alzheimer's 
disease, the aberrant regulation of this gene 
product could selectively damage certain 
neurons, depending on the molecular profile 
of the neuronal cell type. 
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