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tor neuron disease (4). Mice infected with 
Cas-Br-E develop hind-limb paralysis associ- 
ated with spongiform changes in the anteri- 
or horns of the spinal cord, dentate nucleus 
of the cerebellum, and brainstem. Cas-Br-E 
infection exhibits some biological similar- 
ities to HIV infection: (i) Cas-Br-E may be 
transmitted via semen or milk, (ii) the v h -  
es replicate in lymphocytes in early stages 
afier exposure to virus (4), and (iii) both 
viruses can produce neuropathologic 
changes in the absence of an inflammatory 
infiltrate (5), in contrast to the neurotropic 
lentivirus visna (6). 

To better understand the pathogenesis of 
Cas-Br-E paralytic disease, we investigated 
the interaction of this virus with midgesta- 
tion mouse embryos. In previous experi- 
ments, infection of preimplantation and 
postimplantation mouse embryos with Mo- 
MuLV has served not only as a novel ap- 
proach for the study of gene regulation 
during development, but also as a probe of 
molecular events occurring during preleuke- 
mic and leukemic phases of Mo-MuLV- 
induced disease (7-10). Postimplantation 
infection allows mression of virus in a wide 

I 

variety of cell types, in contrast to postnatal 
infection, which restricts virus infection to 
cells primarily of the hematopoietic system 
(8). In particular, infection of postimplanta- 
tion ernbryos with Mo-MuLV leads to in- 
fection of a wide variety of cell types in the 
nervous system, including astrocytes, oligo- 
dendrocytes, and spinal ganglia (11). Mo- 
MuLV, however, is not a neurovirulent 
virus and animals expressing even large 
amounts of virus in the CNS will not devel- 
op neurologic disease. We, therefore, inm- 
duced Cas-Br-E into embryos during mid- 
gestation at the stage of neural tube forma- 

Fig. l. Hind-limb paralysis in 3-week-old S m  
mouse infected as a midgestation embryo. This 
mouse died 2 days after it was photographed. A 
noninfected littermate is shown for comparison. 
Cas-Br-E was microinjected into midgestation 
embryos as described (8). Pregnant mice were 
anesthetized and laparotomy was performed by a 
long ventral incision. The uterus was held with 
sharp forceps and cells producing molecularly 
cloned Cas-Br-E (clone NE-8) (19) were microin- 
jected into individual embryos by introducing the 
micropipette into the ventral third of the decidual 
swelling. Approximately 0.1 to 0.5 pl (3 x lo6 
cells per milliliter) was injected per embryo. 

tion. Our aim was to investinate how infec- e 

tion of a wide variety of tissues with a 
neurovirulent virus would affect survival, 
onset, and spectrum of disease. 

Cas-Br-E-virus was microinjected into 
postimplantation SWR/J mouse embryos 
during gestation between embryonic day 
(E) 8.75 and 9.0 (8). Approximately 63% 
(44 to 74%) of microinjected ernbryos sur- 
vived to birth (Table l ) ,  which is similar to 
that observed in studies with Mo-MuLV 
(8), and were born without obvious signs of 
disease or developmental anomaly. Animals 
were bled at 2 to 3 weeks of age and serum 
was assayed for viremia by radioim- 
munoassay (RIA). Viremia was used to 
assess the success of the microinjection tech- 
nique because it is a highly sensitive indica- 
tor of viral replication (10). The RIA results 
indicated that 59 to 66% of microinjected 
embryos surviving after birth were success- 
fully infected, which is comparable to previ- 
ous results with Mo-MuLV (8). 

Viremic animals derived from mouse em- 
bryos infected at midgestation began to 
show tremor between 8 and 14 days of age. 
These animals o h  were smaller and 
weighed less than uninfected age-matched 
controls. Disease progressed over the course 
of 1 to 2 weeks to complete hind-limb 
paralysis associated with prominent tremor. 
Infected animals also exhibited atrophy of 
hind-limb musculature, ruffted hair, and 
bladder incontinence (Fig. 1). Disease never 
involved the upper limbs. Animals died be- 
tween postnatal day 19 and 25. The Fv-1 N 
host-mediated restriction of Cas-Br-E virus 
replication was maintained during infection 
at midgestation, as no animals derived from 
BALBIc or C57BU6J embyros (Fv-1 B) 
infected with Cas-Br-E virus became viremic 
(Table 1). Histopathologic analysis of in- 
fected animals revealed spongiform changes 
in the CNS similar in location to that found 
in animals afier postnatal infection (12). 
Thus, infection of midgestation embryos 
results in neurologic disease clinically and 
histopathologically similar to disease &cur- 
ring in mice infected after birth. The course 

of disease, however, is telescoped in time. 
While animals infected postnatally develop 
tremor at 3 or 4 months followed by paraly- 
sis and death by 6 to 8 months, mice derived 
from infected midgestation embryos devel- 
op tremor and paralysis by 2 weeks and die 
of neurologic disease at 3.5 to 4 weeks (Fig. 
2). 

The murine retrovirus model described 
above appears ideally suited to test the bio- 
logical efficacy of candidate antiviral agents 
targeted against neurovirulent retroviruses 
because the effects of an agent on symptoms 
and survival can be evaluated as early.as 1 
month after birth. Thus, noneffective agents 
can be quickly eliminated and more promis- 
ing ones studied in further detail. To test the 
feasibility of this approach, we chose to 
examine the effects of therapy with AZT, a 
thymidine analog currently used to treat 
AIDS patients (13), on Cas-Br-E infection 
of SWWJ mice. AZT penetrates the blood- 
brain barrier, leading to CNS levels reaching 
50% of serum levels (13, 14). Furthermore, 
AZT inhibits virus replication of Cas-Br-E, 
as tested by plaque formation on XC cells, 
with a median inhibitory concentration 
(ICSo) of 3 nM (0.8 nglml) and in the 
absence of cytotoxicity (15). In addition, 
oral AZT therapy effectively suppressed vi- 
rernia and retroviral disease in BALBIc mice 
infected as adults with Rauscher murine 
leukemia virus complex (RLV) (16). 

Oral AZT therapy, begun several hours 
afier viral inoculation, dramatically altered 
the onset and course of neurologic disease in 
mice infected prenatally or postnatally. A m  
was dissolved in the drinking water and 
administered to mothers before and after 
delivery and to weaned animals at two con- 
centrations. In mice infected at midgesta- 
tion, the onset of tremor was delayed from a 
median of 14 days in untreated viremic 
control animals to a median of 27 days in 
animals given AZT at 0.1 mg/ml (P = 0.01 
by log rank) and a median of 50 days in mice 
given AZT at 0.2 m g h l  (P < 0.0001 by 
log rank) (Fig. 3A). Median survival for 
AZT-treated mice has not yet been reached 

Tabk 1. Microinjection of mouse embryos in utero with Cas-Br-E. Embryos were microinjected in 
utero between E 8.75 and 9.0 as described (Fig. 1) with Cas-Br-E-~roducing W 3 T 3  cdls or 
uninfected W 3 T 3  cells (mock infecdon). Viremic animals were identhxl by testing serum for p30 
by RIA (10). AZT does not appear to a&ct embryo survival to birth (P >> 0.05 by Fisher Exact Test 
for all comparisons). Numbers of animals surviving to birth and developing viremia may be 
underestimated because of cannibalism of neonates by SWR/J mothers. 

Injected Bornlinjected (%) Viremidalive at 2 weeks (%) strain with -AZT +AZT -AZT +AZT 

mwl Cas-Br-E 46/73 (63) 891120 (74) 21/32 (66) 32/54 (59) 
Mock 8/15 (53) 40163 (63) 018 0140 (0) 

BALBlc sm CuBr-E 13/22 (59) 0111 (0) 
C57BL Cas-Br-E 12/27 (44) 0110 (0) 

SCIENCE, VOL. 236 



at either concentration, and is longer than 4 
to 5 months, in contrast to median survival 
of 20 days in viremic, untreated controls 
(Fig. 3B). These results represent a statisti- 
cally significant dose-response effect (P = 

0.00008 for onset of tremor, P < 0.00001 
for survival, as analyzed by dose rank in a 
Cox regression analysis). Most AZT-treated 
mice progressed from mild to more pro- 
nounced tremor over several months. Only 
at 6 months after birth did some of the 
AZT-treated mice begin to develop hind- 
limb paralysis. Mock-infected control mice 
treated with AZT or receiving no treatment 
have remained clinically well. After adminis- 
tration of AZT at 0.2 mglml in the drinking 
water beginning at E 9, an AZT concentra- 
tion of 0.23 pg per gram of tissue in 
embryos was reached on E 12, as deter- 
mined by high-performance liquid chroma- 
tography (17). This confirms that AZT ef- 
fectively crosses the placental barrier. 

Mice inoculated with virus postnatally 
also showed a remarkable alteration in dis- 
ease course when their mothers were treated 
orally with AZT (0.1 mgiml) followed by 
direct oral treatment of weaned mice. These 
animals developed complete hind-limb pa- 
ralysis with a medium onset of 181 daps in 
contrast to viremic, untreated controls, 

which developed paralpsis at a median of 
112 daps (P < 0.0001 by log rank) (Fig. 
3C). This is likely due to a reduction in virus 

0.2 

0 

titer as was shbwn previously for RLV- 
infected mice treated with AZT (1 6). Simi- 
larly, passive immunization against neuro- 
tropic MuLV was shown to reduce virus 

. 
. . 

38 72 108 144 180 

titers and to prevent paralpsis (18). 
To address the effect of transplacental 

therapy only, animals infected in utero re- 

Days 

Fig. 2. Ka Ian Meier lot showin the probabili- 
ty of not &veioping Rll hind-lim% paralysis ver- 
sus time. SWRJ mice were infected either as 
midgestation embryos as described in the legend 
to Fig. 1. ( ,  22 mice) or during the first 2 
days after birth (- - - -, 17 mice). Neonates were 
infected intraperitoneally by injection of 2 X lo4 
plaque-forming units of Cas-Br-E virus in 0.1 ml. 
The virus was prepared by passing tissue culture 
supernatant, obtained from NIHi3T3 cells pro- 
ducing molecularly cloned Cas-Br-E (clone NE- 
8) (19), through a 0.22-km Nalgene filter and 
quickly freezing and storing it in liquid nitrogen. 
Mice lost in the neonatal period due to maternal 
cannibalism were excluded from the analysis, and 
for animals infected as midgestation embryos, 
only viremic mice were scored due to the 66% 
success rate of infection. All mice were examined 
regularly and were scored as fully paralyzed when 
no motion was observed in the hind limbs or 
when mice with known neurologic dysfunction of 
the hind limbs were found dead. Moribund or 
fully paralyzed mice were sacrificed for humane 
reasons. The median time to full hind-limb paraly- 
sis was 20 days for midgestation infection and 
112 days for neonatal infection (P < 0.0001 by 
log rank). 

ceived AZT from their mothers transplacen- 
tally only until birth. This regimen also 
significantly delayed the onset and progres- 
sion of disease. In contrast to infected un- 
treated mice that had a median time to 
tremor of 14 days, these mice began to 
develop tremor on postnatal day 32 with a 
median of 38 days (P = 0.01 by log rank, 
seven mice) and survived until postnatal day 
99 to 127. Untreated mice had a median 
survival of only 21 daps (P = 0.005 by log 
rank, seven mice). This clearly shows that 
transplacental treatment with AZT resulted 
in improved clinical outcome for offspring 
infected at midgestation. Because of small 
numbers of experimental animals, the effects 
of continuous AZT treatment as compared 
to transplacental treatment alone yielded no 
significant differences. In contrast, AZT 
therapy started only after birth did not 
amear to be as effective as treatment initiat- 

I I 

ed transplacentally within 12 hours after 
virus infection. These results suggest that for 

antiviral therapy to be most effective, the 
drug has to be administered at the begin- 
ning of viral infection. 

Mice infected as neonates (five mice) had 
a delayed onset of hind-limb paralpsis as 
compared to 17  infected controls (median, 
148 days versus 112 days, P = 0.04 by log 
rank), when AZT treatment was given only 
until weaning. In this case, continuous AZT 
therapy led to significantly longer paralysis- 
free survival (P = 0.003 by log rank) as 
compared to AZT therapy only during lacta- 
tion. 

In summary, using in utero infection of 
midgestation mouse embryos, we have de- 
veloped a rapid model for studying neuro- 
t r o ~ i c  retrovirus disease. It is ~articularlv 
significant that the disease developing in 
mice infected as midgestation embryos is 
similar to disease in mice infected as new- 
borns. Because exposure of midgestation 
embryos to Mo-IMuLV, in contrast to post- 
natal exposure, results in efficient infection 
of virtually all tissues (including all parts of 
the CNS) (8, 91, our results suggest that 
paralytic disease may be a consequence of a 
specific intracellular interaction of Cas-Br-E 
virus with cells in the lower s~ ina l  cord and 
may not be due to selective infection of these 
cells by neurotropic virus. 

This model is well suited not only to the 
study of neurovirulence, but also to the 
evaluation of therapy directed to the CNS 
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Fig. 3. Effect of AZT on onset of tremor, paralysis and sun~ival of mice infected either as midgestation 
embryos or neonates, as shown by Kaplan-Meier analysis. (A) Probability to remain tremor-free for 
SWWJ mice infected in utero as described (Fig. 1). AZT was started 12 hours postoperatively by giving 
the drug in drinking water at 0.1 mgiml (. . . .) or 0.2 mgiml ( )  to the pregnant females. 
Approximate doses based on weight and fluid intake ranged from 32 to 63 mgikgiday for an AZT 
concentration of 0.2 mglrnl. At these doses, no maternal morbidity or mortality was observed. AZT 
treatment was continued throughout the life of the infected animals by first giving the drug at the same 
concentration to the lactating mothers after birth, followed by direct oral treatment of the infected 
offspring after weaning. Only viremic mice were scored and mice cannibalized during the perinatal 
period were excluded. Data are shown from 22 untreated mice (- - -), 12 animals whose mothers 
received AZT at 0.1 mgiml (. . . a ) ,  and 19 animals whose mothers received AZT at 0.2 mgiml (-). 
One RIA-positive animal in the 0.2 mgiml cohort was symptom free ( -0-) .  (B) Same as (A), but 
showing the probability of sun~ival. Animals alive at the time of analysis are shown by -0- (15 mice on 
0.2 mgiml; 8 mice on 0.1 mgiml). To analyze dose effect, the doses were ranked (control = 1, 0.1 mgi 
ml = 2, 0.2 mglml = 3), and dose rank was entered into a Cox regression program as the covariate. (C) 
Probability to remain free of complete hind-limb paralysis versus time is shown for SWRO mice infected 
as neonates during the first 2 days of life with Cas-Br-E virus as described (Fig. 2). AZT therapy was 
staired 4 hours postinoculation by administering the drug in drinlung water to lactating females at 0.1 
mgiml. This dose was well tolerated throughout the lactating period by both mothers and pups. After 
weaning, AZT was continued at 0.1 mgiml in drinking water. -0-: 1 animal censored at 108 days due to 
accidental death; 8 animals without complete paralysis at time of analysis. Untreated control animals 
(. . ., 17 mice); AZT-treated mice ( ,  16 mice). There were no differences in time to development of 
full hind-limb paralysis by sex nor any influence of sex on AZT therapy. Because onset of tremor and 
survival are not totally independent events (onset of tremor must precede death), a Bonferroni 
adjustment to the a-level for significance was performed for statistical tests on (A) and (B). P values 
<0.025 can be considered to be statistically significant for these comparisons. 
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sanctuary. Furthermore, therapeutic maneu- 
vers designed to block the initial viremic 
phase of infection also ma37 result in preven- 
tion of neurologic disease and could be 
tested in this model. We have shown that 
AZT dramatically alters the onset and course 
of retrovirus-induced neurologic disease in a 
dose-dependent manner. AZT effectively 
crosses the placental barrier and ameliorates 
disease in offspring infected in utero when 
treatment is given during gestation to the 
pregnant female. AZT therapy also leads to 
significant improvement in animals infected 
during the neonatal period. Thus, the mu- 
rine neurotropic disease model permits rap- 
id, cost-effective, quantitative assessments of 
treatment strategies that may be relevant to 
the therapy of neurologic manifestations of 
human retrovirus infections. Because AZT 
alters the onset and course of disease due to 
transplacental and perinatal retrovirus infec- 
tion, we also can evaluate the efficacy of 
treatment during gestation and in the peri- 
natal period, an important issue because of 
the increasing prevalence of pediatric AIDS 
( 2 ) .  
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Divalent Cations Directly Affect the Conductance of 
Excised Patches of Rod Photoreceptor Membrane 

Phototransduction in rod cells is likely to involve an intracellular messenger system 
that links the absorption of light by rhodopsin to a change in membrane conductance. 
The direct effect of guanosine 3',5'-monophosphate (cGMP) on excised patches of rod 
outer segment membrane strongly supports a role for cGMP as an intracellular 
messenger in phototransduction. It is reported here that magnesium and calcium 
directly affect the conductance of excised patches of rod membrane in the absence of 
cGMP and that magnesium, applied to intact rod cells, blocks a component of the 
cellular light response. The divalent cation-suppressed conductance in excised patches 
showed outward rectification and cation-selective permeability resembling those of the 
light-suppressed conductance measured from the intact rod cell. The divalent cation- 
suppressed conductance was partly blocked by a concentration of the pharmacological 
agent L-cis-diltiazem that blocked all of the cGMP-activated conductance. Divalent 
cations may act, together with cGMP, as an intracellular messenger system that 
mediates the light response of the rod photoreceptor cell. 

F ESENKO e t  al. (1) REPORTED THAT 

guanosine 3',5'-monophosphate 
(cGMP) directly activates the con- 

ductance of excised patches of rod cell mem- 
brane (1-5). We report here that, in the 
absence of cGMP, the divalent cations mag- 
nesium and calcium directly suppress the 
conductance of excised patches of rod mem- 
brane. 

The effect of divalent cations on the rod 
membrane conductance was studied by ex- 
posing the intracellular side of inside-out, 
excised patches (6) to various bath concen- 
trations of ca2' and Mg2+ (7). Patches were 
obtained from solitary rod photoreceptor 
cells dissociated from the tiger salamander 
retina (4, 8). In most experiments, the bath 
and pipette contained a simple salt solution 
of 120 mM NaCI, 3 mM KCI, 1 mM Hepes, 
and 0.02 mM phenol red atpH 7.3. In other 
experiments we used a stock solution con- 
taining 108 mM NaCI, 16 mM glucose, 3 
mM KCI, 1 mM Hepes, 1 rnM NaHC03, 1 
mM sodium pyruvate, 0.5 mM NaH2P04, 
and 0.02 mM phenol red at p H  7.3. The 
pipette solution always contained an addi- 
tional 1 or 2 mM CaC12 and 1 or 2 mM 
MgC12, and the bath solution contained the 
Ca2+ and Mg2+ concentrations indicated. 
The bath solution was varied by moving the 
patch pipette to appropriate positions in 

front of a linear array of superfusion pipettes 
(diameter, 100 ym). Suction pipettes were 
made with a BB-CH pipette puller and 
Drummond 100-p,1 microcaps or Corning 
type 7740 capillary tubing; those having a 
final tip diameter of 1 to 2 ym were used 
immediately from the puller. 

A current-clamp experiment in which 15- 
pA current pulses were applied to an excised 
patch of rod outer segment membrane is 
shown in Fig. 1A. Initially, the intracellular 
side of the membrane was exposed to a 
solution lacking divalent cations (9) and the 
conductance was high, as indicated by the 
small voltage deflection. The bathing solu- 
tion was then changed to one containing 1 
mM ca2+,  and the conductance decreased 
two- to threefold. Changing the intracellular 
solution from 1 mM Ca2' to 1 mM Mg2* 
caused little further change (1 0). Figure 1A 
shows that both ca2+ and Mg2+ caused 
rapid and reversible decreases in the patch 
membrane conductance in the absence of 
added cGMP. The effects of divalent cations 
were observed in this patch for 12 cycles of 
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