
Electron Tunneling Paths in Proteins 

One of the crucial issues in biological electron transfer is 
the determination of the role of spatially intermediate 
amino acid residues in controlling or directing the elec- 
tronic tunneling interaction between redox sites. A quan- 
tum path inte ral Monte Carlo method is developed for 
the analysis o f electronic tunneling pathways in a highly 
structured environment. This path integral method is 
applied to intramolecular electron transfer in a rutheni- 
um-modified myoglobin that contains a tryptophan in the 
c'line-of-fight." A principal result is the identification of 
the relevant cylindrical zone swept out by the tunneling 
electron. 

T HE LONG-RANGE TRANSFER OF ELECTRONS THAT OCCURS 

in many important biological systems is a process with 
inherently quantum mechanical aspects. The dynamics of 

such reactions depends on both the tunneling of the electrons and 
the nuclear rearrangements of the protein itself (1). The nuclear 
motion often can be regarded as being nearly classical, but the 
electronic motion requires a hlly quantum mechanical treatment. 
The quantum nature of the electronic motion blurs many of the 
issues that chemists seek to confront in biological electron transfer. 
Foremost is the question of the role of the intervening protein in 
modifying the rate of electron transfer. Simple quantum mechanical 
models treat the protein as a structureless medium (2) and predict a 
simple exponential distance dependence of the electron transfer rate. 
However, the protein clearly has a detailed structure and specific 
features of this structure may control or  facilitate the electron 
tunneling. There has been much speculation about this. For exam- 
ple, certain residues that are evolutionarily conserved are thought to 
be essential in accelerating the electron transfer rate in cytochromes 
(3). Gray and co-workers have studied the distance dependence of 
electron transfer rates in chemically modified myoglobins [penta- 
aminerutheniurn-modified zinc myoglobins, asRuMb(ZnP), where 
a is NH3 and Mb is myoglobin] (4). The anomalously higher rate in 
one case may indicate that a tryptophan is accelerating this process. 
The recent elucidation of the structure of the photosynthetic 
reaction center has also spurred speculation on this issue. Further 
experiments based on site-directed mutagenesis should be helpful in 
sealing some of these issues (5). 

From h e  theoretical side, the quantitative analysis of the part 
played by individual residues in the protein requires some definition 
of the meaning of an electron transfer path. In this research article 
we illustrate how Feynman's path integral formulation of quantum 
mechanics can be used to make the idea of electron transfer paths in 
proteins more meaningful. The use of path integral ideas in describ- 
ing tunneling processes is not new; these ideas have been used in 
many areas of chemistry and physics. For simple problems in gas- 
phase dynamics, semiclassical descriptions of tunneling paths have 

been presented (6, 7), as have equivalent ideas in quantum field 
theory both for particle physics (8) and applications in condensed 
matter physics (9). In those fields the picturesque terminology of 
"instanton" or "soliton" is used to describe tunneling paths. The 
implementation of these ideas in the biomolecular context requires 
some new tools. First, the electron transfer process is a many- 
electron problem. The problem is reduced to a one-electron descrip- 
tion by means of pseudopotentials (1 0). Second, the heterogeneous 
structure of the protein and its concomitantly complicated energy 
surface for electron motion requires computational techniques that 
do not limit one a priori to a semiclassical description of the 
tunneling. Therefore we use a Monte Carlo approach to evaluate 
path integrals and, at the same time, as a search procedure for 
tunneling paths. Our computational scheme also allows us to define 
a "linear action relationship" that quantifies the influence of an 
individual part of the protein on the transfer rate. These linear action 
relationships are apt to be valid regardless of the details of our 
specific model. 

Basic electron transfer theory. A reasonable starting point for 
the analysis of an electron transfer reaction is the two-surface Born- 
Oppenheimer (BO) approximation. The actual motion of the 
electrons is sufficiently rapid so that in comparison the nuclei can be 
considered fixed. For extremely long-range transfer the transit time 
of the electron may be comparable to the time scale of nuclear 
motion and thus deviations from the two-surface BO picture may 
become important (11). We do not consider this effect here. In the 
two-surface BO picture nuclear motion takes place on an electronic 
energy surface that corresponds either to the "neutral" configuration 
DA or to the "ionic" potential energy surface D'A-. If electron 
tunneling were disallowed, these two electronic states would not 
communicate. Nevertheless, the tunneling does couple these states 
through a tunneling matrix element A that gives the probability 
amplitude for transitions between the surfaces at fixed nuclear 
configuration. If A is sufficiently small, second-order perturbation 
theory (the "Golden Rule") gives an expression for the rate of 
transition between the two electronic states as a thermal average of 
the rate between two particular nuclear-motion eigenstates on each 
of the two potential energy surfaces: 

where Hif is the perturbation matrix element between the initial and 
final vibronic states and pf(Ei) is the density of final states at the 
initial energy Ei (12). For our model, Hif is proportional to A and to 
the overlap matrix element between the initial and final vibrational 
states (the Franck-Condon factor). Thus the rate depends on the 
electronic dynamics only through the square of the tunneling matrix 
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element. Ideally the nuclear motion factors can be eliminated by 
considering a series of reactions in which the donor and acceptor 
have a nearly constant local environment but have a varying spatial 
relation to each other. This is the goal of the strategy used by Gray 
and co-workers in their experiments (4). 

An alternative view of the electron transfer process is provided by 
the surface-hopping picture. If the nuclear motion is considered to 
be classical, the critical configuration in the rate process is at the 
crossing of the two potential energy surfaces. It is only in the vicinity 
of this crossing surface where the resonance condition can be 
satisfied and the electron can hop. Again, for small A, the probability 
of making a hop is proportional to A ~ .  The thermal average in the 
Golden Rule expression (Eq. 1) essentially gives the same result as 
that from the surface-hopping picture. The hopping picture is 
especially convenient for understanding the breakdown of the 
Golden Rule result that occurs for large A. Frauenfelder and 
Wolynes give a didactic discussion of this issue in the context of 
biomolecular reactions (13). The hopping picture makes clear that 
the A evaluated at those nuclear configurations which are isoener- 
getic as DA or D'A- is the crucial value in determining the rate. 
This fact makes possible the determination of the relevant A by path 
integral methods. 

Path integral analysis of tunneling. Although tunneling is a 
dynamic process that determines reaction rates, it is mathematically 
convenient to analyze the thermodynamic consequences of tunnel- 
ing. The tunneling process causes a splitting between the adiabatic 
potential surfaces so that they are never truly degenerate. This 
splitting is 2A at the crossing point of the zeroth-order surfaces; A 
can be determined by examination of the thermal off-diagonal 
electronic density matrix at the crossing point. Alternatively, a 
similar but less computationally convenient approach is provided by 
considering imaginary time flux correlation functions for the elec- 
tron followed by analytic continuation to real time (14,15). The off- 
diagonal electronic density matrix between two states, 1 and 2, is 
determined by an imaginary time propagation G12 = (lle-PH12), 
where p is the inverse thermal energy [(kBT)-', where kg is 
Boltzmann's constant] and H is the Hamiltonian for the system. 
This propagator can be represented as a path integral: 

where 

and V(x) is the potential on which the electron moves with path 
x(P1). The 9 symbols indicate path integration; xi and xf are 
coordinates for the initial and final states, respectively, and m is the 
mass of the electron. The integral from 0 to p ofH(x(P1)) dp' is the 
action for imaginary time motion. In our case V(x) consists of (i) the 
sum of pseudopotentials that describe an electron moving around 
each of the atoms in the protein and of (ii) two wells that describe 
the electron when it is bound in the donor or the acceptor. To 
determine A we choose $1 to be a wave function that is localized on 
the donor and $2 to be a wave function that is localized on the 
acceptor. The detailed choice of and $2 is immaterial provided 
that they overlap strongly with the actual states involved in the 
reaction. The path sum in Eq. 2 is isomorphic to that of a flexible 
polymer that interacts with the external potential V(x). This analogy 
can be made more explicit by considering a discrete approximation 

to the path integral (7). If the path is cut up into P segments we can 
write the path integral as: 

Thus the kinetic energy in Eq. 3 has been translated into the 
potential energy of harmonic springs that connect neighboring 
points in the isomorphic polymer chain. This discrete version of the 
path sum is particularly suggestive of both physical analogies and 
computational procedures. Exact results require taking the limit 
P - t  m, but the finite P approximation can be used for numerical 
computation. 

The analysis of tunneling in a multistable potential relies on a 
classification of the paths that contribute to the path integral in Eq. 
2 (7,8). Consider the total imaginary time P to be very long. That is, 
we take PAE >> 1, where AE is the excitation energy from the 
quasi-degenerate levels to the third lowest level. In this case a typical 
path that contributes to Eq. 2 is in well A for a relatively long period 
of time before rapidly making a transit to well B, where it resides 
again for a relatively long period of time. We will call such a rapid 
transit a "lunk." Other paths that contribute to the path sum will 
have a larger but odd number of such kinks. Typically the kinks will 
be well separated in time and can be considered to be noninteract- 
ing. The excursion represented by such a kink is costly in energy; 
however, if fi is large, multikink configurations are favored because 
of their large number. The free energy of introducing a kink is Fk 
and is the difference between the free energy of a one-kink path and 
that of a path of equivalent P that is confined to one well, Eo (since 
the wells are isoenergetic at the crossing point, it does not matter 
which one). The path sum can be written as an expansion in lunks. 
The contributions of paths with N kinks to the path sum is 

if the interaction between kinks can be neglected. In this expression 
Fk includes the integration over the position of the center of the 
kink, and the factor of l/N! arises from the indistinguishability of 
the kinks. Thus one finds that the amplitude for a transition from 
state 1 to state 2 can be represented as the sum 

e-PE~  2 ( l /~!)~-NbFk = ~ - P E Q  s i ~ ( ~ - P F k )  
N odd 

(6) 

This should be compared with the result from ordinary quantum 
mechanics. If there are two quasi-degenerate states with the energies 
Eo -+ A, then the same amplitude can be written as e-PEO sinh(pA). 
Upon analytic continuation to  real time the hyperbolic sine becomes 
the oscillatory circular sine function, which is the well-known Rabi 
oscillation of a two-level system. Thus the tunneling amplitude is 
exponentially related to the free energy of introducing a kink: 

This free energy in turn can be obtained by looking at configura- 
tions with only a single transit from donor to acceptor well. The A 
thus obtained is independent of the P used in the calculation. 
Ln semiclassical theories of tunneling additional approximations 

are made to determine Fk. In these theories an extremal one kink 
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path is found. If we extremize the action H(x(p)) we obtain the 
imaginary time classical equations of motion. The free energy Fk will 
be the action associated with such an extremal path plus a contribu- 
tion from the small amplitude oscillations about this path, which are 
treated harmonically. 

The semiclassical argument easily gives the expected exponential 
behavior of A as a function of distance r when the protein is treated 
as a featureless flat potential. Classical motion in a flat potential is 
rectilinear. The extremal path is therefore the minimum distance 
straight line from well A to well B. The action of a straight-line path 
is proportional to its length and thereby gives A proportional to 
e- riro , where ro is the minimum distance between wells. 

For the complicated potential provided by the protein it is not 
obvious a priori that the semiclassical approach will work. Multiple 
classical paths may result from the scattering of the electron by 
intermediate residues. The harmonic treatment of the small ampli- 
tude fluctuations about the classical paths is also suspect because of 
the rapidly varying nature of the electron-atom pseudopotentials. 
Thus alternative routes to the kink free energy are needed. A very 
instructive route is provided by Monte Carlo calculations. Monte 
Carlo methods evaluate high-dimensional integrals by the applica- 
tion of probabilistic sampling (16) and thus can be used to evaluate 
the path integral expression for the tunneling matrix element. To 
complete the connection some thermodynamic manipulation is 
required. 

One Monte Carlo procedure is to sample the paths according to 
the weight in Eq. 4 by using Metropolis sampling (17). This 
procedure gives information about which paths are important. Thus 
we can use it as a search procedure to find classical paths, as in 
simulated annealing (18). Furthermore, the density of paths at 
intermediate positions gives information on the importance of those 
intermediate regions in determining the matrix element. If a large 
density of points accumulates on an intermediate amino acid 
residue, that residue should be thought of as enhancing the tunnel- 
ing interaction. However, this straightforward Monte Carlo sam- 
pling does not directly give free energies, as they are not averages of 
a mechanical quantity. 

The free energy involved in computing the tunneling can be 
computed in a series of steps that resemble a thermodynamic cycle. 
We start with a potential Vo(x) for which we know the kink free 
energy exactly. A set of simple spherical well potentials is usually 
chosen. Then we slowly change this reference potential to the full 
potential V(x) in steps by performing Monte Carlo calculations with 
the potential Vo(x) + A[V(x)-Vo(x)], where 0 < A < 1. The free 
energy can be computed in two ways. If a small change in X is made 
we can write 

where the average is taken in the partially changed system for a path 
configuration with one kink. Thus we can compute the change in 
the tunneling matrix element by using a series of Monte Carlo runs 
at intermediate values of X 

This procedure works reasonably well if V(x) is fairly smooth. If 
V(x) is harshly repulsive a different approach introduced by Widom 

for hard-sphere fluids can be used (19). If a small but discrete change 
in X is made the ratio of tunneling matrix elements can be found by 
averaging the change in Boltzmann factors of a path in the 
unperturbed ensemble: 

We used a combination of these two calculational schemes in our 
studies. 

This approach can be extended particularly when only a few 
amino acid residues are changed. If only a limited region of the 
protein is slightly changed we can compute the change in tunneling 
by functional differentiation 

Standard statistical mechanical reasoning gives 

where pklnk(r) is the density of electron paths in a kink at the point r, 
which is computed in the ensemble with potential Vl. This electron 
density can be computed directly in a Monte Carlo simulation. 

An important relation is suggested by Eq. 12 that can be easily 
tested experimentally through site-directed mutagenesis. If a local 
change in V is made, then the right-hand side of Eq. 12 is roughly a 
product of a protein-dependent factor pkrnk(r) and an amino acid 
residue-dependent factor. The amino acid residue-dependent factor 
should also depend on the electron affinity of the amino acid. Thus a 
plot of log A (or log kET) versus electron affinity should give a 
straight line whose slope reflects the density of electron paths at that 
site. This linear action relationship is a quantum mechanical analog 
of the linear free energy relationships used for thermally activated 
processes in chemical kinetics (20, 21). The free energy here is that 
of the classical polymer chain that is isomorphic to the tunneling 
paths. If electron transfer is through hole states a similar relation 
with ionization potentials is to be expected. 

Pseudopotential for excess electron in protein. Atom-atom 
potentials that are required in molecular dynamics simulations of 
proteins (22) have been extensively studied. Much less is known 
about the potential energy of an excess electron in the interior of a 
protein. We have adapted various pseudopotential approaches from 
electron-molecule scattering and solvated electron studies as out- 
lined below. 

The relevant virtual states of the intervening medium may be 
excess electron states or hole states. These two superexchange 
mechanisms require different pseudopotentials. In particular, site- 
to-site hopping is the more appropriate framework for a calculation 
of hole tunneling, whereas the local potential described below is 
suitable for the motion of an excess electron. In a given electron 
transfer system, the importance of hole compared to electron 
superexchange is determined by the redox potential of the donor 
acceptor system at the transition state configuration where DA and 
D'A- are isoenergetic. In the specific protein we have treated, 
asRuMb(ZnP) (4), the reorganization energy results mainly from 
the nuclear motion around the ruthenium site rather than around 
the porphyrin site, and hence the transition state redox potential is 
close to that for the porphyrin site. The zinc protoporphyrin reacts 
from its triplet state which lies 1.8 eV above the ground state and is 
a potent reductant. Accorchngly, our pseudopotential, which de- 
scribes excess electron states, is a reasonable choice. A full many- 
electron calculation would have to include the complexity of fermion 
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statistics (7), but such a procedure would avoid this ambiguity. 
The closed-shell electron density on each atom of atomic number 

z is modeled by spherically symmetric exponential wave h c t i o n  $,  
that generates a potential featuring a repulsive core and an attractive 
annular region: 

V = 1 Vcharge + Vpol + vioul  + vFk :" ' v T " "  
atoms 

(13) 

The core size parameter y is inversely proportional to the van der 
Waals radius rvdw for the particular atom and the proportionality 
constant was set by fitting y to the total electron density from 
Hartree-Fock atomic wave functions. For an aliphatic CH2 or 
aromatic C H  group, rvd, = 1.90 A and y = 5.01 A-I. The long- 
range terms Vcharge and Vpol arise from the net partial charge and 
polarizabilities of each atom, respectively; these parameters are taken 
directly from the atom-atom potentials. The divergence of VpoI at 
short range is removed by replacing r-4 by (2 + rtdw)-'. A 
screening correction that consists of a Lorentz local field factor of 2 
(23) is applied at radii greater than 3 A. Penetration into the existing 
core electron density 1 + , 1 2  results in a simple analytic y-dependent 
attractive coulomb otential VcOu1 (24). 

The potentials V i "  and vYL are the Hartree-Fock exchange term 
and repulsive pseudopotentials, respectively, and are nonlocal in 
character (10). For ease of implementation of the path integral 
method, we converted v:: and vYL into local potentials (25) and 
calibrated the resulting total potential V against known results in 
two model cases. A single parameter c that had the same value for all 
the atoms was introduced in V, and adjusted to yield the correct 
balance of attractive and repulsive terms as determined by the 
calibration. 

The local wave function describes the penetration of the excess 
electron into the closed shell of an atom. In this region the electron 
interacts to a good approximation with that one atom only and a 
spherically symmetric tunneling form = [sinh(kr)]ikr is used 
(k = 2 in atomic units) (24). The first integral on the right-hand side 
of Eq. 15 arises from the nuclear attraction term in VcouI; the second 
integral arises from the electron-electron repulsion term in VcauI and 
from the Vex term. 

The repulsive pseudopotential term accounts for the Pauli exclu- 
sion principle but is controlled by same overall exponential form +,, 
as are the attractive Vc and Vex terms. Indeed, in the core there is a 
delicate cancellation between any repulsive pseudopotential and the 
attractive terms (26). Thus it was necessary to include a compression 

factor c > 1 into the wave function +, that was used in the V, 
computation to satisfy the basic requirement that the repulsive core 
term rise more steeply than the attractive terms fall.  his adjustable 
parameter c is included in the projector PC onto the core orbitals. 
Calculation of the scattering length for electron-neon scattering 
without polarization provided the calibration for the repulsive core. 
The Hartree-Fock scattering length is 0.556 A (27) and is matched 
exactly by our potential for c = 1.534. The balance between repul- 
sive core and attractive annular shell interactions was calibrated bv 
the calculation of the energy of a quasi-free electron in benzene, Vo. 
The experimental value is Vo = -0.14 eV (28). By using our 
potential an estimate for Vo = (+ji H I$j) 1 (+jl$j) was obtained by 
Monte Carlo evaluation of the kinetic and potential energy integrals 
with uniform sampling for the crystal structure of benzene expanded 
to match the density of liquid benzene at 25°C. A Jastrow form trial 
wave function +j for the quasi-free electron was formed as a product 
of the exact numerical wave functions obtained from the spherical 
potential of individual aromatic CH extended atoms. At a value of 
c = 1.534 an excessively attractive potential resulted, and the com- 
promise value of c = 1.5 was selected, which yielded Vo = -0.482 
eV and an electron-neon scattering length of 0.651 A. It will be 
significant in view of the results of the protein calculation that our 
V; is more stable and attractive than the experimental value in the 
benzene calculation. The final aromatic CH extended atom potential 
has a minimum of -0.90 eV at 1.6 A and crosses zero at 1.27 A. 
The otential for a CH2 alkyl group has a minimum of -0.61 eV at 
1.8 1 and crosses zero at 1.45 A; the Vo computed for a simple 
model of liquid cyclohexane was +0.069 eV. While potentials based 
on more detailed core wave functions than the simple exponential 
form can be generated by the same procedure (Eq. 131, we feel that 
our semiempirical pseudopotential captures the essential balance of 
repulsive and attractive regions around each atom. We retain the full 
cokplexity of the protein-architecture by including in the potential 
field for the excess electron all the 1217 nonhydrogen atoms present 
in myoglobin. As a result of the gradations in the partial charge that 
arise from the standard adjustments for the surrounding dielectric 
aqueous medium (29), the potential due to each of the 1217 atoms 
is different. 

Metropolis Monte Carlo sampling. The relation between the 
tunneling splitting and the free energyfor the isomorphic one-kink 
polymer chain (Eq. 7) was tested in a one-dimensional potential 
composed of two square wells separated by a barrier 9 long and 4 
eV high. One end of a 128-segment polymer chain was fixed to the 
center of each square well and the effect upon the tunneling splitting 
of introducing a third shallow well in the center of the barrier was 
determined by the integration method of Eq. 9. When ph = 6 
femtoseconds (fsec) the Monte Carlo result for the ratio of three- 
well to two-well tunneling splittings was 1.56 t 0.015. With 
ph = 18 fsec the Monte Carlo result 1.57 ? 0.02 was obtained. 
The exact ratio for the two potentials is 1.55979. This demonstrates 
both the accuracy of the method and the validity of the analysis that 
the A obtained are independent of the value of P employed. 

For the protein sirnuration, one end of an 801-segment polymer 
chain was fixed in the center of a sphere with a constant potential of 
-5.708 eV and with a radius of 2.5 A, which represents the 
ruthenium pentaamine coordinated to the ~2-nitrogen of  is". The 
other end of the chain was fixed in the center of an ellipsoid with a 
constant potential of -4.1 eV, which represents the heme. The 
semimajor axis of the heme is 4.85 i% and the semiminor axis is 2.55 
A; this yields a ground state energy for the isolated ellipsoid of -2.5 
eV (30), which is the same as the ground state energy for the 
ruthenium sphere. The potential in the intervening region was 
evaluated prior to the Monte Carlo on a spatial grid (10 by 10 by 30 
A) with 0.1 A spacing. The reference potential was featureless (0 
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Fig. 1. Four quantum paths for the tunneling 
elemon are depicted (red, yellow, orange, and 
green) that were sampled &om the 500,000 paths 
ofthe Monte Carlo tun (at X = 1). The protein is 
in hght blue with TrpI4 h i w t e d  in magenta. 
The heme and ruthenium redox centers are sepa- 
rated by 28.2 A center-to-center, or 22 A edge-to- 
*. 

eV) everywhere except for the wells. The Monte Carlo was per- 
tbrmed with the isomorphic polymer chain immersed in the 1217 
atom potential at values for the charging parameter A of 0,0.02,0.2, 
0.4, and 1.0. The run with A = 1.0 corresponds to the fully 
structured potential. The large repulsive spikes at the core of each 
atom were troublesome for very low A but the repulsive spikes could 
be truncated at a radius of 0.6 A fiom the center of each atom with 
no effect on the polymer chain. The potential of the repulsive core 
plateau ranged fiom 78.1 eV to 1495 eV for the various atoms. The 
code was written in vector fbrm by moving every other bead in the 
polymer chain, accepting or rejecting the moves, and then moving 
the other halfof the beads. Normal mode moves were tried but this 
gave a much poorer sampling. 500,000 Monte Carlo moves of the 
entire polymer were performed for each value of A and statistics were 
computed after the initial equilibration period of 100,000 passes. 

The ratios of A(Az)/A(A1) were computed by evaluating the right- 
hand side of Eq. 10 and these partial ratios were multiplied together 

to yield the total ratio A(A = l)/A(A = 0). We found that increasing 
beyond the value used in the simulation (Bh = 20 k) had no 

effect on the structure of the tunneling paths. 
Results and discussion. Typical paths of the tunneling elearon 

in the protein are shown in Fig. 1. The individual paths meander 
considerably but the overall bundle of paths follows a rather direct 
line fiom the heme well into the ruthenium well. The overall 
straightness of the paths must depend upon the balance between 
attractive regions of the potential that lie off the straight-line path 
and the "tensionn of the harmonic springs in the polymer. This 
tension, or in the imaginary time perspective, the velocity of the 
electron, is seK-adjusting in the Monte Carlo simulation so long as 
the total fi is sufliciently long. The deeper the energies of the 
terminal wells, the more the polymer chain will spill into the wells 
and the higher the tension will be. Hence, the higher the tunneling 
barrier, the straighter the tunneling paths will be. The imaginary 
time spent by the electron in the turineling region (the "kinkn or 

flg. 2. Dot cloud repmentation of three time 
slices of decaon tunneling probability density 
hnk(r). The g r q ,  yellow, and orange clouds are 
the first, the tenth, and the nineteenth time slice 
out of total of 20. Trp" is in magenta. If all the 
time slices were shown a continuous cylinder 
would result. This cylindrical wne of electron 
density defines the region hqx3Itant in control- 
ling the electron tunnehg interaction. 



"instanton") averaged 2.57 fsec in the full potential runs (h = 1) out 
of a total of 20.0 fsec for the entire path. This is quite near the 
semiclassical estimate of 2.35 fsec for a one-dimensional barrier that 
is 22 A long and 2.5 eV high. 

At low values of the charging parameter h the paths sample the 
repulsive core regions and the average potential experienced by the 
tunneling path is positive: + 12.4 eV for h = 0 and +7.1 eV for 
h = 0.02. The protein overall appears repulsive relative to free space 
so that the free energy of the kink Fk increases and the tunneling 
splitting A decreases. However, the Monte Carlo paths sampled 
from the distribution with h = 0.4 or greater avoid the atomic cores " 
and thread their way through the attractive regions between the 
cores; for X = 1 the average potential is - 1.1 eV. Thus Fk decreases 
and A increases. The final value for the ratio of the tunneling 
splitting to the reference tunneling splitting is 0.56 a 0.03 (31). 
This result means that the impediment to tunneling produced by the 
repulsive cores which restrict the space available to the paths more 
than offsets the stabilization of the tunneling electron by the 
attractive regions of the potential. These pictures suggest that 
optimization of electron tunneling could be achieved by appropriate 
placement of attractive cavities in the protein. 

Shown in magenta in Figs. 1 and 2 is the aromatic ring of TrpI4, 
which has been previously identified as occurring in the through- 
space line-of-flight of the electron (32). We can combine our path 
results and the linear action relationship to identify precisely the 
relevant zone of the protein interior responsible for the mediation of 
the tunneling interaction. The 40,000 independent points (x ,  y, z ,  
p') along the tunneling section of the paths for h = 1 were sorted 
according to imaginary time P' into "time slices." Three of these 
time slices are depicted in Fig. 2. These time slices are much like dot- 
population images of bound-state orbitals and indicate the probabil- 
ity that a given region of space will be visited by the tunneling 
electron. A loose, discernible cloud of electron probability in the 
middle time slice surrounds TrpI4 but it is not a major distortion of 
this time slice. TrpI4 does not act as the center of a loosely bound 
anionic state in our model but quantitation of its role in altering the 
tunneling splitting must await further comparison calculations. 

All of the time slices together define a continuous cylindrical zone 
that stretches from the heme to the ruthenium with a root-mean- 
square radius of 1.9 A. Most time slices are ciicular in cross section; 
the greatest axial ratio is 4 : 3. The center white line in Fig. 2, which 
is the average path, is fairly straight and has a maximum deviation of 
1 A from the exact center-to-center straight line. Outside of this " 
cylindrical zone only an exponentially small influence of the specific 
amino acids present upon the tunneling interaction is observed. 

In summary, the path integral approach to electron tunneling in 
proteins provides a method for evaluating the effect of a highly 
structured intervening medium upon the tunneling interaction. In 
addition, the linear action relationship (through Eqs. 11 and 12) 
yields a direct interpretation of the density of electron paths in a 
region of space as a weighting function for the importance of that 
region in controlling the tunneling interaction. The methodology 
introduced here may also be useful in the interpretation of scanning 

tunneling microscopic studies of biological materials (33). Indeed, 
such experiments may provide one of the best tools for calibrating 
pseudopotentials in our approach. 
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