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In a seminal article in 1946, S. S. Stevens noted that the 
numerical measures then in common use exhibited three 
admissible groups of transformations: similarity, affine, 
and monotonic. Until recently, it was unclear what other 
scale types are possible. For situations on the continuum 
that are homogeneous (that is, objects are not distin- 
guishable by their properties), the possibilities are essen- 
tially these three plus another type lying between the first 
two. These types lead to clearly described classes of 
structures that can, in principle, be incorporated into the 
classical structure of physical units. Such results, along 
with characterizations of important special cases, are 
potentially useful in the behavioral and social sciences. 

T HE MAIN RESEARCH ACTIVITIES TODAY ON THE MATHE- 

matics underlying numerical representations of qualitative 
orderings of objects or events-theories of measurement- 

center not on the classical methods that evolved in physics, which 
are well understood, but on alternative methods that may prove 
useful in other sciences where measurement has proved elusive. 
There are several different thrusts, and this article concentrates on 
one that has been developed by Luce and Narens and others 
associated with them. It is a scheme of classifying structures 
according to the degrees of uniqueness of their numerical represen- 
tations. The results all concern a very general situation in the 
sciences, namely, where a phenomenon of interest can be described 
in terms of monotonic, continuous variables as functions of other 
monotonic, continuous variables. 

The term "measurement" has many meanings, the most conlmon 
being that of assigning numbers to empirical objects according to 
some definite scheme. Empirical measurements based on such 
schemes almost always involve error, and the means for understand- 
ing and dealing with error is of fundamental importance in practice. 
However, in the theory of measurement consideration of error often 
is not treated explicitly. There are at least two good reasons for this. 
First, no general qualitative concept of measurement error has yet 
emerged, which makes it very difficult to incorporate error into 
developed theories of measurement. Second, for a large body of 
measurement issues, error considerations play little or no role. The 
latter is especially true of those issues, such as dimensional analysis in 
physics, that rely on an understanding of the interconnections of 
various numerical representations rather than on the practical 
production of accurate representations. This article is concerned 
exclusively with issues for which error is not a significant factor. 
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Classical Measurement of Physical Units 
A continuous monotonic variable is nothing more than a qualita- 

tively ordered set that can be mapped in an order-preserving way 
onto an interval of the ordered real numbers. Such ordered sets are 
called continua in mathematics ( I ) .  In measurement theory, such 
order-preserving mappings are called "representations," or some- 
times "measurements," since they "measure" the qualitative objects 
by assigning numbers in a consistent way to the objects. 

For many scientific purposes, such representations of variables as 
monotonic and continuous are idealizations, but ones that are 
ubiquitous throughout all of science. Many philosophers of science 
object to the use of continua as accurate descriptions of empirical 
variables, which are often believed to assume only finirely many 
values or are at most potentially infinite. We consider this a valid 
issue, but one about which we cannot comment in any detail in this 
short article. Suffice it to say we believe that valid arguments can be 
presented to establish that continuous variables are the correct kind 
of idealization for many, if not most, of the ordered empirical 
situations encountered in science (2, 3 ) .  

A continuun~ has many different representations. For example, if a 
continuum has a representation + onto the positive real numbers, 
which we denote Re+, then f. + (where - denotes functional com- 
position) is also a representation onto Re' for all strictly monotonic 
functions f from Re' onto Ref, and it is easy to show that all such 
representations have this form. The set of representations of a 
continuum onto Re' is an example of what is called an ordinal scale 
(4). Although ordinal scales are abundant in the behavioral and 
social sciences-rating scales of all sorts are the most common 
examples-they are avoided in the physical sciences because they are 
correctly viewed as a very weak form of measurement. This weakness 
is overcome because physical variables are always constrained in 
additional ways that greatly narrow the possible representations. 

For example, in a number of situations two objects exhibiting the 
attribute to be measured can be combined to form another object 
that also exhibits the attribute. Formally, such combinations gener- 
ate a binary operation that is given the generic name "concatena- 
tion." In measurement theory of continuous variables, it is postulat- 
ed as an empirical law that concatenation of qualitative objects is 
monotonic with respect to the qualitative ordering of the attribute. 
This means that if X denotes the ordering and 0 the operation, then 
for any objects x, y, z in the domain X, 

x x y  - (~0.2)  XC@z) ++ (z0x) X(z0y) 

Mass and length measurement are familiar examples. In addition, 
they also satisfy the properties xoC?,oz) - (xoy)oz, called associativity, 
and (x0y)-box), called commutativity, where - denotes equiva- 
lence in the sense that both x ~ y  and y ~ x  hold. 

For such relational structures, @, X, o), measurement proceeds 
by concatenating copies of various elements in the domain. Let n be 
a positive integer and u and element of X, then nu denotes the 
concatenation of n copies of u. By associativity and commutativity, 



it does not matter in which order these concatenations are formed. 
Suppose x is an object qualitatively greater than u, (x>u,). If u, 1s 
taken as a unit-assigned the value 1-then the number to be 
assigned to x can be estimated approximately by finding the positive 
integer n1 such that both xXnlul and (n,  + l )u l>x (see Fig. 1). 
Then .r: will be assigned a number in the interval (al ,  n, -t 1). The 
error is as much as 1. By repeating the process, using as unit an 
element uz with the property u20~2-u1, a measurement of x is 
produced within an error of one u2 unit, which is 112 when 
translated into ul units. By continuing in this way, a precise measure 
of x is achieved as a limit. Structures (X, k, 0) admitting such 
measurement are called extensive (5). Note that the measurement is 
reduced to two mathematical processes: counting and taking a limit. 
Establishing the existence of the limit and the properties of the 
representation 9 so generated depend upon the structure's satisfying 
certain axioms in addition to commutativity and associativity. 

The major feature of the representation, in addition to its being 
order-preserving, is that the operation 0 is interpreted numerically as 
addition: cp(x0y) = q(x) -I- ~(y ) .  Changing the unit produces a differ- 
ent additive representation, and all additive representations can be 
achieved through just a change of unit. This pleasant state of affairs 
is descr~bed by saying that the set of additive representations forms a 
ratio scale (4). In a ratio scale, any two representations are related by 
a similarity transformation, that is, multiplication by a positive real 
number. Ratio scales measure objects in a stronger way than do 
ordinal scales, and in physics these stronger ways are ultiinateljr 
reflected in the structure of physical units as well as the forms of 
physical laws. 

Not all physical measures are extensive, but the remaining ones 
are expressed as products of powers of extensive ones. This will be 
examined more fully below. 

Is Fundamental Nonextensive Measurement 
Fundamentally Impossible? 
An almost total absence in the behavioral and social sciences of 

empirical concatenation operations that meet the conditions of 
extensive measurement was recognized early, especially by the 
physicist and philosopher of science N. R. Campbell, who placed 
great weight on this feature of physical measurement. Indeed, he 
treated all other physical measurement, such as the multiplicative 
structures among fundamental physical variables, as a distinctly 
secondary form of "derived measurement" (6). 

This work led to the question: What sort of fundamental measure- 
ment, if any, is possible in the other sciences? Broadly speaking, the 
attempts to answer the question m the behavioral and social sciences 
have focused primarily on two research issues-the measurement of 
utility and the measurement of sensations. Although we cite some of 
the main measurement contributions by economists, we deal in 
greater detail with the issues that were raised vis-a-vis psychology 
because they are more germane to the research described here. 

During the 1930s the British Association for the Advancement of 
Science appointed a distinguished committee to conduct an inquiry 
into the question of whether fimdamental measurement was possi- 
ble in psychology. Potentially at stake was whether psychology (and, 
more generally, soc~al science) could ever be legitimately considered 
a mathematical science, since at the time it was primarily through 
measurement that mathematics entered into science. The inquiry 
had been stimulated by the fact that psychologists were attempting 
to measure various things, probably the most satisfactory, although 
not the most important socially, being levels of sensation. 

The resulting report was a series of short essays and rebuttals in 
which the physicists, to a man, concluded that measurement meant 

Fig. 1. A schematic rendering of the first three levels of approximat~on for 
the qualitative measurement of a length x in terms of a unit u,. 

an observable, extensive, concatenation operation, and, since no one 
contested the fact that psychology had few such operations, if any, 
they concluded that the strong forms of measurement found in 
physics were necessarily impossible in psychology. Perhaps the 
clearest statement of this position was that of Guild (7, p. 345): 

To lnslst on calling these other processes [he was referring to sensory 
procedures based on "just not~ceable differences" and judgments of "equal 
~ntervals"] measurement adds nothlng to thelr actual slgnlficance but merely 
debases the colnage of verbal Intercourse Measurement IS not a term wlth 
some mysterious Inherent meanmg, part of whlch may hate been oterlooked 
bv ph~~s~crsts and may be In course of discovers by psycholog~sts. It 1s merely 
a word conventionally employed to denote certaln Ideas To use ~t to denotc 
other Ideas does not broaden tts meanmg but destroys ~t we cease to know 
what 1s to be understood by the term when we encounter lt, our pockets have 
been plcked of a useful coln. 

This attitude is, of course. the antithesis of those ha\' r~ng. a " 
mathematical or philosophical bent; the latter are likely to seek what 
is really essential in important situations and to investigate where 
else those same concepts may arise. The ps~rchologist S. S. Stevens 
argued that the important thing was not the extensive nature of 
concatenations but rather the fact that continuous variables with 
such operations are blessed with a relatively unique (additive) 
representation, namely, they form a ratio scale (4). ~ndeed, Camp- 
bell concurred that this condition is very important, but remarked 
that (8, p. 340) 

Onl~7 one way of fulfill~ng this condlt~on has ever been d~scavered In ~t use 
1s made of the prlmary function of numerals to represent number, a property 
of aU groups The rule 1s laid down that the numeral to be ass~gned to any 
thlng X In respect of any property 1s that whlch represents the number of 
standard thlngs or "untts," all equal In respect of the property, that have to be 
comblned together m order to produce a thlng equal to X m respect of the 
property 

Stevens clearly believed this to be incorrect, although at the time 
he lacked anj7 real examples to show otherwise. He did, however, 
cite the fact that some operations are represented not by addition 
but by weighted averages, and that such a representation lies 
somewhere in strength between ratio and ordinal scales; namely, 
affine transformations of the form x+vx+s, Y > 0, generate all 
representations from a single one. Such a measurement he described 
as forming an interval scale because ratios of intervals, not ratios 
themselves, are invariant under these transformations (4 j. 

Actually, an example of such interval scale measurement did exist, 
but it was little known to measurement theorists at the time. This 
was a system of utility measurement due to the philosopher Ramsey 
(9) that coupled features of two distinct systems that were later 
explored separately and very thoroughly. The first was the axiomati- 
zation of expected utility, begun in 1947 by the mathematician von 
Neumatln and the economist Morgenstern (lo),  and subsequently 
elaborated by, among others, Pfanzagl ( l l ) ,  Savage (12), and 
Suppes (13), respectively mathematician, statistician, and philoso- 
pher. A dozen years later, the economist Debreu (14) explored the 
second system by axiomatizifig in a mixed topological-algebraic 
context additive utility over commodity bundles, and a few years 
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later Luce and Tukey (15), psychologist and statistician, formulated 
a purely algebraic version. Their and related versions are called 
additive conjoint measurement, which is now a broadly familiar 
technique in many social sciences. In both expected utility and 
additive conjoint measurement, the representations form interval 
scales. No ratio scale axiomatization, other than extensive measure- 
ment, arose before 1976 (16). 

Although Stevens' writings failed to raise the question of how 
scales not based on extensive operations might fit into the structure 
of physical units, it is fairly evident from his later work on 
magnitude estimation-in particular, the power relations he felt he 
had established among sensory attributes of intensity-that he 
believed some kind of close interlock to exist (17). 

In contrast, he laid great emphasis on the question of which 
numerical assertions, especially statistical ones, are really meaningful 
in the sense of corresponding to something qualitative in the 
underlying observations rather than being purely mathematical 
statements about numbers with no empirical content. He  discussed 
this almost entirely in terms of measurement-theoretic justifications 
for using or not using particular statistics, and his somewhat 
imprecise formulation of the issues generated a rather confused 
controversy which we do not enter into here. He was aware of some 
connections between these ideas and the importance of invariance in 
geometry, but he overlooked the much closer connections between 
them and the concept of dimensional invariance in physics (18, 19). 

What Is Needed to Fulfill Stevens' 
Alternative to Campbell? 

In a sense, much of our work over the past 12 years can be viewed 
as an attempt to work out fully the implications of Stevens' general 
position. In particular, we have undertaken to make precise the 
following five general questions and, to a degree, with the help of 
several who began as our students, have provided answers to them. 

1) What is meant by the general concept of scale type, and can 
the types be classified in some usehl way? In particular, why are 
ratio, interval, and ordinal scales so important, and are there others 
to be considered? 

2) Given a particular scale type, what can be said about the 
numerical structures exhibiting that scale type? These are of interest 
since they become candidates for possible measurement representa- 
tions. For example, was Campbell correct in believing that (Re, 2, 

+), which means the real numbers, Re, together with their natural 
order, 2, and addition, +, is the sole candidate for ratio scaling of 
an empirical operation? 

3) To what extent is it possible to couple one-dimensional 
measurement structures with conjoint (factorial) ones in such a way 
as to maintain the structure of units typical of classical physics? 
Clearly, it can be done when the one-dimensional structure has an 
operation that can be represented additively and the conjoint 
structure can be represented multiplicatively as in the case of 
physical measurement. The question is whether generalizations are 
possible that maintain the valuable pattern of physical units, namely, 
products of powers, that is often so much taken for granted. 

41 Given answers to these auestions, can ure work out the 
emdirical regularities that must de satisfied by phenomena in order 
for such a representation to come about? That is, can we axiomatize 
the systems corresponding to the possible representa- 
tions? 

5) And finally, given a concept of scale type, what then is meant 
by a meaningful statement within such a measurement system? In 
particular, what philosophically sound justifications can be given for 
the invariance conditions often invoked in meaningfulness argu- 

ments, as in dimensional analysis, and in discussions of the applica- 
bility of statistical methods to measurement? 

Historically, we (and others in the field) did not work on the 
problems in the order g i~en.  For example, early on, the focus was 
mostly on questions 3 and 4, and only later did important results 
about questions 1, 2, and 5 arise. The first four questions are 
discussed in the order presented; the last must be omitted for lack of 
space. 

Classification of Scale Types 
For measurement on the continuum, the transformations dis- 

cussed by Stevens that allow one to pass among equally good 
represelltations of a qualitative structure can be shown to corre- 
spond to internal symmetries of the qualitative structure. By a 
symmetry (the physicist's term) or an automorphism (the mathema- 
tician's term) is meant an isomorphism (structure-preserving) map 
of the structure onto itself. Thinking in these terms and reflecting on 
some specific examples that had arisen in our research, Narens (20) 
proposed a classification that allows one to understand the possible 
scale types that might be of scientific interesr. 

A recurring, key concept in science and mathematics is that of 
homogeneity. The intuition is that a domain is homogeneous if its 
elements are distinguishable not by their properties but only by their 
identity: in other words, if a property is true for one element, it is 
true for all. Homogeneity corresponds to much of the regularity 
observed in science and is essential for understanding what scientific 
laws might be. Quite often it is a consequence of observed proper- 
ties of relations on the domain, as in the case of extensive operations 
on a continuum. It can also appear in other ways. Narens recognized 
that saying a qualitative domain based on a continuum was either 
ratio, interval, or ordinal scalable was tantamount to saying that the 
domain was homogeneous, because corresponding to each fixed real 
number a representation can be found that takes any particular 
object into that number. Since representations are intimately con- 
nected with automorphisms, this implies the following proposition: 
For each pair of objects, x and y, in the qualitative domain, there 
exists an automorphism of that domain that takes x into y. This 
proposition is the characterization of homogeneity used in mathe- 
matical logic, and it can be shown that for particularly powerful 
languages describing the domain it is equivalent to saying that the 
objects of the domain are indistinguishable from one another (2). 

More formally, Narens classified measurement structures as fol- 
lows. Consider a qualitative relational structure of the form E = (X, 
X, Sj)id, whereX is a set of entities, is a total ordering of them (by 
the attribute being measured), (X, k) is a continuum, and Sj are 
other relations offinite order on X where j lies in some index set J. In 
the extensive case discussed earlier, J = (1) and St is an operation, 
which as a relation is of order 3. Let '2 be a subset of the set d of all 
automorphisms, and let M and N be non-negative integers. Then X 
is said to be M-point homogeneous if and only if for each xi, r i a ,  
i = 1, ..., M ,  such that xi>xi+ and yi>yi+ there is some a in X 
such that a(xi) = yi. If d is M-point homogeneous, 2 is said to be 
M-point homogeneous. If 2f is M-point homogeneous for eachM, it 
is said to be m-point homogeneous. Homogeneity as discussed 
earlier is just 1-point homogeneity. 

A second concept, having to do with the redundancies among 
automorphisms, is also important. A subset X of automorphisms is 
said to be AT-point unique if and only if any two members of 2 that 
agree at N distinct points necessarily are identical. And, 2 is said to 
be N-point unique if dl is. If 2 is not N-point unique for any N, it is 
said to be m-point unique. If it is N-point unique for some N, it is 
said to be finitely unique. 
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The structure % is said to be of scale type (M, N) provided M is 
the largest value for which it is X-point homogeneous and N is the 
least value for which it is N-point unique. It is easy to see that for a 
continuum MSN.  

The Stevens ratio scales are of type (1, l ) ,  interval are of type (2, 
2), and ordinal are of type (03, m).  The first question is: What else is 
mathematically possible? The answer is simple, although not simple 
to prove (21 ), when 2 is a relational structure on the continuum that 
is homogeneous and finitely unique. Then it is one of three scale 
types: (1, l ) ,  (2, 2), or (1, 2); there are no other homogeneous, 
finitely unique scale types. In particular, % is isomorphic to a real 
structure for which the autotnorphism group is a subgroup of the 
affine transformations that includes all of the similarity ones. 

So, within the framework of homogeneous, finitely unique 
structures on the continuum, Stevens had two of the three possibili- 
ties. An example of the (1, 2) scale type is the discrete interval scale 
whose group of transformations between representations is of the 
form x-+knx+s, where k > 0 is a fixed constant and n ranges over the 
integers (positive, negative, and zero). Outside of the above limita- 
tions, our knowledge of what is mathematically possible is incom- 
plete. We do not have much information about the (M, m) cases, 
and although the (0,1A9 cases have been mathematically character- 
ized bv Alper (in 2 4 ,  they have not entered in any systematic way 
into scientific applications. These (0, cases range from structures 
with no automorphisms other than the identity to those with many, 
but not quite enough to be homogeneous; from those with little 
regularity of structure, to those that have major pieces that are 
highly regular. Examples of the latter are structures with an intrinsic 
zero (a fixed point of every automorphism) that are homogeneous 
on either side of the zero. 

The remainder of the article focuses on additional results about 
the homogeneous, finitely unique cases, which include many of the 
most useful and applicable ones. 

Target Numerical Representations 
If homogeneity is coupled with a little additional qualitative 

structural information, powerful algebraic constraints result that 
greatly delimit the possible quantitative models of a qualitative 
situation (22, 23). The most fully studied cases involve concatena- 
tion structures of the form 2 = @, X, o), where (X, X) is a 
continuum and 0 is a monotonic, binary operation on X. Such 
situations differ from physical ones in that the concatenation 
operation 0 is not assumed to be either associative or commutative. 
They also differ from the physical ones in that 0 may be intensive- 
xky implies xXvoy&y and xky~xhy-rather than positive-xoy>x 
and x?y>y for all x, y. Nevertheless, under the assumption of 
homogeneity, 2 looks very much like a fundamental physical 
dimension. Before we make explicit how, it is useful to include a few 
remarks about the structure 2. 

First, independent of whether (x, A )  is a continuum, it follo~vs 
from homogeneity that 2 is either weakly positive (xox>x for all x) 
or weakly negative (xoxsx for all x) or idempotent ( x o x ~ x  for all 
x). This reflects the principle that all elements of a homogeneous 
structure "look alike." It also follows from the results on scale type 
that if % is finitely unique, then it is 1- or 2-point unique; in the 
latter case, it is necessarily intensive and idempotent. Furthermore, it 
can be shown that under very plausible conditions, such as 0 being 
onto X and contin~~ous in each variable, % is finitely unique. 

The reason why such an B resembles a fundamental physical 
dimension is that it has a "unit" representation in the following 
sense. If 2? is extensive, then 0 can be represented quantitatively as + 
by a ratio scale of representations, Y.  That is, for each cp in Y and 

each x, y in X, cp(xoyj=cp(x)+cp(y). This can be restated as follows: 
(p(x0y) =(p@)flcp(x)/cp(y)], where flu) = 1 +zk. A unit representation 
for 2 is a quantitative structure of the form %=(Re', 2,  @) that is 
isomorphic to % and such that there is a function f from ReS onto 
Ref with the following three properties: (i) f is strictly increasing; 
(ii) flt)/t is strictly decreasing; and (iii) if r, s are in Re', then 
.oS=sflris). 

Which of the three scale types a unit structure is can be described 
as follows. Consider the values of p for whichflxP) =flx)P obtains for 
allx>O. Then (i) 2 is (1, 1) if and only if p= 1; (ii) %is (1, 2) if and 
only if, for some fixed k > 0 and all integers n, p=kn; and (iii) Z8 is 
(2, 2) if and only if it holds for all p>O. In the first case, the set of 
isomorphisms from Z8 onto 9 forms a ratio scale, in the second a 
discrete interval scale, and in the third an interval scale. The form off 
has been characterized (23) in the (1,2) case for f differentiable, and 
completely in the (2, 2) case, where it is the following generalization 
of a geometric mean: for some c, d in (0, 1). 

&-c , for P > s 
a s  = r, for r = s 

V ~ S ' - ~ ,  for r < s 

This latter Luce and Narens called the dual bilinear form (23), and 
from it they generated a generalized version of subjective expected 
utility in which the decision maker exhibits a very bounded form of 
rationality. Thls model seems to accommodate many of the empiri- 
cal anomalies that reject the classical utility theory (23, 24). 

The question of generalizing the concept of a unit structure to 
much more general settings has recently been solved (25). Essential 
to doing this is the qualitative analogue of a translation x-+x+s in 
the affine case. An automorphism of an ordered structure is said to 
be a translation if either it is the identity or has no fixed point. Then 
%=(R, 2, R,Ld is said to be a real unit structure provided R is a 
subset of Ref and there is a subset T of Ref such that (i) T is a 
group under multiplication, (ii) under multiplication T maps R into 
R, and (iii) the restriction of T to R is the set of translations of 3. It 
is easy to verify that the unit representations of concatenation 
structures meet these three conditions. 

The key discovery is that any qualitative, homogeneous relational 
structure has such a unit representation provided that its set of 
translations exhibit the following high degree of regularity. If a and 
p are automorphisms, define ah'p if and only if a(x)hp(x) for allx 
in X. The property is that under h' and hnction composition, the 
translations form an Archimedean ordered group that is homoge- 
neous, which by Holder's (26) theorem is equivalent to their having 
an additive representation on Ref. Thus, given a qualitative struc- 
ture, one first studies the set of translations, determining if these two 
properties are met. Note that by the result quoted earlier, these 
conditions are met in any relational structure on a continuum that is 
finitely unique and homogeneous. 

The reason for attending to homogeneous unit representations is 
that they are quite general and likely to appear in many behavioral 
science applications. Moreover, such structures have scales that 
provide strong forms of measurement. The general (1, 1) case is just 
as strong as the special case of extensive measurement used in the 
physical sciences. Thus, their existence frees behavioral scientists 
from being hobbled by the artificial constraint of measuring by 
using some variant of the very special unit structure (Re', 2, +). 

Distribution in Conjoint Structures 
Now we show that unit representations can provide the founda- 

tions for structures of several continuous variables that interrelate in 
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exactly the same manner as the structure of physical dimensions of 
classical physics. 

A number of important measurement structures involve a struc- 
ture of the form % = WXP,  k ) ,  whereX andP  are sets (factors) and 
h is a weak ordering (transitive and connected). In this case we may 
not assume that & is a total order since there will be many nonequal 
pairs that are equivalent in the attribute; these represent the trade- 
offs between the factors that leave the attribute unchanged. The 
most important property usually assumed is monotonicity, which in 
this context is often called "independence." % is said to be monoton- 
ic if and only if, for all x, y in X and p, q in P,  both 

(x, P ) ~ ( x ,  4) @, P)kCy, 9) 
and 

(x, P)kCy, P) * (x, q)k@, 4) 

This means that a natural weak order is induced on each component; 
these orders are denoted kx and &p. In many physical situations, 
there is also a measurement structure on one or both components, 
for example, 2 = (X, Xx, Sj)jd. Historically, all of the examples have 
been concatenation structures, usually with the operation being 
extensive and an isomorphism cpx onto the additive, positive, real 
numbers. An example of such a pair is the conjoint structure 
consisting of the ordering of mass-velocity pairs by kinetic energy, 
where mass and velocity are both extensive structures. The remark- 
able property of such measurement pairs, the property that underlies 
the structure of physical units, is that there is a function +p on P 
such that the product cpx+p preserves the order k ;  moreover, if there 
is also an extensive structure on P with additive isomorphism cp,, 
then there is a constant p such that cpflpP represents h. 

Of course, such a tight interlock exists onlp because there is some 
law relating the structures on the components to that of the conjoint 
structure. The questions to be answered are the following: First, 
what is the qualitative nature of that interlock? And, second, to what 
extent is it possible to generalize from extensive structures and still 
arrive at the same conclusion? The latter question is especially 
important to psychophysicists because, as a result of the lack of 
behavioral extensive structures, they have appeared to be barred 
from any possibility of adding fundamental measures to the system 
of physical measures. Such is not barred, however, if the product of 
powers of the measurements of fundamental attributes can also be 
achieved through nonextensive structures. With such an alternative 
possibility, psychophysicists may be able to model some variables, 
such as subjective sensory intensity, in a way that is consistent with 
the physical structure of units. We are not claiming to have 
accomplished this. However, we do claim that the research discussed 
below shows that the possibility exists. 

Over a span of about 12 years, increasingly general results 
concerning the above two questions haw been obtained (16, 19,20, 
23,25,27, 28); we present the current, most general formulation for 
the case of continuous variables. T o  do so, the qualitative interlock- 
ing property needs to be defined. Let % = ( X U ,  &) be a conjoint 
structure and suppose xi, yi are in X, i = 1, . . . , n. Then x = 
(xi, . . . , x,,) and y = (yl, . . . , y,) are said to be similar if and only if 
there exists p, q in P such that for i = 1, . . . , n, (xi, P ) N ~ ,  q). A 
relation S of order n on X is said to distribute in % if and only if, 
wl,~enever x is in S and y is similar to x, then y is in S. A structure 2' 
on X is said to distribute in % if and only if each of its defining 
relations distributes in %. Two additional concepts are helpful: % is 
said to be solvable if and only if for any three values the fourth exists 
such that (x, p ) ~ @ ,  q); and Y: is said to be complete if and onlp if 
(X, kx) and (P, &p) are continua. 

Now, consider a conjoint structure (e that is solvable, is complete, 
and has an ordered relational structure Z on X. Then the following 
three propositions can be shown. (i) If Z is homogeneous, finitely 

unique, and distributes in (e, then (e has a multiplicative representa- 
tion. (ii) If there are structures on both components that have 
representations as homogeneous real unit structures, then % has the 
product-of-powers representation. (iii) If X is homogeneous and 
finitely unique, then there is a conjoint structure within which it 
distributes. 

Thus, nothing is really changed from classical physics ifwe replace 
the usual extensive structures by structures on  continua that are 
homogeneous and finitely unique; the latter may or may not be 
based on concatenation operations. 

Axiomatizations 
Although we know a good deal about numerical representations 

of finitely unique, homogeneous structures, this by itself is of little 
help to the experimentalist who wishes to decide if an empirical 
system has a particular numerical representation and to estimate it 
for particular objects. T o  be testable, a property must be stated in 
terms of the defining, empirical primitives of the system, especially 
the ordering. It simply is not possible to verify statements about the 
set of automorphisms directly. One can reject a property such as 
homogeneity by, for example, showing that a specific pair of 
elements differ in an empirically specifiable property or that some 
element has a unique property. In particular, the existence of an 
upper bound-as in the cases of the velocity of light and the 
universal element in a probability structure--or the existence of a 
zero element will rule obt homogeneity. But we know of no general 
way to demonstrate empirically either the homogeneity of the 
structure or the more demanding property that the set of transla- 
tions forms a homogeneous, Archimedean ordered group, the 
condition that leads to unit representations. Of course, in special 
cases this can be accomplished by exploiting rather strong character- 
istics of empirical relations, for example, the associativity of a 
concatenation operation (29). Thus, it continues to be an important 
research topic to axiomatize, in a testable way, broad classes of 
homogeneous structures with unit representations, and to the extent 
possible to provide algorithms for constructing the representations. 

Homogeneity can be tested in many cases that involve operations. 
A case in point is the general class of structures called positive 
concatenation structures (PCSs). These have monotonic operations 
on a continuum that are positive (xoy>x andxoy>y) and restrictedly 
solvable (x>y implies x>yoz for some z). For PCSs, homogeneity is 
equivalent to the condition that for all positive integers n, 
n(xoy)=nxony, which is a testable property for each n (22). For 
example, if this fails for n=2, that is, (xoy)o(xoy) # (x0x)oCyoy) for 
some x, y, then the PCS cannot be homogeneous. 

We also know how to test for homogeneity with interval-scalable, 
monotonic operations. Such operations are highly restricted since 
they must have dual bilinear representations. Basically the approach 
to this problem is as follou~s. Define an operation * that extends the 
given operation 0 for x>y throughoutx &d another *' that extends 
0 for x i y  throughout X. Then the necessary and sufficient condi- 
tions for 0 on a continuum to have a dual bilinear representation are 
that * and *' both be definable, both be right autodistributive 
[(x*y)*z = (x*z)*@*z)], and together satisfy generalized bisym- 
metry [(x*y)*'(u*v) = (x*'zt)*(v*'y)] (30). 

The onlp other homogeneous structures with a monotonic opera- 
tion on a continuum are idempotent and of type (1, 1) or (1,2).  
Some of the (1, 1) cases can be recoded as PCSs, and when this is 
possible we know how to axiomatize homogeneity for them. For the 
other cases, we do not have fully effective techniques of axiomatiza- 
tion. There is a mathematically informative generalization of the 
condition for PCSs, but it is not empirically testable because it 
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entails having an unspecified translation as the starting point of an 
inductive property (30). 

Since conjoint structures are weakly ordered cartesian products, 
they are not ordered relational structures as defined above; however, 
they can be recast in that form. So the concepts of homogeneity and 
uniqueness apply to them. Further, because they can be recoded in a 
natural way in terms of operations closely related to PCSs, their 
study is greatly simplified (23, 28). We cannot go into the details 
here. 

Concluding Remarks 
Because of the differences in their respective phenomena, physical 

and behavioral data require different mathematical representing 
structures and therefore different procedures of measurement. Pro- 
cesses that may allow behavioral attributes to have strong forms of 
measurement have been developed, and measurements of such 
attributes, if they exist, will act in much the same way as physical 
units. Moreover, it is mathematically feasible for them to be 
combined among themselves and with physical units in just the same 
way as physical units combine. We have also described the mathe- 
matical possibilities (scale types) for those strong forms of measure- 
ment involving homogeneous structures and have shown that 
although they are greatly limited in number they are far more 
general than the usual models used in physical measurement. Their 
inherent limitations naturally suggest strategies for scientific experi- 
mentation and discovery, since much of their description can be 
captured by qualitative axioms. 

The results reported here do not cover some important situations 
in which there are distinguished elements (for example, upper or 
lower bounds, as in probability and relativistic velocity). It is not yet 
clear how best to class@ them. 
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The Chemistry of Self-splicing RNA and 
RNA Enzymes 

Proteins are not the only catalysts of cellular reactions; 
there is a growing list of RNA molecules that catalyze 
RNA cleavage and joining reactions. The chemical mecha- 
nisms of RNA-catalyzed reactions are discussed with 
emphasis on the self-splicing ribosomal RNA precursor 
of Tetrabymenu and the enzymatic activities of its inter- 
vening sequence RNA. Wherever appropriate, catalysis by 
RNA is compared to catalysis by protein enzymes. 

T HE ABILITY OF RNA TO ACT AS A BIOLOGICrlL CATALYST 

has become well established in the last few pears. The 
examples of such ribozymes fall into two categories. Self- 

splicing (1-3) and self-cleaving (4-8) RNAs exemplify intramolecu- 
lar catalysis (9) in which the folded structure of the RNA mediates a 
reaction on another part of itself. In addition, RNA also acts as a 
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