
The ASYST Software for Scientific Computing

Scientists nou7 use many software pack-
ages that have been adapted from main-
frame and minicomputer systems to the
personal computer (PC). Although such
software packages were not developed spe-
cifically for the PC, these programs have
withstood thorough scrutiny by users and
developers over many pears. ASYST (I) ,
which was expressly developed for the PC,
furnishes comprehensive and powerful pro-
cedures for mathematics. statistics. and
graphics (module 1); signal analysis and
advanced mathematics and statistics (mod-
ule 2); signal acquisition (module 3); and
control and measurement (module 4) (Table
1).

The multiple applications of ASYST are
based on a cbmp;ehensive software algebra
that not only facilitates programming but
also provides a framework that preserves the
~arsimonious structure of mathematical for-
mulas to ensure that algorithms are not only
precise, coherent, and concise but also easy
to test and correct. We have reviewed mod-
ules 1, 2, and 3 of ASYST (Table 2) and
outlined the primary features of the system
as well as some difficulties that we encoun-
tered in its use. Alternative software ~ a c k -
ages for scientific computing on the PC (for
example, RSI1, Bolt Beranek and Newman,
Cambridge) have been discussed elsewhere
whereas some other packages (for example,
DADISP, DSP Systems, Cambridge) are
relatively new and have not been extensively
reviewed (2).

Programming Structure

Software for scientific computing typical-
ly offers solutions for specific problems that
require particular mathematical algorithms.
Even when preexisting software libraries are
used, software development often involves
laborious construction. Scientific program-
ming is further complicated by program-

D. Hary and K. Oshio, Deparunent of Biomedical
Engineering, University of Southern California, Los
Angeles, CA 90089.
S. D. Flanagan, Division of Neurosciences, Beckman
Research Institute of the City of Hope, 1450 East
Duarte Road, Duarte, CA 91010.

I Software Advisory Panel I
Robert P. Futrelle Joseph L. Modelevsky
David G George David A. Pensak
Daniel F. Merriam Paul F. Vellernan

ming languages that require a scalar algebra
with numerous equations for the implemen-
tation of relations that are often cast in
matrix algebra. For example, the resultant
force F on a ball due to gravity G and drag
D is F = G + D. Usually, programs for
implementing this equation require the sep-
arate addition of each of the x, y, and z
spatial directions (for example, the vertical
force is F, = G, + D,). The simple vector
addition equation is transformed into three
scalar equations that depart from the origi-
nal mathematical construct.

Program complexity increases if more in-
tricate vector calculus is required. An exam-
ple is the computation of the Magnus force
M on a curve ball from the vector (or cross)
product of the spin S (the vector normal to
the plane of rotation of the ball) and velocity
V vectors (3) . In programming languages
such as Fortran or BASIC, the vector prod-
uct cannot be computed directly from the
vector arguments but from the difference of
products of the corresponding orthogonal
scalar components. Thus the vertical compo-
nent of the Magnus force M,, which causes
the "brealung" of the trajectory of a curve
ball, is proportional to S;V, - S,.Vx.

Vectors and matrices are treated as single
entities in ASYST; vector addition is as
simple as scalar addition and vector products
can be computed directly from the vector
arguments. All of the procedures in ASYST
are based on a matrix algebra that permits a
coherent and concise mathematical formula-
tion of computational algorithms. A rich
repertory of commands exists for logical,
statistical, and mathematical calculations.
Scalar, matrix, and polynomial procedures
in integer, real, and complex number types

Table 1. ASYST modules and prices

permit extensive calculations (for example,
derivative, fast Fourier transform, or analp-
sis of variance) with only a feu7 command
lines. These commands use mathematical
instructions that are executed by a floating
point processor (Table 2) with fast algo-
rithms that conform to the InteVIEEE stan-
dards (4). Also available are graphics, data
communication (RS-232C), and digital and
analog interfacing procedures. ASYST in-
cludes about a thousand preprogrammed
procedures.

Applications for a particular user can be
developed by combining preprogrammed
procedures into new ones that can be exe-
cuted either in "interpreted" (direct) mode
for immediate test and analysis or in "com-
piled" (turnkey) mode for larger or real-time
applications. These programming capabili-
ties are enhanced by program development
tools that can be used to edit, compile, and
run programs; and by file management utili-
ties to store, retrieve, copy, delete, rename,
print, and type DOS (disk operating sys-
tem) files, all of which are supported by an
on-line help facility.

Data manipulations in ASYST are per-
formed with a reverse Polish convention in
which the operation appears after its argu-
ments; for example, the equation c = a + b
is implemented by the command line: a b +
c : = . Operations are performed either with
a "numeric stack" designed for numeric cal-
culations or a separate "symbolic stack" for
logical and string manipulations. These
stacks consist of a series of memory locations
in which data are stored and retrieved on a
last-in-first-out basis; the last element
stored is placed on top of the stack and u7ill
be used first (Fig. 1). Extensive stack main

ASYST module Price

Basic system, analysis, and graphics (modules 1 and 2)
System with data acquisition (modules 1, 2, and 3)
System with GPIBIIEEE-488 (modules 1, 2, and 4)
System with data acquisition and GPIBIIEEE-488 (modules 1 through 4)
Extended support plan*
Special classroom pricest

Minimum of five systems (each includes modules 1 through 4)
System and documentation
System without documentation

*The extended su port plan rovides sohvare upgrades as well as phone sup,port by Adaptable Sofware Laboratories
for 1 year. +&e special crassroom discount is available to eligible universq instructors. The technical support plan
is required for the special classroom purchase.

SCIENCE, VOL. 236

Fig. 1. Screen display from ASYST that shows a
sequence of commands (boldface) and results that
address the numeric stack. Comments were added
to identify the commands and indicate the stack
contents. For example, typing 1 2 3 in response to
the ASYST OK prompt places 3 on top of the
stack and 1 at the bottom of the stack as indicated
by the notation: \ [1 2 3 1. In this notation the
brackets delimit the stack and the backslash serves
as a comment command. Note that integers are of
a double-precision default type.

tenance operations, which are designed to
facilitate stack-oriented calculus, are avail-
able for the numeric and symbolic stacks.
These include commands to duplicate or
drop the top stack element, swap the top
two elements, or display the contents of
these stacks (Fig. 1). Learning to manipu-
late the numeric stack with its reverse Polish
convention is facilitated by a stack display
mode where the four top elements of the stack
are displayed. Logical operations [AND,
NOT, OR, and XOR (exclusive or)] act only
on the symbolic stack but allow logical algebra
manipulation of numeric data that are ex-
changed with the symbolic stack through a set
of binary mask procedures.

Command Structure-'Words"

Diverse numeric stack data manipulations
from integer operations through matrix alge-
bra use almost identical notation and are
based on preprogramrned procedures and
commands termed "words." Unary (single
argument) operations (such as the square-root
and logarithm functions) and binary (two
arguments) operations (such as addition or
subtraction) apply to complex, real, or integer
numbers in either matrix, vector, or scalar
form. Complex scalars, vectors, or matrices in
Cartesian (a + 2.b) or polar (r-kO) formats are
manipulated with specific words to compute
the real (a) or imaginary (b) parts, magnitude
[v = (a2 + b2)"2], phase (O), or complex
conjugate (vse-" = a - i-b).

Array comparison, concatenation, parti-
tioning, and rearrangement words are in-
cluded in the matrix algebra. This algebra is
extended by two generalized products. First,
the generalized outer product (((binary,
operation))) is used to perform a binary
operation on every pair of its matrix (or
vector) arguments. For example, the com-
mand a b ((*)) performs the tensor product
of the column vector (a) by the row vector
(b) and yields a matrix (c) with elements cij
= ai.bj. Second, two consecutive binary
operations are performed by using the gen-
eralized inner product (((binary,opera-
tion,l (binary,operation,2))). For exam-
ple, the inner (or scalar) product can be
implemented to find the sum-of-squares of

ASYST commands and results Explanatory comments

\ Place 1 2 3 on the numeric stack.
\ Display stack contents from
\ top, or first, element
\ t o bottom. or third, element.
\Our convention is: '[1 2 3]
\ Duplicate the top element.
\ [I 2 3 3 1

\Multiply the top two elements.
\ [1 2 9]

vector elements as a a ((* I +)) . The two
generalized products permit a total of 182
different commands (that use +, -, I, *,
maximum, minimum, modulo, and six com-
parison functions).

An extensive ensemble of commands per-
mits the display and measurement of two-
and three-dimensional data with video (5)
or pen plotter graphics (Table 2). Prepro-
grammed words for Cartesian figures, histo-
grams, pie charts, and axonometric and con-
tour plots use a set of graphics window
definitions, data scaling modes, axis and
grid parameters, and color attributes that are
accessible to the user, who can then develop
specific graphics applications.

Other words can be used to scroll an array
of data and to measure and store the coordi-
nates (magnitude and index) of specific data
points. The preprogrammed mathematical
and integrated graphical words form a pow-

erful yet flexible tool for the preliminary
examination of data and allow-interactive
testing and development of new applica-
tions. Commands that execute simple alge-
braic expressions or sophisticated dot-prod-
ucts, polynomial fits, or fast Fourier trans-
forms (Radix-2) (Fig. 2) can be used inter-
actively for immediate study of experimental
results.

Words, or colon definitions (so named
because a colon begins the definition),
which are defined bv the user and use the
stack and other previously defined variables
and words, are needed for optimal use of
ASYST. Words are essential because label-
ing of subroutines or the use of commands "
to branch to other labeled commands are
not allowed in ASYST. Words are also
important because iterative loops, condi-
tional loops, IF-ELSE-THEN statements,
and sequential case selections can only be

Table 2. ASYST versions, computers, o erating systems, and peripherals tested. A math co- rocessor is
required for the operation of ASYST ~ { e 8087 is used with the IBM PC-XI and compati6es and the
80287 with the IBM PC-AT and compatibles. Suppliers and their locations: Analog Devices,
Nonvood, MA, COMPAQ Computer Corporation, Houston, TX; EPSON America, Torrance, CA;
Hercules, Berkeley, Ck, Intel Corp., Santa Clara, Ck, International Business Machines, Boca Raton,
FL; Practical Peripherals, Westlake Village, CA; Quadram, Norcross, GA.

Software or hardware Versions or models

ASYST modules 1 , 2 and 3
Computers

Operating systems
Random-access memory
Interfaces
Graphics adapters

Display monitors

Printers

Printer buffers

Plotters
Data acquisition

1.51, 1.51 upgrade, 1.53, 1.56, and 1.56 upgrade
IBM: IBM PC-XI and PC-AT
COMPAQ: Portable, Portable Plus, and Portable 286
DOS versions 2.1, 3.0, 3.1, and 3.2
640 kbytes
IBM parallel and serial adapters
IBM Enhanced Graphics with 256-kbyte memory module
IBM Color Graphics
COMPAQ graphics and COMPAQ Enhanced graphics
Hercules Graphics Card
IBM Color Display
IBM Enhanced Color Display
IBM: Proprinter and graphics printer
EPSON: FX-80
Quadram Microfazer
Practical Peripherals Microbuffer-Mini
IBM 7371 and HP 7475A
IBM Data Acquisition and Control Adapter
Analog Devices RTI-815

29 MAY I987

ASYST commands Results and explanaton comments Fig. 2. Sample implementation of a few of the
computationally intensive ASYST words. The

implemented through the use of words (Fig.
3).

Data Acquisition and Storage

\ [roots] Estimates the roots of the polynomial
\ whose coefficients are in the array P.
\ [inverse.matrix] Inverts the matriv M.
\ [X] Solves the simultaneous equations: M.X = V.
\ [pol?] Fits the (x,y) data pairs in the arrays
\ X and Y with a pol!momial of degree N.
\ [Fourier transform of the array X]
\ [Two dimensional Fourier transform of matrix LM]
\ [anova.table 1 Computes the two way analysis of
\ variance table of the sample data
\ stored in LM

Multichannel data acquisition and control
procedures are available for digital and ana-
log input and output [analog-to-digital
(AID) and digital-to-analog (DIA) conver-
sions, respectively], either in synchronous
(internal or external clock interrupts) or
sequentially delayed timing modes through
a wide variety of interface boards (6). Con-
current (multitask) acquisition, display, and
storage are also supported. Analog input
channels are sampled serially according to a
specified interchannel delay period (7)

termed the conversion delay. Data from all n
channels can be successively stored in an n-
dimensional array (Fig. 4). In the delayed
timing mode, a longer conversion delay is
inserted between channels to determine the
sampling frequency fo per channel, which
therefore depends on the number of chan-
nels sampled Vb = l / (n ~)] . Thus samples of
multiple channels that are stored as "concur-
rent" in discrete time are in fact delayed by
as much as (N - 1) ~ second. This phase shift
between "concurrent" channels linearly in-
creases with frequency f such that the k-th
channel leads the first channel by a phase of
0 = 360flk - 1) ~ degrees. For example,
when four channels are sampled, channel 4
leads channel 1 by 135" at half the sampling
frequency (Fig. 4). Slower (7) but more
precise sampling is feasible in the synchro-
nous timing mode by setting the conversion
delay to a minimum and by setting the
synchronization rate to the sampling fre-
quency. With minimal effort we were able to
program ASYST for (i) data acquisition
from multiple channels, (ii) generation of a

Poisson pulse train while concurrently ac-
quiring four channels of electroencephalo-
graphic data at 250 Hz, or (iii) emulation of
a metronome with small random fluctua-
tions in rate (8).

Three different file types can be accessed;
standard text (ASCII), standard binary, and
ASYST binary files. ASYST files include an
elaborate and flexible scheme for storing
laboratory data as a sequence of comments
(a laboratory "notebook") follo\ved by a set
of data arrays. Any number of arrays of
different dimensions and number types can
be stored or appended to existing ASYST
files. The ASYST file structure is identified
by an elaborate and accessible file template
that is automatically modified as the file is
appended (9) . However, ASYST does not
support subdirectory paths for its overlay,
help, and messages files and does not in-
clude procedures to access subdirectories
(10).

The matrix-oriented calculus, the combi-
nation of compiled and interpreted modes
of operation, the extensive built-in mathe-
matical, statistical, and engineering proce-
dures, the intensive graphics commands,
and the DOS commands make ASYST an
innovative alternative approach for solving
scientific problems. However, because of its
ambitious features, ASYST is more prone to
criticism than are other less comprehensive
packages. Because many facets of scientific
numerical analysis are encompassed in

ASYST word

: + - x i \ [a b op.code - a.0p.b]
case
1 of + endof
2 of - endof
3 of * endof
4 of i endof

endcase

commands are written as they would be used
interactively at the ASYST prompt, in an ASYST
program, or within ASYST words.

ASYST, no single user or small group of
scientists can fully use its capabilities. Never-
theless, constructive critical review is crucial
for future development of ASYST and we
present an assessment of some of the diffi-
culties we encountered with this package.

Areas for Improvement

ASYST variables have to be named and
given a number type (integer, real, or com-
plex) and a structure (scalar or array) before
they can be used in the program. New
variables cannot be declared within and con-
fined to a colon definition. This limitation is
further exacerbated because a few ASYST
words (for example, those for array parti-
tioning) do not readily accept stack data as
arguments but instead require either defined
scalars or constants, or interactive i n ~ u t of
data. The definition of such nonspecific
global variables hampers the building of
independent libraries of words because such
words cannot be safely nested within other
words that might also use and modify iden-
tical variables (1 1) . \ ,

Symbolic stack manipulations are consid-
erably more difficult and less predictable
than numeric stack calculations. This is be-
cause the symbolic stack combines strings
and logical variables and apparent inconsis-
tencies exist in the access to this stack.
Whereas string commands selectively ad-
dress string data, logical operations read a
string as a sequence of logical variables. This
can cause severe and hard-to-detect errors
during program execution (runtime errors).

Perhaps the most attractive feature of
ASYST is its comprehensive ensemble of
preprograrnmed words. Many numerical
procedures such as matrix inversion, differ-

Equivalent BASIC subroutine
-

1000 on op.code goto 1100,1200,1300,1400
1100 c = a + b : goto 1500
1200 c = a - b : goto 1500
1300 c = a x b : goto 1500
1400 c = a 1 b : goto 1500
1500 rem
1600 return

Fig. 3. Command branching without labels. The Interactive ASYST screen display Equivalent BASIC screen display
"case" command is used within the word "+-xi"
to branch to alternative command sequences thus OK 5. 2. 4 +-+I 10 a=5: b=2: op.code=4: gosub 1000
selecting in this example one of the four mathe- OK , 20 print c: end
matical operations (+, -, x , or I) according to the run
operation code (op.code) value on the stack. An OK 2,5000 2.5
equivalent procedure in BASIC, which uses line OK OK
numbers as labels, is presented for comparison.

I130 SCIENCE, VOL. 236

entiation, polynomial solutions, and ran- er versions is insufficient and that the re-
dom-number generation could have been "
implemented with any one of several algo-
rithms that have different utility, domains of
validity, computational errors-, and speed.
The following examples illustrate the limited
range of validity of two of the numerical
algorithms of ASYST. First, the algorithm
for the pourer h c t i o n does not have a
singular point for the negative pourer of zero
(it gives 0-' = 0). Second, the variance

of an n-element column array (Xk), where

is implemented as

and occasionally yields negative results due
to round-off errors. Where such results are
not acceptable, other procedures should be
used (12). Because it is not feasible to
determine the full impact of an unknown
algorithm by trial and error, the use of
computationally intensive software such as
ASYST requires a functional rather than
only a numerical analysis of the computa-
tional errors and domain of validity of the
programmed procedures. However, unlike
other software packages (13), ASYST source
code or details of the algorithms are not
distributed. Although the documentation is
quite extensive, it is insufficient for analyz-
ing most of the algorithms. As a result the
algorithms of ASYST cannot be fully as-
sessed and procedures written in ASYST
cannot be completely specified.

Because of its complex and highly interac-
tive features, ASYST contained many flaws
in its early versions. A recent provocative
article (14) noted that, "With software prod-
ucts, it is usual to find that the software has
major 'bugs' and does not work reliably for
some users. These problems may persist for
several versions and sometimes worsen as
the sohvare is 'improved'." Perhaps ASYST
is an example of this phenomenon. There
are difficulties that extend from documenta-
tion to more substantial problems in pro-
gram development, compilation, and execu-
tion. Many of the earlier problems have
been corrected (15), some still persist (16),
and others have been introduced in the
revisions. However, since the release of ver-
sion 1.51 no documentation errors (17)'
and only a few sofxare corrections were
reported by the manufacturer (18). It is
suggested here that mere correction of earli-

sponsibility of the publisher is to report such
errors in detail. It is essential that calcula-
tions affected by errors be corrected and that
new results be appropriately reported.

Error messages in ASYST are often diffi-
cult to decipher. A variety of errors (square
root of a negative real or integer number, or
an integer or real number overflow) cause a
"system restarted" message on the IBM PC-
AT and an "illegal 8087 operation" message
on the IBM PC-XT (19). The first "is not
really an error message" according to the
documentation. For the illegal 8087 co-
processor operation, the manual simply
states that the co-processor has encountered
an unsuitable operand and that the square
root of a negative number is a po;sible
cause. Other possible causes for 8087 co-
processor errors are not listed nor is the user
directed to the appropriate literature for a
list of conditions that would generate this
error. Moreover, numerical underflows oc-
casionally, but not always, cause 8087 errors
(20). In addition, error messages in ASYST
do not include information about the proce-
dure that caused the error. This makes long
programs very difficult to correct. ~ lso;
recurring errors often overflow the DOS
stack. This invariably halts the computer and
requires a complete reset.

Software upgrades of ASYST are there-
fore essential; in fact, the developers have
released new versions about twice a year.
Still, experience with ASYST thus far ap-
pears to belie the developers' claim that
ASYST "provides a complete error trapping
system with easy to understand error mes-
sages."

Most of the 640-kbyte program and sys-
tem memory of the IBM PC is required to
run ASYST. The minimum size of the
ASYST system is about 330 kbyte for mod-
ules 1 and 2. This includes the ASYST
program, free memory for newr words, and a
stack of 32 kbyte, but does not include any
space for arrays. Additional memory is con-
simed as mekonr is allocated for additional
modules (21), strings, user-defined code,
numeric stack, and arrays. Hence ASYST
cannot coexist with memorv-resident utili-
ties that use significant amounts of memory
(22). Memory rationing, which was signifi-
cantly alleviated in version 1.53 (23), is
substantiallv exacerbated bv the use of dou-
ble-precision numbers and arrays. Such ar-
rays may be internally generated during
execution of ASYST words (for example,
logarithm in base lo) , probably because
integers (when not specificall!i terminated
with a capital S) are in double-precision
format (Fig. 1) and yield double-precision
results when used as function o~erands.
Thus the numeric stack tends to overflow at

times for seemingly nonapparent and un-
controllable reasons unless the informed
programmer has carefully determined the
format of the outcome of each ~rocedure
used.

Column and multidimensional arrays are
limited to 64 kbyte; for example, a single-
precision integer array that contains 32,678
elements can be defined and used. The exact
procedure of array-specific stack manipula-
tions, which is integral to the hnctioning of
ASYST, is not fully documented. Apparent-
ly array calculations are actually performed
on the memorv locations of the arrav ele-
ments. When i n array is duplicated dn the
stack the duplicated elements share the same
memory locations. Thus every modification
of a &en element results in an identical
chan& of all the duplicated elements on the
stack. Unique memory can be allocated by
copying the array rather than just duplicat-
ing it. This prevents the undesired propaga-
tion of data between stack elements.

Installation and Service

The developers of ASYST have genuinely
attempted to support a variety of hardware
for data acquisition, display, and printing.

I I I I I I I l l I I I I I l l

I I continuous
l i 1 l I l l i 1 l l l l ~ ~ m e

I I I I I I I
I I I I I I I Discrete

/ time

1 2 3 4 5 6

Fig. 4. Schematic representations of the acquisi-
tion of multiple channels in the sequentially de-
layed timing mode. All n channels (four in this
figure) are connected to the same sinusoidal sig-
nal. Samples are delayed by a base interval of T
second as indicated in the continuous time scale.
The sequentially delayed samples of all channels
are stored with the same array index for each
sample cycle as indicated in the discrete time scale
which has a time unit T of nT second. As the data
are stored, "concurrent" samples within each cycle
have as much as (n - 1) ~ second lead relative to
the first channel. Channel 4 leads channel 1 by 45"
for this example in which the signal is sampled six
times per cycle.

SOFTWARE REVIEWS I131

Although it is relatively simple to customize
ASYST for specific plotters and acquisition
adapters, accommodation of the graphics
printing command to a particular printer
and display-adapter combination is not triv-
ial and often requires direct consultation
with the Adaptable Laboratory Software
personnel (24). The IBM PC standard soft-
ware protocols that control data transfer to
the printer (and to which ASYST seems to
conform) limit the rate of data transfer to
the printer. Thus standard printer buffers
(Table 2) do not save substantial time in
printing graphics (25).

ASYST is distributed on laser-hole-pro-
tected master and backup disks, a help disk,
and two installation and demonstration dis-
kettes (26). Because of its copy protection,
the master diskette is required every time
ASYST is loaded, which takes about 15
seconds on the IBLM PC-AT. The documen-
tation includes three manuals for the base
and analysis systems and a manual for each
additional module that is purchased. Main-
tenance of the ASYST software is annually
contracted through the publisher and pro-
vided by Adaptable Laboratory Software
(Table 1). This essential service entitled us
to many hours of extensive and fruitful
discussions with the knowledgeable and
helpful consultants. Unfortunately, for
those who cannot afford the maintenance
fee. there are no formal mechanisms for
reporting and discussing possible software
errors after the 60-day initial period of free
technical support. We recommend the es-
tablishment of such a procedure.

Conclusions

The acceptance of ASYST by the scientific
communi6 could dramatically change the
way scientific data are handled and reduce
the need for extensive in-house software
development for many applications. How-
ever, there is no substitute for a well-con-
ceived use of any software. We feel that the
h l l acceptance of the ideas and concepts
pioneered by Adaptable Laboratory ~ d f t -
ware and other software houses will depend
on the ability of the scientific community to
fully test and verifp the procedures used by
such products. Only then can the results
produced by these software packages be
subiected to confirmation which is crucial to
rigorous scientific endeavor.

REFERENCES AND NOTES

1. ASYST was developed by Adaptable Laboratory
Software and published by Macmillan Software
Company, New York, NY 10022.

2. The data acquisiuon aspects of ASYST were re-
v~eured by P. Wirth and L. E. Ford [Byte 11 (no. 7),
303 (1986)l. RSil and ASYST were discussed by S.
A. Borman [Anal. Chem. 57, 983A (1985)l. RSll

was presented bv C. H . Russell [Res. Dev., 27, 46
(December 1985)], and reviewed bv G. S. Decher-
ney [Digital Rm. 2, 79 (August 1985)l. DADISP
was presented by M. S. Conner [EDN 31 (no. 15),
54 (1986)l.

3. W. R. Bennett, Jr., Scientijc and Engineering Prob-
lem-Solving with the Computer (Prentice-Hall, Engle-
wood Cliffs, NJ, 1976)! pp. 49 and 218.

4. The utilin~ of the floating point co-processor was
reviewed by S. S. Fried [Byte 9 (no. 9), 197 (1984)l.

5. Suppoked by ASYST are color graphics (CGA)
with up to 640 horizontal bv 200 vertical picture
elements (pixels), enhanced g;aphics (EGA) (640 by
350 pixels), Hercules graphics (720 bv 350 pixels),
and HP MultiMode and AT&T 6300 graphics (640
by 400 pixels).

6. Among the data acquisition interfaces supported by
ASYST are adapters by Analog Devices, Cyborg,
Dataq, Data Translation, IBM, Keithley, Metra-
Byte, and Scientific Solutions (Tecmar).

7. In the repeated and sequentially delayed sampling
mode, up to 15,000 samples per second (sps) can be
ac uired with the IBM Data Acquisition and Con-
t r j Adapter (IBM DACA) (nvo channels, 7500 sps
per channel). For proper operation of this interface,
the DELAY output must be connected to the AID
control-enable input. The data acquisition buffer
(DAS buffer) should be configured to match the
sample count. Sam ling rates of less than 2400 sps
(2 IBM DACA ciannels) were achieved in the
synchronous mode. A minimum delay of 100 psec
should be set between IBM DACA channels to yield
an interchannel flutter of 50 to 200 psec. See
DACA-UTL.ASY in the Technical Database (8).

8. The program and text files cited in this review are
located in an archive file (ASYST.ARC) on the
Thousand Oaks Technical Database, Thousand
Oaks, CA. Tel. (805)493-1495.

9. ASYST files can be generated in BASIC with the aid
of the ASYS-SUB.BAS BASIC subroutine library
on the Technical Database (8).

10. ASYST is pro rammed to find its overlay, help, and
data files in $e default directory. ASYST can be
directed with the IBM File Facility (IBM Personallv
Developed Sofnvare, Wallingford, Connecticut) tb
search for overlay and help files in a given list of
directories. ASYST can then be called from anv
directory or drive. Additional sim Iscation of
gram development is gained by &fining subdirec-
tories that include ASYST data files and programs as
virtual devices (for example, D:, E:, and so forth)
with the SUBST (DOS 3.1 and higher) command.
See AUTOEXEC.ASY and COA'FIG.ASY on the
Technical Database (8).

11. To alleviate this problem and write independent
ASYST words, an additional number stack can be
used for local variables [STACK.ASY on the Tech-
nical Database (8)]. Although multiple stacks can be
defined in ASYST, these stacks cannot remain con-
currently o en and therefore cannot serve to store
local variabyes

12. A word for &e power function that tests for the
sinplar F r o poht and returns the largest real is
lnc uded in the rMATH-UTL.ASY file on the Tech-
nical Database (8). Also included is a procedure for
the variance that is computed as the acerage sum of
squares of deviations from the mean. Although
slower than the ASYST variance, this procedure
does not produce negative variance.

13. BASICA Scientific Subroutine Library (Wiley, A'Y
1985). Turbo Pascal Numerical Methods Toolbox
(Borland International, Scotts Valley, CA, 1986).

14. The software requirements for the Strategic Defense
Initiative have been discussed by D. L. Parnas [Am.
Sci. 73, 432 (1985)l.

15. Some of the errors already corrected in recent
revisions are: DOS device messages could not be
trapped, which resulted in pro ram termination, the
smoothin procedure retune$ double-precision ar-
ravs that imited the maximum arrav size; ASYST
filks, binary files, or text files can 'be opened or
accessed simultaneously only in specific combina-
tions; an empnr symbol stack returned a 'TRUE"
value and an eiror messa e, and the concatenation
of scalars to arravs \ielde$ inpredictable results.

16. In addition to &e 'discussion of programming and
computational difficulties detailed in the text, we
found that: attempting to load ASYST with memo-
ry-resident programs that do not leave ASYST with
&ough space mav hang the system and require a
complete restart; bser-defined function keys do not
fully execute unless terminated with the Enter key;

file access is prohibited while a text file is open;
multidimensional arrays of maximum size (65,356
bytes) cannot be viewed; a large number of words
are not documented: error messaees clear the svm-
bol stack; use of the deferred cGpy command'se-
quence: "FILEln DEFER> COPY TO FILE2
dears the s mbol stack. Some problems depend on
the particuikr system as well as the system software
that is stored in read-only memory (BIOS ROM).
For example, division bv zero yields zero on a
TANDY 3000 (BIOS ROhl date of October 1985).
Also, COMPAQ BIOS ROM Version F and higher
is required for proper 80287 error-napping m a
COMPAQ 286 that does not have a COMPAQ tixed
disk. The IBM PC-XT and PC-AT tested have BIOS
ROM dates of 8 November 1982 and 10 January
1984, respectively. This date can be read from memo-
nr with the BASIC program BIOSDATEBAS on the
~echnical Database (8).
Among the more disturbing documentation errors
we found: a mismatch benveen the descri tion and
implementation of the fast Fourier transkrm; the
procedures OLT>FILE.ON and Z=RE&IIM are
not recognized as valid ASYST words; an incom-
plete description of the real number round-off pro-
cedure; and a mismatch benveen the description and
the actual ASYST file structure. For a list of docu-
mentation errors, refer to the TYPOES.DOC docu-
ment file on the Technical Database (8).
ASYSTAppl. Newsl. 2 (no. l) , 3 (1986); ibid. 3 (no.
l) , 3 (1987).
In early versions (before 1.53), these errors would
hang the IBLM PC-AT and require a complete re-
start
ASYSTAppl. Navsl. 3 (no. l) , 2 (1987).
Users of modules 3 or 4 or both who write memory-
intensive analysis procedures mav benefit from a
streamlined version that includes modules 1 and 2
for analysis purposes only. This releases about 44
kbyte of memory in version 1.53 and 41 kbyte in
1.56.
Memory-resident programs stay resident in memory
when they are first run. Once in memonr, these
programs take control in res onse to a spkcid key
combination. For example, t i e DOS GRAPHICS.
COM program stays resident and tints a graphics
screen in response to the ke .s ~ h i l - ~ r t ~ c . Because
of the limited access to sugdirectories (101, it is
useful to use a limited-size version of the memory-
resident Sidekick notebook (Borland International,
Scotts Valley, CA) to read data from the screen or
"export" data directlv to ASYST in a wav that
emulates keyboard en&.
In the first release of Gersion 1.56 (10 December
1986) excessive unusable memonr was allocated to
the ASYST svstem and increaskd the minimum
system size froh 330 to about 363 kbyte (modules 1
and 2) and 384 kbyte (modules 1, 2, and 3). This
unusable memory space increases from 4% of the
minimum system'(version 1.53, modules 1 and 2) to
16% and is about 12% with all three modules
installed. In a later release, some of the unused
memow (8%) was freed (modules 1 and 2 onlv).
Still, improved memonr rationing by the developers
could free benveen 16'kbvte (modules 1 and 2) to
30 kbvte (modules 1, 2, ahd 3) of usable memory.
Modification of the EGA graphics print-screen utili-
ty is required in recent revisions (1.53 and higher)
because of a possible sofnvare flaw that causes a
diminished vertical range (348 instead of 350 lines).
This had been casually reported in ASYST Appl.
Newsl. 2 (no. 3), 2 (1986).
To remedv this problem we are developing a device-
specific mimonr-resident program that transmits an
entire gra hicd screen through an external printer
buffer (~ a g l e 2) in less than 10 seconds.
ASYST is operational as delivered. Users can install
s ecific data acquisition devices, reconfigure parts of
$e memoT allocation, program function keys, set
color attributes for a varienr of text u~indows, and
configure graphics screens: 1A'lTASYS.ASY and
KEYS.ASY on the Technical Database (8), include
initialization procedures to invoke interrupt 5 (for
graphic screen dum s), define function kevs, to set
color attributes, an{ to set the graphics sireen for
the enhanced graphics adapter. For our applications
we configured the stack (referred to as "heap" bv the
configuration procedure) size to three to four umes
the size of largest defined array.
This work was supported in part bv NIH grants
RR-01861 and NS-18854-05 and 6v tile Faculn~
Research and Innovation Fund of the'universiy of
Southern California.

SCIENCE, VOL. 236

