
Observation of Phase Transitions in Spreading 
Activation Networks 

Phase transitions, similar to those seen in physical systems, are observed in spreading 
activation networks. Such networks are used both in theories of cognition and in 
artificial intelligence applications. This result confirms a predicted abrupt behavioral 
change as either the topology of the network or the activation parameters are varied 
across phase boundaries. 

S PREADING ACTIVATION" REFERS number of links in a large network are 
to a class of algorithms that propa- modified, highly nonlinear behavioral 
gate numerical values (activation changes can lead to sudden explosive 

levels) in a network for the purpose of growth in the size of the event horizon. As 
selecting the nodes that are most closely in physical phase transitions (P), these glob- 
related to the source of the activation. This al changes are characterized bv macroscopic " 
process of tracing chains of connections can singularities. This in turn implies that any 
be found in early psychological theories system whose hnctioning can be construed . - .  
dating back to the associatio4st models of as spreading activation should show explo- 
thought attributable to Aristotle, in experi- sive changes in its event horizon as the 
mental psychology research, and in the theo- predicted phase boundaries are approached. 
ries of Freud and Pavlov (1). Quillian (2), This is a reflection of the fact that for large 
who introduced spreading activation as a systems, topology is a dominant determi- 
computational process, has shown how nant of behavior, irrespective of local com- 
search in a semantic network can be accom- putational details. 
plished by the use of this technique. More In addition to the aforementioned appli- 
recently, it has been applied in various artifi- cations, spreading activation is used in psy- 
cia1 intelligence systems ( 2 4 )  and is a com- chological models as a mechanism for decid- 
ponent of a number of computational mod- ing which of several possible related memo- 
els of memory in cognitive psychology (1,3, ries or actions should be selected in ambigu- 
5 ) .  ous situations. For instance, the Adaptive 

The networks in which spreading activa- 
tion is thought to occur (human memory, 
for example) contain very many nodes. 
There exist proposals to build very large 
databases that incorporate this technique 
(6), and various proposed applications of 
the Connection Machine (7) involve spread- 
ing activation through extremely large net- 
works. However, real computational experi- 
ments are usually conducted with small net- 
works from which the properties of the 
larger cases are then extrapolated. The few 
theoretical analyses of very large nets that 
have been attempted (1) are normally re- 
stricted to highly regular topologies with 
dubious simplifying assumptions (one-di- 
mensional networks, for example). These 
simplified experiments and standard analp- 
ses assumed that the findings continue to 
hold when the systems are scaled up without 
bound. For this assumption to be true, the 
range of causal interactions between nodes 
in space-time, which defines an "event hori- 
zon" in these nets, must remain relatively 
small. Recently Huberman and Hogg (8) 
predicted that as parameters such as the 

Flg. 1. Predicted phase diagram for a simple 
spreading activation net (assuming no limits or 
bounds). Dashed lines represent the experimental 
trajectories investigated: the horizontal line for 
experiments 1 and 2, and the vertical lines for 3 
and 4. 

Control of Thought (ACT*) model of An- 
derson (1) uses spreading activation in two 
related ways: to select items from a memory 
arranged in a network of nodes (concepts) 
and links between them; and to select 
among competing behaviors represented by 
production rules in performance situations. 
In addition, Anderson's associative model of 
memory includes learning. Specifically, de- 
clarative learning can take the form of the 
addition of new links between existing 
memory items represented by nodes. Proce- 
dural learning can take the form of new 
connections in a network whose nodes rep- 
resent parts of the rules of performance for 
skills that the person has acquired. Thus, 
both of these sorts of learning can be viewed 
in terms of graph dynamics. 

If the predicted topological phase transi- 
tions are confirmed by experimental test, 
they have particular implications for cogni- 
tive theories of learning and memory, and 
for computational applications (especially in 
artificial intelligence), which depend on the 
dynamic behavior of a network whose con- 
nectivity is changing. This report describes 
four computational experiments that con- 
firm the existence of such phase transitions 
in spreading activation networks, and it 
analyzes the corrections due to their finite 
size. 

Spreading activation networks typically 
consist of a set of potentially active nodes 
representing various states or items, various- 
ly interconnected by weighted links, and a 
local relaxation rate at which the activity of 
an isolated node decays to zero. The dynam- 
ic behavior of these networks is controlled 
by three parameters. The first, specifying 
their topology, is the average number of 
links per node, p. The second, a, is a 
positive number that describes the relative 
amount of activity that flows from a node to 
its neighbors per unit time. The third pa- 
rameter is the relaxation rate y, which can 
have a value between 0 and 1. In a typical 
application, some nodes (the sources) are 
activated by external inputs and these in turn 
cause others to become active with varying 
intensities. 

Computationally, the spread of activation 
takes place in discrete time steps. Let A(N) 
be a vector whose ith element is the activa- 
tion of the ith node at time step N, let C(N; 
be a vector whose elements specify the exter- 
nal inputs at the same time step. In the 
standard model of activation plus relaxation 
(I) ,  the time evolution of the net is given by 
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Number of links 

Fig. 2. Experimental results from networks with 100 nodes, as the number of links is changed from 20 
to 100 (path 1&2 on phase diagram I*. = 0.4 to 2.0; a = 0.4, y = 0.6). Curves show the topological 
transition involving the growth in the number of affected nodes. Each curve represents 25 trials with 
e = 0.001 and B = 10 (solid curve) or B = 1000 (dashed curve). (A) Fraction of active nodes; (B) 
relative fluctuations. The arrow shows the predicted transition point on the phase diagram in Fig. 1. 

where R is a matrix with diagonal elements 
of value zero and off-diagonal elements Rii 
that represent the weight of the link from 
node j to node i, which is defined to be zero 
for nonexisting links. We consider the case 
where the activation from each node is 
divided among the attached nodes accord- 
ing to the weight of their connections. This 
means that those columns of R that have any 
nonzero elements sum to one. Columns that 
are all zero correspond to nodes with no 
links. This procedure for spreading activa- 
tion through a net is analogous to current 
flow in an electrical network. Thus the 
transitions discussed here are similar to per- 
colation transitions seen in these electrical 

node at a given time is localized in both 
space and time. The existence of these local- 
ized event horizons means that simple analy- 
ses that rely on the ability to ignore far 
regions of the net (spatial localization) as 
well as eventual equilibration (time localiza- 
tion) will be applicable in this phase. 

As aly increases, the overall relaxation of 
the net toward its stable fixed point becomes 
increasingly sluggish, with its characteristic 
relaxation time diverging to infinity as the 
transition is approached. This leads to sharp 
phase transitions into phases I1 and I11 (Fig. 
1). In phase 11, one encounters a regime 
where the event horizon grows indefinitely 
in time but remains localized in mace. This 

urn between the net and the time variations 
at the source no longer holds. 

Finally in region I11 of Fig. 1 the event 
horizon is extended not only in time but also 
in space. This means that the amount of 
spreading grows indefinitely, and therefore 
far regions of the net can significantly affect 
each other. This region is separated from 
phase I1 by a sharp transition in which the 
number of nodes with activation values 
above a given positive threshold grows ex- 
plosively. 

The finite size of any real network, as well 
as the limited time ovkr which experimental 
observations are made, introduce correc- 
tions to this theory that result in a smooth- 
ing of the transitions. For example, slightly 
below the phase boundaries observations 
might not last long enough to distinguish 
between continued activity growth and the 
eventual reachine of the fixed ~ o i n t .  More- " 
over, near the transition points, relative fluc- 
tuations in behavior become very large, 
which can obscure the identification of the 
average behavior predicted by the theory. 
On the other hand, we show below how this 
can be exploited in identifying the phase 
transition. 

We have examined the applicability of the 
Huberman and Hogg theory to actual com- 
putational situations in four experiments, 
each consisting of 25 spreading activation 
trials. In each trial we randomly generated 
links in a graph containing 100 nodes. 
Spreading activation is computed according 
to Eq. 1. One node in the network was 
selected as a constant source. Thus, C(N) 
was a constant vector with a single nonzero " 

networks (9) but occur in graphs of arbi- means that unlike phase I, ancient history element. The total activation of the network, 
trary dimensionality. matters in determining the activation of any which is the sum of the activities in all of the 

Sudden phase changes manifest them- node, and that since the net reverberations nodes, as well as the number of activated 
selves in explosive variations in the range of 
interactions between nodes of the net as well 
as in the relaxation rate of the net toward 
equilibrium. For systems with infinitely 
many nodes and unbounded growth of acti- 
vation, the various possible phases predicted 
by the Huberman and Hogg theory (8) are 
shown in Fig. 1. First, consider the case 
where aly is small (region I). In this regime, 
the activation of the net relaxes quickly to its 
asymptotic value and it is localized in space. 
This implies that events at the source node 
do not significantly affect the activation of 
the far regions of the net. Moreover, they 
will have little effect on the source itself at 
later times. Because of its limited extent in 
time, this behavior can be thought of as 
taking place in a finite temporal cluster. 

]?or computational purposes, the exis- 
tence of such a phase implies that one can 
effectively ignore a priori both far regions of 
the net and its ancient history. Thus, in this 
regime the event horizon affecting a given 

never settle down (that is, the activity keeps nodes were recorded at each iteration. 
increasing) the assumption of an equilibri- Two additional parameters were used to 

Fig. 3. Experimental results for paths 3 and 4 on the phase diagram (that is, increasing aly from 213 to 
1.5). Curves show the dynamic transition involving growth of the fixed point and sluggishness of 
relaxation. Each curve represents 25 trials with e = 0.001, B = 100, and the number of links = 20 
(solid, I*. = 0.4) or 70 (dashed, I*. = 1.4). (A) Total activity; (B) completion time. The arrow shows the 
predicted phase transition point. 
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decide on the eventual behavior of the net- 
work. The network was considered to have 
settled into a fixed point when the total 
activity on two consecutive iterations dif- 
fered by less than the settling threshold e, 
which was set to the value 0.001 in all these 
experiments. An upper bound, B, deter- 
mined when the network failed to settle. 
Computation was stopped when the total 
activity in the network either settled or 
reached this bound. In practice, we used 
relatively small networks and values of B, 
thus limiting the number of iterations. Since 
limiting the total number of iterations 
smoothes the expected transition we varied 
B in order to examine its effect. 

The results of the first two experiments 
are depicted in Fig. 2. They explore left-to- 
right movement on the phase diagram as the 
value of p. increases. This path corresponds 
to the trajectory labeled 1&2 in Fig. 1. For 
both of these experiments a = 0.6 and 
y = 0.4, so aly = 1.5. In experiment 1 (sol- 
id curve), B = 10 and in experiment 2 
(dashed curve), B = 1000. Figure 2A shows 
the extent of the spatial event horizon by 
displaying the average fraction (over the 25 
trials) of active nodes in the network at the 
time the network either settles or reaches the 
value B. As expected from the limited size of 
our network, the transition is smoothed out. 
To highlight the transition, we examined 
the relative fluctuations in the network, 
computed by dividing the standard devi- 
ation of the fraction of active nodes by their 
average. This quantity, shown in Fig. 2B, 
peaks at approximately the predicted point 
of 50 links ( p  = 1). 

The results depicted in Fig. 3 are from the 
remaining two experiments. We investigat- 
ed movement in the vertical direction on the 
phase diagram, as shown by transitions 3 
and 4 of Fig. 1. In both of these cases, a and 
y begin at 0.4 and 0.6, respectively; a is 
increased by 0.02 while y is decreased by the 
same amount, until their ratio reaches the 
value 1.5. The vertical transition was tried at 
two different values of p, 0.4 and 1.4, 
corresponding to 20 links (solid curve) and 
70 links (dashed curve). Figure 3A shows 
the total activity of the network when the 
network either settles or reaches the bound 
B = 100.0. One can clearly see the predicted 
sudden growth in activity when aly = 1.0. 
Below this point the network always settles. 
Above it, the activity continues to grow and 
eventually reaches B. The difference in the 
upper part of these curves (about 30 for the 
solid curve and about 75 for the dashed 
curve) is a result of the overall greater 
number of connected nodes in the latter 
case. 

Figure 3B shows the time taken for the 
network to either settle or reach the value B. 

In this figure we have separated each curve systems. They also emphasize the dominat- 
into the settling region (left) and bounded ing influence of topological properties. 
region (right). The peak is a result of differ- These are particularly important implica- 
ent phenomena on either side. On the left, tions for the behavior of any network with a 
the curve results from the time required for dynamic topology. . -. 
the network to settle to its fixed point, 
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Single-Channel and Genetic Analyses Reveal Two 
Distinct A-Type Potassium Channels in Drosophila 

Whole-cell and single-channel voltage-clamp techniques were used to identify and 
characterize the channels underlying the fast transient potassium current (A current) 
in cultured myotubes and neurons ofDrosophila. The myotube (Al) and neuronal (Az) 
channels are distinct, differing in conductance, voltage dependence, and gating 
kinetics. The myotube currents have a faster and more voltage-dependent macroscopic 
inactivation rate, a larger steady-state component, and a less negative steady-state 
inactivation curve than the neuronal currents. The myotube channels have a conduc- 
tance of 1 2  to 16 picosiemens, whereas the neuronal channels have a conductance of 5 
to 8 picosiemens. In addition, the myotube channel is affected by Shaker mutations, 
whereas the neuronal channel is not. Together, these data suggest that the two 
channels are separate molecular structures, the expression of which is controlled, at 
least in part, by different genes. 

T HE OPPORTUNITY TO COMBINE GE- currents in larval and adult muscle cells, 
netic, molecular, and single-channel suggesting that the mutation lies in a struc- 
analyses makes Drosophila an ideal tural gene for the A-current channel (4-7). 

preparation for the study of ion-channel Shaker mutations also cause hyperexcitabil- 
function. By analyzing the effects of genetic ity of larval presynaptic terminals (8, 9) and 
mutations on the gating behavior of single abnormally long action potentials in the 
ion channels, the influence of small changes adult giant axon ( lo ) ,  effects that are mim- 
in structure on channel function can be 
examined. A number of behavioral muta- 
tions proposed to affect ion channels have De artment of Neurobiology, Stanford Universiv Med- 

icaf~chool, Stanford, CA 94305. 
been isolated (1-3). Mutations at the Shaker 
locus alter or eliminate A-type potassium *To whom correspondence should be addressed. 
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