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Freezing 

There is no first principles theory of freezing or melting, 
even for the simplest materials. The prediction of phase 
diagrams is an important first step in understanding the 
crystal-melt interface, crystallization near equilibrium, 
and nucleation. Recently, a new approximate theory for 
the freezing of classical liquids, known as the density 
functional theory, has been developed. The predictions of 
the theory are relatively accurate and its mathematical 
structure is simple enough to provide an attractive start- 
ing point for theories of more complex, dynamical phe- 
nomena. 

A LL SIMPLE LIQUIDS, WITH THE PROBABLE EXCEPTION OF 

liquid helium at low pressures, crystallize at sufficiently low 
temperatures. By "simple" we mean liquids such as pure 

argon, sodium, or nitrogen. In addition, the crystallization of huge 

molecules, such as proteins, is an essential first step in the determina- 
tion of structure from scattering experiments. Yet for even the 
simplest classical liquids there is no accurate, universal (or universal- 
ly accepted) theory of freezing, or indeed of first-order phase 
transitions in general. 

This might seem puzzling, since the thermodynamic conditions 
for phase equilibrium are well known and simply stated. At a given 
temperature T and pressure P, the laws of thermodynamics tell us 
that the phase with the lowest free energy per mole is the stable 
phase. For two coexisting phases, denoted here by the subscripts S 
for solid and L for liquid, the temperatures, pressures, and chemical 
potentials pa of all components j must be equal: 

From a microscopic point of view, the prediction of phase diagrams 
is straightforward in principle. One may use the techniques of 
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statistical mechanics to predict the thermodynamic properties of the 
material under study and use Eq. 1 to determine the phase 
boundaries. In practice, the calculation of reliable values for the free 
energy has proven extremely difficult, and hence the phenomena of 
freezing and melting have attracted the attention of many scientists 
and generated a huge literature (1-8). 

There are additional, more qualitative puzzles concerning freez- 
ing. One may ask why materials adopt a specific symmetric crystal 
structure at all. This phenomenon of "spontaneous translational 
symmetry breaking" is discussed below. Furthermore, most sub- 
stances contract when they freeze, but water and a few other 
materials (silicon, gallium arsenide, and bismuth, to name a few) 
expand. The degree of expansion or contraction varies widely, even 
for simple materials at a pressure of 1.0 atm. Liquid sodium metal 
contracts 2% when it freezes at 9g°C, molten sodium chloride 
contracts 25% at 801°C, and gallium expands by 3% at 30°C. The 
fractional density change on freezing, denoted q,  may be calculated 
from the number density PL of the liquid and the average crystal 
density ps, with the expression 

This "nonuniversal" property of the freezing transition is dis- 
played in Table 1 for a variety of materials. Prediction of this 
property constitutes a major challenge to any theory. In contrast, 
some other features of melting and freezing, such as those addressed 
in the Lindemann "law" and the Verlet "rule" discussed below, seem 
to be common to all simple materials, and a theory should also be 
able to make sense of these facts. 

This article discusses a relatively new, approximate theory of 
freezing, known from its mathematical structure as the "density 
functional theory" (9, 10). The theory uses the language of correla- 
tion functions to calculate the relative stability of liquid and solid 
phases, and hence has its origins in the work of Kirkwood (11). 
Although it sidesteps the question of symmetry breaking, the most 
fundamental mathematical question of crystallization, the density 
functional theory is proving to be a useful, numerically simple tool 
for treating practical problems of phase coexistence. In the last 3 
years it has been used to construct approximate theories of the 
crystal-melt interface (12, 13), nucleation (14), glasses (15) and the 
stability of quasicrystals (16, 17), as well as the standard mathemati- 
cal models of freezing such as hard spheres (18-21), the Lennard- 
Jones system (22), and mixtures (23, 24). 

The density functional theory of freezing makes direct contact 
with a number of much earlier theories of freezing (25-31), such as 
the famous Sutherland-Lindemann (25, 26) theory and dislocation 
theories (30-35). Although this article is not intended to be a review 
of all the old (or new) theories of melting, some connections with 
the density functional theory are discussed. It should be emphasized 
that the dynamics of freezing is a separate, equally fascinating and 
difficult question, the technical details of which have been reviewed 
at the microscopic level by Oxtoby (14). 

Approximations in the Theory of Freezing 
Crystallization presents perhaps the most easily understood exam- 

ple of a ubiquitous problem in modern physics, known as "sponta- 
neous translational symmetry brealung." In simple terms, the classi- 
cal Hamiltonian that we believe describes the properties of liquids 
such as argon is translationally (and rotationally) invariant and 
hence contains no hint of the periodic crystal type ("broken" 
symmetry), such as the face-centered cubic structure, which argon 
adopts in equilibrium at low temperatures. Analogs of this problem 
pervade modern physics, including particle physics (27). 
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Table 1. Freezing data for a variety of materials. 

Sub- 
stance 

Freezing 
temper- 

ature 
("C) 

Liquid 
densiy 
(g!cm ) 

Solid 
densiy 
(g!cm ) 

Fractional 
density 

change on 
freezing 

Latent 
heat 

(kJ!mol) 

Argon 
Sodium 
Iron 
Sodium 

chloride 
Water 
Silicon 
Gallium 
Bismuth 

There is no theory of freezing that can predict the symmetry of the 
crystalline phase from a knowledge only of the forces benveen the 
molecules. In the density functional theory one tests, in principle, all 
230 possible lattice symmetries and determines the most stable 
phase at given thermodynamic conditions. In practical calculations 
(22), only a small number of likely crystal symmetries are tested. The 
assumption of a particular lattice symmetry is one of only two 
assumptions in the density functional theory. Although the symme- 
try is assumed, it should be emphasized that the lattice constant (and 
equivalently the density of the solid phase) is predicted by the 
theory. 

The second and final assumption of the theory makes powerful 
use of the recent advances in predicting the structure of equilibrium 
liquids. Following the original computer simulations of hard 
spheres (36) (which also contained convincing empirical evidence 
for a freezing transition in hard spheres), a host of methods have 
been developed for predicting so-called "correlation functions" in 
liquids. The simplest of these is the pair correlation function, 
denotedg(r) and shown in Fig. 1, which is the (un-normalized) 
probability of finding two molecules separated by a certain distance 
r. For an "ideal" gas this function is unity for all distances. The 
function ~ ( r )  is important for three reasons: (i) it describes the 
average structure in the liquid; (ii) it is the Fourier transform of the 
elastic scattering intensity measured in neutron and x-ray experi- 
ments; and (iii) the thermodynamic properties of a simple liquid 
may be calculated by taking simple integrals overg(r). In the last 25 
years, the structure and thermodynamics of liquids have been 
predicted by computer simulations, approximate integral equations, 
and perturbation theories based on a computer-simulated reference 
state. For example, the pair correlation functions ~ ( r )  for the 
Lennard-Jones fluid shown in Fig. 1 are obtained from the numeri- 
cal solution of an integral equation, known as the "mean spherical 
approximation" (37), and agree relatively well with experiments on 
real argon and ("exact") computer simulations of the same model 
potential. 

The spectacular advances in understanding the structure of liquids 
are important in the present theory of freezing. The second approxi- 
mation of the theory is to use thermodynamic perturbation theory 
to relate the correlation fhctions in the crystal to correlation 
fhctions in the liquid. This idea, due to Kirkwood ( l l ) ,  seems 
quite outrageous: the "hot" crystal which is about to melt can be 
described from knowledge of the "cool" liquid which is about to 
freeze. In fact, Kirkwood's original theory was quite unsuccessful 
from a numerical point of view. The recent advances in this theory 
have been due to the application of "density functional" ideas, which 
have been used successllly in other branches of physics and 
chemistry, particularly in the theory of the inhomogeneous electron 
gas. In the modern freezing theory, the perturbation expansion is 
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Fig. 1. The pair correlation functiong(r) for the Lennard-Jones fluid at the 
temperature kT/c = 1.5. The critical temperature of this fluid is 1.35 in the 
same units. The structure of the fluid, which is the input to the freezing 
theory, is shown for three different densities, = 1.0 (- - -), which is close 
to the freezing density, 0.7 (. . .), and 0.2 (- - -). The parameters c and 
u define the energy and length scales in the Lennard-Jones pair potential 
energy, Eq. 7 .  

The mathematical approximations involved in this second as- 
sumption mean that the density functional theory is far from a 
rigorous solution to the freezing problem. Nevertheless, by building 
on the advances in liquid theory and using the structure of the liquid 
as a starting point for perturbation theory, the density functional 
theory does constitute a complete theory of freezing. It starts from 
the laws of statistical mechanics and a knowledge of the forces 
between the molecules, and, by making a series of well-defined (and 
relatively well-tested) approximations, the theory predicts the phase 
diagram. The first calculation that used the complete recipe, includ- 
ing correct liquid correlation functions, appeared in 1983 for the 
model of hard spheres (20, 21), even though the two major 
ingredients, the thermodynamic perturbation theory and the liquid 
structure of hard spheres (38), were already available in 1963. 

performed at constant temperature and chemical potential, in 
contrast to Kirkwood's approach. It also makes use of the conve- 
nient properties of an alternate representation of liquid structure 
known as the direct correlation function c(r), which is defined from 
the pair correlation functiong(r) by the Ornstein-Zernike equation. 

The central quantity in the freezing theory is equilibrium-aver- 
aged, microscopic density p(r). In the isotropic liquid phase this 
quantity is simply a constant, p ~ ,  the number density of the material. 
In the solid phase the density is spatially varying, with a symmetry 
determined by the crystal type and a period determined by the 
average (over a unit cell) crystal density ps. It is convenient to write 
the crystal density as a Fourier sum, 

where rl is the fractional density change on freezing defined in Eq. 2, 
{k,) is the set of reciprocal lattice vectors which defines the lattice 
symmetry, and p, are order parameters which measure the degree of 
periodic order of wave vector k, in the crystal. These order 
parameters, which in addition to q are to be predicted by the theory, 
are related to the Debye-Waller factor, which measures the degree of 
thermal motion of molecules about their lattice sites in the crystal. 

The free energy F of the liquid or crystal, along with the other 
thermodynamic quantities, can be expressed as a hc t iona l  F[p(r)] 
of the density p(r). This is the origin of both the name "density 
functional theory" and the power of the technique. The radical 
feature of the second approximation in the theory is that it assumes 
that the free energy is an analytic functional of the density, and that a 
perturbation expansion about a reference state, in this case the 
equilibrium liquid, is valid. For a second-order transition, such as 
the gas-liquid critical point, this would be a poor approximation 
(and would lead, among other things, to incorrect "classical" critical 
exponents). However, for some first-order phase transitions, the 
empirical evidence suggests that the truncation of this expansion at 
first order is useful. 

Mathematical Theory 
The density functional theory may be summarized in two equa- 

tions. We work in the grand ensemble of statistical mechanics, 
where temperature, volume, and chemical potential (rather than 
particle number) are the natural variables. To first order in perturba- 
tion theory, possible crystal phases are determined by periodic 
solutions of the implicit equation, 

where c(rlz) is the direct correlation function of the liquid men- 
tioned above and r12 = irl - r21 is the distance benveen nvo 
molecules. At low densities the only solution of Eq. 4 is the 
constant, liquid solution p(r) = p ~ .  At higher densities, additional 
spatially varying solutions appear, and the densities p(r) and p, 
describe crystal and liquid phases with the same temperature and 
chemical potential. Owing to the "mean field" approximations in the 
theory, more than one such pair of densities exists. The equilibrium 
freezing point is located unambiguously by the condition that the 
pressures of the two phases also be equal (see Eq. 1). Mathematical- 
ly, this condition is expressed by means of the grand thermodynamic 
potential difference Apfl  (the analog of the free energy difference) 
between the two phases, which to first order in thermodynamic 
perturbation theory is 

1 
+ 2 S drlS dr:c(r12)[p(r2) - P L I [ P ( ~ ~ )  + PLI (5) 

For a fixed temperature, the liquid freezes at the density for which 

This is simply the Maxwell construction in the grand ensemble. 

Practical Examples 
The utility of the density functional theory may be seen in the 

predictions of the freezing of the Lennard-Jones liquid by Marshall 
et  at. (22). This system has been studied intensively as a model for 
the structure, dynamics, and thermodynamics of simple liquids, such 

1078 SCIENCE, VOL. 236 



as argon, and even liquids composed of approximately spherical 
molecules, such as methane. In this model, classical structureless 
particles interact by means of the painvise additive potential energy 

where r is the distance between molecules and u and E are 
parameters that determine the length and energy scales. This 
potential mimics the features of the interaction potentials of rare gas 
elements: there is an r-6 attraction at large distances, an attractive 
well at intermediate separations, and a steep repulsive wall at short 
distances, when the molecules begin to overlap. For example, the 
interaction of two argon molecules is relatively well described if we 
use the parameters a = 3.405 A and E / ~ B  = 120 K, where k~ is 
Boltzmann's constant. 

The structure of the Lennard-Jones liquid may be obtained from 
computer simulations or integral equations. With Eqs. 4 and 5 it is a 
simple matter to predict the freezing into a close-packed lattice. The 
predicted phase diagram is shown in Fig. 2, in addition to experi- 
mental data for real argon. The agreement is good. Other thermody- 
namic properties, such as the latent heat, are also predicted by the 
theory. However, in its present form the theory suffers from the 
disadvantage (along with even the most elaborate computer simula- 
tion experiments) that it cannot predict accurately the relative 
stability of the two close-packed symmetries, face-centered cubic 
(fcc) and hexagonally close-packed (hcp). It does predict correctly 
that these symmetries are more stable than other possible structures, 
such as body-centered cubic (bcc) or simple cubic (sc). 

The complexity of phase diagrams is seen clearly even in binary 
mixtures, and our second example is the phase diagram of a 1 : l  
mixture of hard spheres of different diameters (Fig. 3). This model 
may be viewed as a simplified model of binary mixtures or just as an 
interesting mathematical example. Smithline and Haymet (23) have 
determined the stable solid that coexists with a liquid of equal 
concentrations of "big" spheres and "little" spheres, with diameter 
ratio uz/al. For spheres of almost the same size, the stable crystal is a 
substitutionally disordered fcc solid. More interestingly, in this case 
phase separation occurs, and as the size ratio decreases the relative 
concentration of big spheres increases. Below u2/al = 0.85, the 
stable solid has the cesium chloride symmetry, with the two sizes of 
sphere ordered on two distinct, interpenetrating simple cubic 
lattices. For small size ratios, the stable solid has sodium chloride 
symmetry (two interpenetrating fcc lattices). Metastable (locally 
stable) solids with two other symmetries have been found. It is 
interesting that this simple model displays the symmetries common- 
ly found in real materials, indicating that simple geometric factors 
such as packing, play an important, if not dominant, role i 
determining phase stability. 

Connection with Other Melting Theories 
Perhaps the oldest idea in melting and freezing is that a crystal 

should melt when the average thermal motion of the molecules 
exceeds a certain critical amplitude. A measure of thermal motion is 
the quantity L = (?)'J2/d, where (2)  is the mean square amplitude 
of the excursions of a molecule from its lattice site, and d is the 
nearest neighbor spacing. Many materials do in fact melt when L 
approaches 10%. This idea is usually ascribed to Lindemann (26), 
but was derived 20 years earlier by Sutherland (25), a brilliant but 
little known Australian scientist who also anticipated the Stokes- 
Einstein equation. It speaks to the rapid progress of science that just 
90 years ago Sutherland was trying to understand Mendeleev'~ 
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periodic table of the elements, searching for a periodically varying 
mechanical property that would correlate with the periodic arrange- 
ments of elements. It turns out that his idea was completely wrong: 
the amplitude of motion of elements about to melt has nothing to 

Fig. 2. The phase dia- 4 

gram for the Lennard- 
Jones system. The solid 
lines are the densities of 
the coexisting liquid (or 
fluid) and fcc crystal, as g 
calculated by Marshall, 2 
Laird, and Haymet (22). 3 
The circles are results $ 
from computer simula- f 
tions, the triangles are t' 
experimental data for ar- 

1 :  gon, and the squares are 
additional theoretical 
points with the solution 
of the mean-spherical- 0 

do with the real explanation of the periodic table, namely, electronic 
structure and quantum mechanics, about which Sutherland knew 
nothing (or, at least, published nothing). 

I I 

- 

Fluid - 

.------- 
,/ t --. \. 

Critical - 
point 

id : 
'kg 8 

Triple point 
I I 

The -~utherland-~indemann theory -is actually a theory of the 

approximation integral- o 0.5 1 .o 1.5 

equation theory of liquid Density po3 

structure as input. The 
dashed line is the gas- 
liquid coexistence curve. 

absolute instability of the crystal, rather than an equilibrium melting 
theory. Even modern mean-field theories find that this instability is 
very close to the freezing transition, a fact that is still not under- 
stood. The quantity L i n  the crystal is actually a wave vector 
dependent property rather than a constant, and it is one of the 
predictions of the density functional theory. For certain close- 
packed materials, the ratio L turns out to be weakly dependent on 
wave vector and close to lo%, a remarkable tribute-to the intuition 
of Sutherland and Lindemann. 

In the course of extensive computer simulations of liquids and 
crystals, Verlet observed (39) that many simple materials freeze 
when the amplitude of the highest peak in the structure factor S(k), 
which is the Fourier transform of the pair correlation functiong(r) 
displayed in Fig. 1, exceeds the value S(k,,,) = 2.9 t 0.1. The 
density functional theory can also be used to rationalize this Verlet 
"rule." Ramakrishnan noted (19) that the free energy cost of setting 
up periodic density waves of wave vector k is governed, to first order 
in perturbation theory, by the magnitude of S(k) in the liquid. 
Hence, the process of freezing may be viewed as a delicate balance 
Jetween the free energy of expansion (or contraction) of the system 

Disordered fcc structure 

Fig. 3. The phase dia- 
gram for a binary mix- 0.8 - 
ture of hard spheres CsCl structure 

(23).  The "big" spheres h 
have diameter a, = 1, 5 
and the "little" spheres 'z 0,6 - 
have diameter a2, with 0 8 
< a, < 1. Plotted are ' 
the coexisting liquid and 0,4 NaCl structure 

crystal densities of the 
Liquid big spheres. For all 

phases except the disor- 
dered fcc crystal, the o . ~  

densities of the two 0.25 0.50 0.75 1 .O 

components are equal. Density p , q 3  
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and the free energy of setting up an elaborate network of periodic 
density modulations at every reciprocal vector of the crystal syrnme- 
trp 

The idea that melting is caused by defects in the perfect crystal was 
suggested by Frank (29). Mott and Gurney formulated their theory 
of freezing (30) in terms of grain boundaries, suggesting that at the 
melting transition the crystal fragments into crystallites with random 
orientations. The modern expression of these ideas is due to 
Shockley (31), who described melting as a sudden increase in the 
density of (closed) dislocation loops, which form a tangled, inter- 
twined "spaghetti" in the crystal. These ideas have been developed 
and extended by Cotterill et  al. (8) ,  Edwards and Warner (33), and 
many others (6, 7). 

This dislocation theory is an elegant and popular view of melting, 
in part because it abandons the molecular description in favor of the 
"defects" in the crystal, the dislocation loops. To my knowledge, the 
only version of dislocation theory that allows for a change in density 
of melting is by Ninomiya (32), and this theory has been used 
recently by Poirier (35) to predict the temperature of the iron core at 
the center of the earth. A limitation of this theory is that there are 
crucial parameters (which describe the dislocation free energy and 
density) which are not predicted from first principles. It is also 
frustrating that dislocations "disappear" in the liquid (owing to the 
high mobility of the molecules), which is a reason to favor a 
molecular description. In addition, the dislocation theory, like the 
Sutherland-Lindemann theory, is essentially a theory of the instabil- 
ity of the crystal, in which the liquid seems to play little role. In 
contrast, the density functional theory actually tries to calculate the 
free energy difference between the two phases, and hence it is a true 
theory of phase coexistence. In fact, the perturbation theory is fully 
reversible and either phase can be used as the reference system, 
although our limited knowledge of pair correlations in the hot 
crystal have restricted density functional calculations to "freezing" 
rather than "melting." 

The freezing both of real systems, such as iron, silicon, and water, 
and of important mathematical models, such as inverse power 
potentials, are being studied in laboratories around the world. 
Applications to liquid crystals, plastic crystals, quasiperiodic materi- 
als, nucleation, and dynamical properties are also being explored. 
There is a multitude of open questions, especially concerning large 
molecules. Although it falls short of a complete theory of freezing, 
the density fimctional theory provides a workable starting point for 
theories of dynamical phenomena, as well as some information 
about the mysterious complexity of phase diagrams. 
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