
Decision-Making in the Presence of Risk 

Proposed in the 18th century by Cramer and Bernoulli 
and formally axiomatized in the 20th century by von 
Neumann and Morgenstern and others, the expected 
utility model has long been the dominant framework for 
the analysis of decision-making under risk. A growing 
body of experimental evidence, however, indicates that 
individuals systematically violate the key behavioral as- 
sumption of this model, the so-called independence axi- 
om. This has led to the development and analysis of non- 
expected utility models of decision-making. Although 
recent work in this area has shown that the analytical 
results of expected utility theory are more robust than 
previously supposed, other important issues remain unre- 
solved. 

IRTUALLY ALL SOCIAL, ECONOMIC, OR TECHNOLOGICAL 

decisions involve some degree of risk or uncertainty. In 
some cases, such as games of chance, the probabilities of the 

alternative consequences can be accurately determined. In other 
cases, actuarial or engineering data must be used to construct 
estimates of these likelihoods. To the extent that these  roba abilities 
can be quantified, however, individuals' attitudes toward risk can be 
subjected to theoretical analysis and empirical testing. 

The 17th-century founders of modern probability theory such as 
Pascal and Fermat assumed that individuals would evaluate alterna- 
tive monetary gambles on the basis of their expected values, so that a 
lottery offering the payoffs (xl, . . . , x,) with respective probabilities 
(pl, . . . , p,) would yield as much satisfaction as a sure payment 
equal to its expected value 2 = &gi. Such an approach could be 
justified by appealing to the law of large numbers, which states that 
if a gamble is indefinitely and independently repeated, its long-run 
average payoff will necessarily converge to its expected value. 

However, in a one-shot choice situation which cannot be replicat- 
ed or averaged, individuals may well base their decisions on more 
than just the expected values ofthe alternative prospects. This point 
was dramatically illustrated by an example offered by Nicholas 
Bernoulli in 1728 and now known as the St. Petersburg Paradox: 
Suppose someone offers to toss a fair coin repeatedly until it lands 
heads, and to pay you $1 if this occurs on the first toss, $2 if it takes 
two tosses to land a head, $4 if it takes three tosses, $8 if it takes four 
tosses, and so on. What is the largest sure payment you would be 
willing to forgo in order to undertake a single play of this game? 

This game offers a 112 chance of winning $1, a 114 chance of 
winning $2, and so on; its expected payoff is (112)$1 + (114)$2 
+ (118)$4+. . . = $112 + $112 + $112 + . . . = $m. However, 
even if such a well-backed offer could be made, it was felt that few 
individuals would forgo more than, say, $20 for a one-shot play-a 
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far cry from the (infinite) expected value (1). The resolution of this 
paradox, proposed independently by Gabriel Cramer and Daniel 
Bernoulli (Nicholas's cousin), would form the basis for the modern 
theory of decision-making under risk (2). 

Arguing that a gain of $1000 was not necessarily valued ten times 
as much as a gain of $100, Cramer and Bernoulli hypothesized that 
individuals possess a utility of wealth function U(x), and that they 
would value a lottery on the basis of its expected utility @ = XU(xi)pi 
rather than its expected value .C = &gi. If utility took the logarith- 
mic form U(x) = In(x), for example, the sure monetary gain 5 which 
would yield the same level of satisfaction as the St. Petersburg 
gamble would be given by the solution to 

where w denotes the individual's initial wealth. If w = $1000, the 
individual would be indifferent between taking this gamble or 
receiving a sure gain of about $6, if w = $50,000 this amount is 
about $9. Of course, someone with a different utility function U* (.) 
would assign a different sure monetary equivalent. 

Two centuries later, this approach was formally axiomatized by 
Frank Ramsey in his treatise on the philosophy of belief, by John 
von Neumann and Oskar Morgenstern in their development of the 
theory of games, and by Leonard Savage in his work on the 
foundations of statistical inference (3 ) .  The simplicity and intuitive 
appeal of its axioms, the elegance of its representation of risk 
attitudes in terms of properties of the utility function, and the 
tremendous number of theoretical results it has produced have led 
the expected utility model to become the dominant, and indeed, 
almost exclusive model of decision-making under risk in economics, 
operations research, philosophy, and statistical decision theory (4). 

However, these theoretical advances have been accompanied by 
an accumulating body of empirical evidence suggesting that individ- 
uals systematically violate the predictions of the expected utility 
model. The largest and most systematic class of these violations 
concerns the key behavioral assumption of the model, the so-called 
independence axiom. This has led to a growing tension in the field 
of decision theory, with defenders of the expected utility approach 
stressing the "rationality" of this axiom and the theoretical power of 
the model, and others emphasizing the importance of the empirical 
evidence and developing alternatives to the expected utility model. 

My purpose in this article is to give an overview of these 
developments in the field of decision-making under risk. The 
following sections provide a description of the expected utility 
model both as a theoretical tool and as a behavioral hypothesis, a 
summary of the evidence on systematic violations of the indepen- 
dence axiom, and a report on the newer non-expected utility models 
of decision-making currently being developed. This latter work has 
shown that the basic results of expected utility analysis are in fact 
quite robust to violations of the independence axiom. However, 
separate evidence suggests that some of the other standard assurnp- 
tions in the theory of choice under uncertainty may also be suspect. 
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The Expected Utility Model 

The expected utility model follows standard economic theory by 
specifying a set of objects of choice and assuming that the individ- 
ual's preferences can be represented by a real-valued function over 
this choice set. Since it is a model of decision-making under risk, the 
objects of choice are not the ultimate outcomes that might obtain 
(for example, alternative wealth levels) but rather probability distri- 
butions over these outcomes. Given a set {xl, . . . , x,) of potential 
outcomes, the choice set thus consists of all probability distributions 
P = (pl, . . . , p,) over {xl, . . . , x,), where pi denotes the probability 
of obtaining x; and Epi = 1. 

The model then assumes that the individual's preferences can be 
represented by a real-valued maximand or preference function V(.) 
over probability distributions, in the sense that the distribution 
P* = (pfi . . . , pz) is preferred to P = (pl, . . . ,p,) if and only if 
V(PY) > V(P), and is indifferent to P if and only if V(P*) = V(P). 
The essence of the expected utility approach is that V(.) takes the 
linear form V(P) = ZU(xi)pi for some set of coefficients {U(x;)), so 
that expected utility preferences can be described as being linear in 
the probabilities. When the outcome set is a continuum such as the 
interval [ O , q ,  the probability distribution of a random variable R 
over [ O , q  can be represented by its density functionfl.), or more 
generally, by its cumulative distribution function F(.) [where 
F(x) = prob(2 5 x)], and preferences over such distributions are 
assumed to be representable by linear preference functionals of the 
form VVJ = fU(x)f(x)dx or V(F) 5 fU(x)dF(x), which can again 
be interpreted as the expectation of U(.) ( 5 ) .  Since it is clear that the 
transformed utility function aU(.) + b (a  > 0) will generate the 
same ranking over distributions as U(.), utility functions are often 
normalized so that U(0) = 0 and U(M) = 1. 

Figure 1 illustrates how this model can be used to represent 
various attitudes toward risk. The monotonicity of the-utility 
functions U(.) and UY(.) in the figures reflect the property of 

Fig. 1. (A) Concave utility function of a risk averse individual. (B) Convex 
utility function of a risk-preferring individual. 

Fig. 2. (A) Relatively steep indifference curves of a risk averse individual. (B) 
Relatively flat indifference curves of a risk-preferring individual. 

stochastic dominance preference, where one probability distribution 
is said to stochastically dominate another if it can be obtained from 
the latter by a sequence of rightward shifts of probability mass. Since 
such shifts raise the probability ofobtaining at least x for all values of 
x, stochastic dominance preference is the probabilistic analogue of 
the view that "more is better." 

The points 9 = (213)x1 + (113)~" in the figure denote the expect- 
ed value of the gamble offering a 213 : 113 chance of the outcomes x' 
or x", and a = (213)U(x1) + (l13)U(d1) and a* = (213)U*(x1) + 
(ll3)U*(xU) give the expected utilities of this gamble for U(.) and 
U*(.). For the concave (that is, bowed upward) utility function U(.) 
we have a < U($), implying that the individual would rather receive 
a sure payment equal to the expected value of the gamble than 
actually take the gamble itself. For the convex (bowed downward) 
utility function Us(.) we have a* > Us($), so that this individual 
would prefer to bear the risk rather than receive a sure payment of*. 
Since Jensen's inequality (6) implies that these respective attitudes 
will extend to all risky gambles, U(.) is referred to as risk averse and 
U*(.) as risk preferring (7). Researchers such as Arrow and Pratt 
have shown how the relative concavity or convexity of a utility 
function, as measured by the curvature index - W'(x)lU1(x), can lead 
to theoretical predictions of how risk attitudes, and hence behavior, 
will vary with wealth or across individuals in a variety of different 
risky situations (8). 

Although these figures illustrate the flexibility of the expected 
utility model compared to the Pascal-Fermat expected value model, 
an alternative graphical approach can be used to highlight the 
behavioral restrictions implied by the hypothesis of linearity in the 
probabilities. Consider the set of all distributions (pl, p2, p3) over the 
fixed outcome levels {xl, x2, x3}, where xl < x2 < x3. Since 
p2 1 - p1 - p3, we can represent this set of distributions by the 
points in the unit triangle in the (p1,P3) plane (Fig. 2). Since upward 
movements in the triangle increase p3 at the expense of p2 (that is, 
shift probability mass from the outcome x2 up to x3) and leftward 
movements reduce p l  to the benefit ofp2 (shift probability from xl 
up to x2), these movements (and more generally, all northwest 
movements) result in stochastically dominating distributions and 
would accordingly be preferred. Since the individual's indifference 
curves or iso-expected utility loci in this diagram are given by the 
solutions to 

they will consist of parallel straight lines (the solid lines in the 
figures), with more preferred indifference curves lying to the 
northwest. This implies that knowledge of an individual's indiffer- 
ence curves over any small region is sufficient to know their 
preferences over the entire set of distributions. 

The dashed lines in Fig. 2 are not indifference curves but rather 
iso-expected value lines, that is, solutions to 

Since northeast movements along these lines do not change the 
expected value of the distribution but do increase the probabilities of 
the tail outcomes xl and x3 at the expense of the middle outcome x2, 
they represent the set of increases in risk in this diagram (7). When 
the utility function U(.) is concave (risk averse), its indifference 
curves can be shown to be steeper than the iso-expected value lines 
(Fig. 2A), and increases in risk will lead to lower indifference curves. 
When U(.) is convex (risk preferring), its indifference curves will be 
flatter than the iso-expected value lines (Fig. 2B), and increases in 
risk will lead to higher indifference curves. If we compare two 
different utility functions, the one which is more risk averse (more 
concave) will possess the steeper indifference curves. 

SCIENCE, VOL. 236 



The property of linearity in the probabilities can also be represent- 
ed as a restriction on the individual's attitudes toward probability 
mixtures of distributions. Given an outcome set {XI, . . . , x,}, the 
a:(l - a) probability mixture of the distributions P* = (pf, . . . , 
pz) and P = (pl, . . . , p,) is defined as the distribution 
d* + (1 - a)P = (ap7 + (1 - a lp l , .  . . , apz  + (1 - a)p,).This 
may be thought of as that single-stage distribution which yields the 
same ultimate probabilities over {XI, . . ., x,} as a two-stage lottery 
which offers an a :  (1 - a )  chance ofwinning the distributions P* or 
P (9). Since linearity of V(.) implies that V ( d *  + (1 - a)P) 
= aV(P*) + (1 - a)V(P), expected utility preferences will exhibit 
the following property, known as the independence axiom (10): If 
P* is preferred (indifferent) to P,  then the mixture d* + 
(1 - a)P** will be preferred (indifferent) to d + (1  - a)P** for 
all a > 0 and PY*. This condition, which is in fact equivalent to the 
property of linearity in the probabilities, can be interpreted as 
follows: In terms of the ultimate probability of obtaining each 
outcome, the choice between the mixtures d* + (1 - a)P** and 
d + (1 - a)P** is equivalent to being offered a coin with a 
(1 - a) chance of landing tails, in which case you will receive the 
lottery P**, and being asked before the flip whether you would 
rather receive the lottery P* or P in the event of a head. Now either 
tails will come up, in which case your choice will not have mattered, 
or else heads will come up, in which case you are "in effect" back to a 
choice between P* or P ,  and 17ou "should" have the same preferences 
over them as you would befbre. 

Even though its conclusion is prescriptive, this argument has 
played a large role in the widespread adoption of expected utility 
maximization as a descriptive model of choice under risk. However, 
with afew exceptions in the early 1950s, it is only recently that the 
expected utility hypothesis has undergone the type of empirical 
testing that such a widely used behavioral hypothesis might be 
expected to receive. 

Systematic Violations of the Independence 
Axiom 

The earliest example of systematic violation of the independence 
axiom (or equivalently, of linearity in the probabilities) is known as 
the Allais Paradox (1 1) .  This example involves obtaining individuals' 
preference rankings over each of the following pairs of gambles 
a ,  { 1.00 chance of $1,000,000 versus 

I 0.10 chance of $5,000,000 
0.89 chance of $1,000,000 
0.01 chance of $0 

0.10 chance of $5,000,000versus 
0.90 chance of $0 

0.11 chance of $1,000,000 
0.89 chance of $0 

Setting {x1,x2,x3} = {$0;$1,000,000;$5,000,000}, these four gam- 
bles form a parallelogram in the (p1,p3) triangle (Fig. 3A). Under the 
expected utility hypothesis, a preference for a ,  in the first pair would 
indicate relatively steep indifference curves (as in the figure), and 
hence a preference for a4 in the second pair. In the alternative case of 
relatively flat indifference curves, the gambles a2 and a3 would be 
preferred (12). However, experimenters have repeatedly found that 
the modal, if not majority, preference of subjects has been for a ,  in 
the first pair and a3 in the second (13-15), suggesting that 
indifference curves are not parallel but rather fan out (Fig. 3B). 

Although initially dismissed as an isolated example, the Allais 
Paradox is now known to be a special case of a general empirical 

Flg. 3. (A) Expected utility indiffer- 
ence curves and the Mais Paradox. 
( B )  Non-expected utility indiffer- 
ence curves that "fan out" and the 
Mais Paradox. 

Fig. 4. Non-expected utility indif- 
o 1 ference curves that fan out and the 

PI Common Consequence Effect. 

phenomenon termed the common consequence effect. This effect 
involves pairs of probability mixtures of the form 

bl: as, + (1 - a)P** versus b2: O?P + (1 - a)P** 

b3: a6, + (1 - a)P* versus b4: OLP + (1  - a)P* 

where 8, is the degenerate distribution yielding the outcome x with 
certainty, P involves outcomes both greater and less than x, and P** 
stochastically dominates P* (1 6). Although the independence axiom 
clearly implies choices of either bl and b3 or else b2 and b4, 
researchers have again found a tendency for subjects to prefer bl in 
the first pair and b4 in the second (17-20). When the component 
distributions a,, P, P*, and PY* are each over a common outcome 
set {xl, x2, x3}, the prospects bl, b2, b3, and b4 will again form a 
parallelogram in the (pl,p3) triangle, and a preference for bl and b4 
again implies indifference curves that fan out (Fig. 4). It is important 
to note that it is not merely the high degree of such violations 
(ranging from 20 to 80%) that is important, but rather the 
systematic nature of these departures from linearity in the probabili- 
ties: although a preference for b2 and b3 would also violate the 
expected utility hypothesis (implying indifference curves that fan 
in), such choices account for a very small proportion of the total 
violations of expected utility in these studies. 

A second class of systematic violations, stemming from another 
early example of Allais ( l l ) ,  is known as the common ratio effect. 
This phenomenon involves pairs of gambles of the form: 

cl { p chance of $x 
versus c2 

q chance of $ Y 
1 - p chance of $0 1 - q chance of $0 

c3 chance of $x versus c4 
rq chance of $ Y 

1 - r p  chance of $0 1 - rq chance of $0 

wherep > q, 0 < X < Y, and r E (0, 1 )  and includes the "certainty 
effect" of Kahneman and Tversky (19) and the "Bergen Paradox" of 
Hagen (21) as special cases (22). Setting {XI, x2, x3) = (0, X ,  Y) and 
plotting these gambles in the (pl, p3) triangle, the line segments qz j  
and are seen to be parallel, as in Fig. 5A, so that the expected 
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Fig. 5. (A) Non-expected utility indifference curves that fan out and the 
Common Ratio Effect. (B) Non-expected utility indifference cun7es that fan 
out and the Common Ratio Effect with negative payoffs. 

utility model again predicts choices of cl and c3 (if indifference curves 
are steep) or else c2 and cq (if they are flat). However, investigators 
have fo;nd a systematic tendency to  depart from these in 
the direction of preferring cl and c4 (18, 20, 23), which again 
suggests that indifference curves fan out (Fig. 5A). In a variation on 
this approach, Kahneman and Tversky (19) replaced the gains o f X  
and Y in the above gambles with losses of these magnitudes and 
found a tendency to depart from expected utility in the direction of 
c2 and c3. Defining {xl,x2,x3) as {-Y,-X,O) (to maintain the 
ordering x ,  < x2 <X3) and plotting these gambles (Fig. 5B), a 
choice of c2 and c3 is again seen to reflect the property offanning out. 

A third type of systematic departure from the expected utility 
model involves the elicitation or assessment of subjects' utilitv 
functions, and hence has important implications for the use of such 
procedures in applied decision analysis. A standard assessment 
procedure, termed the fractile method, begins by adopting the 
normalization U(0) = 0 and U(M) =1 for some positive M and 
then picking a fixed mixture probability, say 112. The next step 
involves determining the individual's sure monetary equivalent t1 of 
a 112: 112 chance o f M  or 0, which implies that U( t l )  = (1/2)U(M) 
+ (112)U(O) = 112. Finding the sure monetary equivalents of the 
112:1/2 chances of t1 or 0 and o f M  or t1 yields the values 52 and 53 

which solve U(t2) = 114 and U(t3) = 314. By repeated application 
of this procedure, the utility function can in the limit be &mpletely 
assessed. However, there is no reason why the mixture probability 
must be 112. Picking any other a E (0, l)  and defining Sf, Sf, and Sf 
as the sure monetary equivalents of the a :  (1  - a )  chances o f M  or 0, 
Sf or 0, and M or Sf yield the equations U(&) = a, U(tf)  = a2, 
U(&) = a + (1 - a)a ,  and such a procedure can also be used to 
recover U(.). , , 

Although this assessment procedure ought to recover the same 
(normalized) utility function for any mixture probability a ,  re- 
searchers have found a systematic tendency for higher values of a to 
lead to the "recovery" of higher valued utility functions, as in Fig. 
6A (24, 25). By illustrating the probability distributions used to 
obtain the responses 51, 52, and 53 for a = 112, Sf for a = 114, and 
Sf* for a = 314, Fig. 6B shows that, as with the common conse- 
quence and common ratio effects, this utility evaluation effect is 
~reciselv what would be ex~ected from an individual whose indiffer- 
ence curves departed from expected utility by fanning out (26). 

Some proponents of the expected utility model have criticized the 
above findings on grounds such as "the experimental subjects were 
not experienced at making decisions under uncertainty," "once 
subjects were made aware of their violations of the independence 
axiom they would correct their choices," and "the experiments did 
not invo~vk real money payments and hence do not reflect real-world 
behavior." To the extent that these claims have been examined by 

the appropriate experimental modifications, however, they have not 
been supported (14, 15, 17). In an interesting extension of these 
studies, Battalio, Kagel, and MacDonald (27) have shown that 
laboratory rats choosing among gambles involving substantial varia- 
tions in their actual daily food intake also exhibit fanning-out 
behavior. 

Non-Expected Utility Models 
The extent and systematic nature of these observed departures 

from expected utility have led several researchers to generalize this 
model by positing nonlinear functional forms for the preference 
function V(.). Examples of these include the functional forms 
V(P) Zu(xi)n(pi), V(P) = Zu(xi) n(pi)lZ~(pj), V(P) Zu(xi)pi + 
[ZT(~j)pj]~, V(P) E ZU(X~)P~/ZT(X~)P~, and V(P) E Zv(xi) b(pl + . . . 
+ pi) - 8(pI + . . . +pi- as well as their extensions to density 
functions f(.) or cumulative distribution functions F ( a )  (19, 20, 24, 
28-32). Many (though not all) of these forms are flexible enough to 
exhibit the p;operti& of stochastic dominance preference and risk 

L L 

aversion-risk preference in a non-expected utility framework and 
have proven to be both theoretically and empirically useful. As in the 
expected utility case, these funciions c k  be empirically 
assessed and then used to predict the individual's behavior in other 
situations. 

However, while such forms allow for the modelling and analysis 
of preferences that are more general than those aliowed bv the " 
expected utility hypothesis, they possess two limitations. (i) Each 
requires a different set of conditions on its component functions 
u(-j, n('), T(.),B(.), . . . for the properties of stochastic dominance 
preference, risk aversion-risk preference, comparative risk aversion, 
and so on, so that expected utility theorems linking properties of the 
function U(.) to such aspects of behavior will typically not extend, 
for example, to the corresponding properties of the function u(.) in 
these models. (ii) Each replaces the independence axiom by some 
other (albeit more general) global restriction on preferences, possi- 
bly subject to similar types of systematic empirical violations. 

An alternative approach to the study of non-expected utility 
preferences proceeds not by specifying a particular nonlinear form 
for the preference function, but rather by considering nonlinear 
functions in general and by using calculus to extend results from 
expected utility theory in the same manner in which it is typically 
used to extend results involving linear functions (29, 30). Specifical- 
ly, taking the first order Taylor expansion of a differentiable 
("smooth") preference function V(.) about the distribution P yields 

V(P*) - V(P) = ZU(x,;P) [pf - pi] + o(l lP* - PI I) (4) 

where P* is any other distribution, U(x;;P) aV(P)laprob(xi) = 

aV@,, . . . ,p,)lapi, l IP* - PI 1 E [Z(pp- pi12] 'I2 is the Euclidean 
norm, and o(.) denotes a function which is zero at zero and of higher 
order than its argument. In the case of a preference functional V(.) 
over cumulative distribution functions, this expansion can be shown 
to take the form 

where $U(x;F) [dF*(x) -dF(x)] is the classical variational derivative 
of the functional V(.) and l IF* - F11 3 $IF*(x) -F(x)ldx is the 
standard L' norm. 

In each of these cases, it follows that the individual's evaluation of 
differential shifts from the distributions P or F(.) will be determined 
by the first order (that is, linear) terms ZU(xi;P)[pj+- pi] or 
$U(x;F) [dF*(x) - dF(x)]. However, since these may be written as 
ZU(xi;P)pf- XU(xi;P)pi or $U(x;F)dF*(x) - $U(x;F)dF(x), it fol- 
lows that an individual with smooth preferences will evaluate 
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alternative differential shifts from either P or F(.) precisely as would 
an expected utility maximizer with "local utility function" U(xi;P) or 
U(x;F). Thus, for example, an individual would prefer all first order 
stochastically dominating differential shifts from P or F(.) if and only 
if U(xi;P) or U(x;F) were increasing in x, and would be averse to 
(prefer) all differential increases in risk (7) if and only if U(xi;P) or 
U(x;F) were concave (convex) in x. Intuitively, this result follows 
immediately from (multivariate or variational) calculus: since 
smooth preferences are "locally linear" in the probabilities and 
linearity in the probabilities is equivalent to expected utility maximi- 
zation, smooth preferences will be "locally expected utility maximiz- 
ing." 

Of course, the above results will only hold exactly in a vanishingly 
small neighborhood of any probability distribution. However, we 
can exploit another result from standard calculus to show how 
"expected utility" theory may be applied to the exact global analysis 
of smooth preferences over probability distributions. Recall that in 
many instances, a differentiable function will exhibit a particular 
qualitative property if and only if this property is exhibited by its 
linear approximations at every point: for example, a differentiable 
function will be nondecreasing if and only if its linear approxima- 
tions are nondecreasing (that is, its partial derivatives are nonnega- 
tive) at each point. Most of the fundamental aspects of attitudes 
toward risk and their expected utility characterizations turn out to 
be of this type. In particular, it can be shown that (i) a smooth 
preference functional V(F) will prefer all local or global first order 
stochastically dominating shifts if and only if its local utility 
functions U(x;F) are increasing in x for all F(.), (ii) a smooth 
preference functional V(F) will be averse to (prefer) all local or 
global increases in risk (7) if and only if its local utility functions 
U(x;F) are concave (convex) in x for all F(.), and (iii) the smooth 
preference functional V,(F) will be more risk averse (in the appro- 
priately defined senses) than Vb(F) if and only if the Arrow-Pratt 
curvature indices -U''(x;F)/U;(x;F) of its local utility functions 
U,(x;F) are greater than -U''(x;F)lU;(x;F) for all x and F(.). 
Analogous results hold for the preference function V(P) and its local 
utility fbnctions U(x;;P) in the case of a finite outcome set 
{XI,. . . 3 ~ n l .  

Figure 7 illustrates this second result for the outcome set 
{x1,x;,x3). The solid curves are the indifference curves of a smooth 
non-expected utility preference function V(P). The solid parallel 
lines near the point Po denote the expected utility preference field 
that approximates these preferences in the neighborhood ofPo, or in 
other words, the indifference curves generated by the local utility 
function U(xi;Po). Since these lines are tangent to the actual 
indifference curve at Po, a differential shift from this distribution will 
be preferred (lead to a higher indifference curve) if and only if it is 
preferred by the local expected utility approximation (leads to a 
higher tangent line). Since increases in risk consist of northeast 
movements along the dashed iso-expected value lines, global risk 
aversion is equivalent to the condition that the indifference curves be 
everywhere steeper than these lines. However, this is equivalent to 
the condition that all of the tangent approximations be steeper than 
these lines, which is in turn ecluivalent to the condition that all of the 
local expected utility approximations be risk averse, or in other 
words, that all of the local utility functions U(xi;P) be concave in xi 
(30). 

This approach may also be used to obtain a uniform characteriza- 
tion of the type of departures from linearity in the probabilities 
described in the previous section. In particular, it can be shown that 
an individual's indifference curves will fan out in the triangle 
for every triple {x1,x2,x3) if and only if the local utility function 
becomes more concave (in the sense of Arrow and Pratt) when 
evaluated at stochastically dominating distributions. Although the 
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Pi  

a Sure chance of 5 ,  
@ 112:112 chance of M o r  6 ,  (-t3) 
@ 314:114 chance of M o r  0 (-5,**) 
@ 112:112 chance of M o r  0 

@ 114:314 chance of M o r  0 (-6,') 
@ 112:112 chance of 5, or 0 (-k2) 

Fig. 7. Concave local utility h c -  
tions are equivalent to global risk 
aversion. 

P3 

0 1 
PI 

refutable predictions and public policy implications of this charac- 
terization (30) are of course weaker than those of the expected utility 
model, they are at least more closely tied to what we have actually 
observed about preferences. 

My fellow researchers and I have shown how this and similar 
techniques can be applied to the analysis of both general and specific 
non-expected utility preference functionals in a manner that simulta- 
neously exploits and demonstrates the robustness of the large body 
of theoretical results derived in the expected utility framework (29- 
33). It is hoped that the development and successful application of 
such an approach will tempt the mainstream of expected utility- 
trained researchers to examine the empirical nature and theoretical 
implications of behavior which departs from this standard model. 

Unresolved Issues 
Although the departures from linearity in the probabilities cited 

above constitute the most well-documented and systematic body of 
evidence on the validity of the expected utility hypothesis, investiga- 
tors have uncovered additional empirical phenomena that call into 
question even more fundamental aspects of the model (34). One 
such class of examples is known as the preference reversal phenome- 
non. Here, individuals are presented with three questions, typically 
embedded in a random order among a group of several other 
questions. One asks their preferences over a pair of prospects of the 
form 

{ p  
of $x versus $-bet q chance of $ Y 

1 - p chance of Sr 1 - q chance of $y 

where X and Yare respectively greater than x and y, p is greater than 
q, and Y is greater thanX (the names "P-bet" and "$-bet" come from 
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the greater probability of winning in the first gamble and greater probability theory (42). As with the non-expected utility models 
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the individuals' sure monetary equivalents ep  and 5$ of these two tremendous number of issues in the theory of individual and group 
prospects. choice under uncertainty to which the expected utility model has 
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Accelerator Mass Spectrometrv for 
Measurement of ~ o n ~ - L i v e d  ~ad io i so to~es  

Particle accelerators, such as those built for research in 
nuclear physics, can also be used together with magnetic 
and electrostatic mass analyzers to measure rare isotopes 
at very low abundance ratios. All molecular ions can be 
eliminated when accelerated to energies of millions of 
electron volts. Some atomic isobars can be eliminated 
with the use of negative ions; others can be separated at 
high energies by measuring their rate of energy loss in a 
detector. The long-lived radioisotopes ''Be, 14C, 26Al, 
3 6 ~ 1 ,  and 1 2 9 ~  can now be measured in small natural 
sam les having isotopic abundances in the range 10-l2 to 

4'5 10- and as few as lo5 atoms. In the past few years, 
research applications of accelerator mass spectrometry 
have been concentrated in the earth sciences (climatology, 
cosmochemistry, environmental chemistry, geochronolo- 
gy, glaciology, hydrology, igneous petrogenesis, minerals 
exploration, sedimentology, and volcanology), in anthro- 
pology and archeology (radiocarbon dating), and in phys- 
ics (searches for exotic particles and measurement of half- 
lives). In addition, accelerator mass spectrometry may 
become an important tool for the materials and biological 
sciences. 

R ADIOISOTOPES HAVE LONG BEEN USED AS AN IMPORTANT 

(and sometimes the only) source of information regarding 
the chronology of geological processes, the history of 

about 10' years are relatively abundant naturally (since they have 
not completely decayed over the life of the solar system) and are 
used for dating by measuring the buildup of stable decay products. 
Radioisotopes with half-lives in the intermediate range of lo3  to lo8 
years are difficult to measure with decay counting since only a small 
fraction of the atoms decay over a reasonable counting period of a 
few months or less. Many of the interesting processes that occur on 
the earth and in the solar system have time scales that fall in this 
interval. Over 30 elements have radioisotopes with half-lives in this 
range; five of these (Table 1) have now been measured with the new 
technique of accelerator mass spectrometry (AMS) with enough 
sensitivity for detection at natural levels. Although in some cases 
decay counting of large natural samples has been possible, sample 
sizes have been reduced by several orders of magnitude. For 
example, 36Cl can be measured by conventional decay counting with 
40 g of chloride (1) extracted from thousands of liters of contempo- 
rary water, whereas AMS requires only 1 mg of chloride and has 
backgrounds 10 to 100 times lower than those of conventional 
techniques. 

Accelerator mass spectrometry can also be used to measure trace 
elements directly in unprocessed materials with backgrounds far 
lower than is possible with conventional techniques. Microprobe 
ion sources have been developed with 1-p,m spatial resolution; these 
should be very useful in conjunction with AMS (2). Stable-isotope 
ratios of trace elements can also be measured with high sensitivity 
(3) .  

Although AMS had its beginnings in 1939 with the measurement 
of 3 ~ e  in helium at natural abundances by Alvarez and Cornog (4) ,  

meteorites and cosmic~rays, hum&evolition, and the dynamics of 
biological systems. short-lived ra~io~sotopes, with half-lives less D. Elmore is a physicist with the Environmental Research Division, Argonne National 

Laboratory, Argonne, IL 60439. He remains temporarily at the Nuclear Structure 
than about 1 vear. can usuallv be measured with high sensitivitv bv Research Laboratorv. Universitv of Rochester. Rochester. NY 14627. where much of , ,  U i i 
+ : I  L . .  ' L L  A .  A .  . the research reportid has been'carried out. F: M. ~hi l l i is  is a facul6 member in the 
C U l l V C l l L l U l l d L  LC;CIIIII~UC>, 111 W l l l C l l  UCCdY YIUUUCLD dLC CUUllLCU Geosc~ence ~ e ~ a n m e n t  and Geophysical Research ~ e n i e r ,  New M&CO Institute of 
efficiently. Primordial radioisotopes with half-lives greater than Mining and Technology, Socorro, NM 87801. 
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