
solve ill-conditioned problems accurately
without recourse to higher precision arith-
metic.

Algoritlms that compute a matrix in-
verse, whether iteratively or directly, are
unsatisfactory for two reasons. First, they
are a step backward from Gaussian elimina-
tion. Not only are they less efficient, but
solutions obtained by inverting and multi-
plying may fail to satisfy the original equa-
tions. Second, the inverses of large sparse
matrices are not usually sparse, and their
computation increases storage costs dramat-
ically. For iterative inversion methods the
problem of obtaining a starting approxima-
tion is only an additional complication to an
otherwise unpromising approach.

Given the drawbacks of iterative matrix
inversion, it is not surprising that Schultz's
method has languished (2). Nor has the
problem of finding a starting approximation
stumped researchers; it was solved 20 years
ago by Ben-Israel (3) . The fact that it made
no splash suggests the status of the problem
in the numerical community.

The parallel implementation of Schultz's
algorithm pro osed by Pan and Reif re- P quires about n processors. The article does
not alert the reader to the consequences of
this fact. Let us suppose, very generously,
that we can place 100 processors with the
capability of doing floating-point arithmetic
on a board 8 inches square and that we can
place the boards an inch apart, so that 100
processors occupy a volume of 1127 cubic
feet. Then the billion processors required to
solve a system of order 1000 (a moderate
system by today's standards) would occupy
a 72-foot cube, the size of a-not-inconsider-
able mansion. When the theoretical number
n2.5 is used in place of n3 the cube shrinks to
23 feet, still a monstrously large computer.
None of this makes any concession to practi-
calities like heat dissipation and communica-
tion costs, which will increase the size of the
computer and decrease its efficiency.

Given the unsuitability of the parallel
version of Schultz's method for solving
problems of moderate size, how can it be
said that "Pan and Reif made their method
much more efficient for certain commonly
occurring problems in which the matrices
have lots of zeros. . . "? The answer is that
Pan and Reif actually propose two algo-
rithms: the iterative method described in the
article and a direct method, based on a
technique known as nested dissection,
which is closely related to Gaussian elimina-
tion. The two algorithms are connected by
the fact that the first is used to speed up the
second. Nowhere in the article is this made
clear.

Does the combined method promise to
have a real impact on how linear equations

are solved? I think not-for the follow in^ "
reasons. Typically the method of nested
dissection might be applied to a system of
linear equations associated with a two- or
three-dimensional mesh. The order of the
system is equal to the number of points in
the mesh. The first step in the method is to
find a set of points, called a separator, whose
removal will divide the mesh into two
pieces. The equations corresponding to
these points are eliminated from the system
and the process is applied recursively to the
two submeshes. The elimination of the
equations can be accomplished in various
ways. Pan and Reif propose to do it by using
their first algorithm to solve systems of the
same order as the number of ~ o i n t s in the
separator. There is more to the algorithm
than this (for example, the eliminations are
done in the order opposite that described
above), but the description will suffice for
what follows.

Now consider a 32 x 32 mesh, which
corresponds to a system of order about
1000. The separators have 32 points, and
accordingly Pan and Reif will require about
32,000 processors to solve a system of order
32. This is overkill.

However, by today's standards a 32 x 32
mesh is a toy problem. A more realistic
problem might come from a three-dimen-
sional mesh of dimensions 10 x 100 x 100.
Here the separators are of order 1000, and
we are back to the billion processors men-
tioned above. The difficulty is that n3 is such
a swiftly growing hnction of n that by the
time we reach realistic problems the number
of processors has become unrealistic.

It is important to keep things in perspec-
tive. By itself, the method of nested dissec-
tion is a prime candidate for parallel imple-
mentation, and in fact a number of people
besides Pan and Reif are working along
these lines. Moreover, by coupling nested
dissection with Schultz's method, Pan and
Reif have obtained some important theoret-
ical results on the complexi~ of the solution
of linear systems. But for the reasons out-
lined above, the combined algorithm is un-
likely to have any impact on the way linear
equations are solved.

G. W. STEWART
Depafiment of Computer Science,

Institute for Physical Science and Technology,
Univenity of Mayland,

Collge Park, ibD20742

REFERENCES AND NOTES

1. G. Kolata, Science 228, 1297 (1985).
2. For a complete analysis of the algorithm, its conver-

gence, and its behavior in the presence of rounding
error, see T. Sodorstrom and G. W. Stewart, SLAM J.
Numev. And. 11, 61 (1974).

3. A. Ben-Israel, Math. Comput. 20, 439 (1966).

8 August 1985; accepted 20 March 1986

Response: Stewart makes three main points.
1) He criticizes what he feels is a general

lack of accuracy in Kolata's science report-
ing.

2) He (correctly) states that there was a
prior paper of Ben-Israel that had previously
given a method for initializing the Newton
iteration method for matrix inversion.

3) He argues (we believe incorrectly)
that the parallel algorithms given in our
paper for solving linear systems cannot be
practical because of large processor bounds.

Our reply to point 1 is that, indeed,
Kolata made some misleading statements in
her article, particularly in not differentiating
between the parallel Newton iteration algo-
rithm for dense matrices (which we view as
being only of theoretical interest for large
linear systems) and our parallel nested dis-
section algorithm for sparse matrices (which
we have found to be practical for large
sparse linear systems).

Also, Kolata gave weather prediction as
an example of the application of large linear
systems, when, as Stewart correctly points
out, weather prediction involves the solu-
tion of nonlinear systems. But these nonlin-
ear systems can be linearized by stepping in
time. Thus the solution of the resulting large
linear systems is a significant component of
weather prediction, but not the only one.
However, the point Kolata was making was
that the solution of large linear systems is an
important problem. This is not a controver-
sial statement-it is widely accepted by the
scientific community. The solution of large
linear systems is central in the engineering
sciences (for example, in structural analysis
and circuit analysis), in applied physics (for
example, in the solution of partial differen-
tial equations), and in many optimization
problems that occur in economics.

Stewart is correct about Ben-Israel's prior
work, but the fault is clearly ours, not
Kolata's. Although we were not aware of his
work when we presented our paper in 1985,
we have long since revised the paper to give
Ben-Israel credit for this contribution.

Kolata's reporting, particularly in the ar-
eas of mathematics and computer science,
has been credible. She has generally succeed-
ed in the difficult task of describing complex
technical ideas in simple terms that can be
understood and appreciated by the general
readership of Science. Technical errors, no
matter how limited, detract from the general
goals of science reporting. Unfortunately,
Stewart's comment, which lists what he
regards as Kolata's errors, actually contains a
number of what we view as errors.

Many in the scientific computing commu-
nity might disagree with Stewart's statement
that iterative methods are not commonly
used to improve the accuracy of the solu-

SCIENCE, VOL. 236

tions provided by Gaussian elimination.
Most, if not all, linear system software pack-
ages provide routines for exactly such itera-
tive improvement.

Finally, we address Stewart's point 3. We
summarize our response as follows. We will
show there is a fallacy in his argument that
the parallel nested dissection algorithm is
nor practical. In particular, Stewart selec-
tively ignores the use of the slowdown prin-
ciple, which allows the algorithm to be used
in practice. (In fact, our parallel nested
dissection algorithm has been implemented
on two massively parallel machines.)

Before giving a detailed response to Stew-
art's point 3, we give some background
information. Our paper "Efficient parallel
solution of linear systems" (1) was first
presented at the 17th Annual Association
for Computing Machinery Symposium on
Theory of Computing in May 1985. The
goal of our work had been to develop
parallel algorithms to solve linear systems by
using some newly available massively paral-
lel machines, including the 16,384-proces-
sor Massive Parallel Processor (MPP) built
by Goodyear, Inc. for the Goddard NASA
Space Flight Center at Greenbelt, Maryland,
and the 65,536-processor Connection Ma-
chine constructed by Thinking Machines,
Inc., in Cambridge, Massachusetts. Al-
though these machines had been built in
1985, it was not clear at the time which
parallel algorithms could be used to exploit
their massive parallelism.

How can we compare the performance of
parallel algorithms? The critical resources
used by a parallel algorithm are the number
of processors, P, and the time, T. The
ultimate goal of such massive parallelism is
to minimize the time bound, T, as much as
possible. A parallel algorithm is defined to
be fully parallel if it has a time bound T that
is polylog [that is, T grows as a constant
times (log n)', where c is a constant], which
increases only very slowly with the size, n, of
the problem.

The total work done by a parallel algo-
rithm is defined to be PT, the product of the
processor bound by the time bound. A
parallel algorithm is defined to be efficient if
PT is no more than a constant factor more
than the best known time bound for a
sequential algorithm to solve the problem.
The goal of our paper was to develop paral-
lel algorithms that were both efficient and
fully parallel. We succeeded in both goals.
For a dense linear svstem with n variables
and n unknowns, the sequential number of
steps to solve this problem is approximately
n3 by Gaussian elimination, which can be
efficiently parallelized to a minimum of n
time using n2 processors. Gaussian elimina-

tion cannot be made fully parallel, that is, it
cannot be made to run with polylog-time
bounds. In contrast the ~ e w i o n iteration
method described in our paper is both effi-
ciently and fully parallel, with a constant
times (log n)l time using less than n3!(log
n)2 processors (in fact, our processor bounds
are a power of n somewhat less than 3).

It is important to define a slowdown
principle well known to parallel algorithm
designers. Suppose that an efficient parallel
algorithm exists with time bound T and

bound P. Suppose also that we
wish to implement the parallel algorithm on
a parallel machine with smaller processor
bound P' < P. Then we let each of the P '
processors of the machine sequentially simu-
late a gi-oup of PIP' processors of the algo-
rithm, increasing the time bound by a factor
of PIP' to T' = T (PIP'). The resulting
slowed-down algorithm is still efficient,
since P'T' 5 2 PT. Stewart uses this princi-
ple to slow down parallel Gaussian elimina-
tion to approximately time n2, using n pro-
cessors. In his comparison of the Newton
iteration and the Gaussian elimination
methods, Stewart does not mention that the
Newton iteration method can also be arbi-
trarily slowed down, resulting in an efficient
parallel algorithm with a time bound to
approximately n31p for any given processor
bound P 5 n3/(log n)2. In particular, the
slowed-down Newton method also takes
time approximately n2, using n processors.
Stewart applies the slowdown principle se-
lectively only to the Gaussian elimination
method; that method actually is more re-
strictive and is known to be less numerically
stable than the Newton iteration method.
Stewart correctly states that the Newton
iteration method uses work PT, which is
approximately n3, but does not mention that
the widelv used Gaussian elimination meth-
od has precisely the same asymptotic bound,
P T = n3. Both methods are practical for n
ranging up to a few hundred, but grow in
cost rapidly as n grows above 1000.

At any rate, neither of these methods are
of practical interest for the solution of large
linear systems where n 2 1000 variables and
equations, since generally in these cases the
associated matrices are sparse, that is, have
mostly zeros. In many applications these
sparse matrices have a special structure of
zeros and nonzeros that can be parameter-
ized by a variable, S, known as the separator
bound. In many cases such as in the solution
of two-dimensional partial differential equa-
tions, S is approximately

The parallel nested dissection algorithm
described in our paper had a time bound of a
constant times (log n)3 and a processor
bound of less than S31(log (in fact, our

processor bounds are a power of S some-
&hat less than 3). If one assumes that S is
approximately n the total work of our
parallel algorithm is PT = n'.5, matching
the bounds on work done by a previously
known sequential method given by Lipton,
Rose, and Tarjan in 1979 (2). This work
bound (n1.5) is much less than n3 for even a
moderate n and so is a substantial improve-
ment over both the Newton iterationmeth-
od and the Gaussian elimination method,
which have a work bound of n3. In his
argument that parallel nested dissection is
not practical because of large processor
bound, Stewart again does not mention that
the ~arallel nested dissection can be slowed
down, to a constant times time, if we
use only n processors. In comparison, the
~arallel Gaussian eliminPtion method takes
n2 time using n processors, which is orders
of magnitpde more time-consuming. This is
the crucial fallacy in Stewart's argument that
the parallel nestkd dissection algorithm can-
not be practical because of too large a
processor bound.

Also Stewart does not mention (although
it is prominently mentioned in our paper)
that after computing a sparse factorization
of a sparse input matrix, our parallel nested
dissection then reauires onlv a constant
times (log n)2 and processo;s to compute
any further solutions. Thus the algorithm
runs fully parallel (without slowdown), in
frequently occurring cases where the coeffi-
cients of a linear system stay invariant (for
example, in solution of a b e d stress analysis
problem given many distinct loadings or in a
fixed partial differential equation with vary-
ing boundary conditions).

The practicality of our parallel nested
dissection algorithm was demonstrated by
its implementations (3) on two massive par-
allel machines-the previously mentioned
MPP and the Connection Machine.

VICTOR PAN
State University of New Tovk,

Albany, NY 12203
JOHN H. REIF

Departnzent of Computer Science,
Duke University,

Durham, NC 27706

REFERENCES

1. V. Pan and J. H. Reif, Proceedings 617th Annual
ACM Sympostum on Themy ofComputtng (Assoc~ation
for Computing Machinery, New York, 1985), pp.
14.1-152 - - - - - - .

2. R. Lipton, D. Rose, R. E. Tajan, SL4M J. Numer.
Anal. 16, 346 (1979).

3. C. E. Leiserson et al., in Annual SUM Confwence
(Society for Industrial and Applied Mathematics,
Boston, MA, July 1986), p. A51;T. 0 sahl and J. H
Reif, in First Symposium on Frontcers &&ntifc Corn:
%ti% (NASA Goddard Space Flight Center, Green-

t e ~ t , MD, September 1986), pp. 241-248.

11 February 1987; accepted 3 March 1987

24 APRIL I987

