
solve ill-conditioned problems accurately 
without recourse to higher precision arith- 
metic. 

Algoritlms that compute a matrix in- 
verse, whether iteratively or directly, are 
unsatisfactory for two reasons. First, they 
are a step backward from Gaussian elimina- 
tion. Not only are they less efficient, but 
solutions obtained by inverting and multi- 
plying may fail to satisfy the original equa- 
tions. Second, the inverses of large sparse 
matrices are not usually sparse, and their 
computation increases storage costs dramat- 
ically. For iterative inversion methods the 
problem of obtaining a starting approxima- 
tion is only an additional complication to an 
otherwise unpromising approach. 

Given the drawbacks of iterative matrix 
inversion, it is not surprising that Schultz's 
method has languished (2). Nor has the 
problem of finding a starting approximation 
stumped researchers; it was solved 20 years 
ago by Ben-Israel (3 ) .  The fact that it made 
no splash suggests the status of the problem 
in the numerical community. 

The parallel implementation of Schultz's 
algorithm pro osed by Pan and Reif re- P quires about n processors. The article does 
not alert the reader to the consequences of 
this fact. Let us suppose, very generously, 
that we can place 100 processors with the 
capability of doing floating-point arithmetic 
on a board 8 inches square and that we can 
place the boards an inch apart, so that 100 
processors occupy a volume of 1127 cubic 
feet. Then the billion processors required to 
solve a system of order 1000 (a moderate 
system by today's standards) would occupy 
a 72-foot cube, the size of a-not-inconsider- 
able mansion. When the theoretical number 
n2.5 is used in place of n3 the cube shrinks to 
23 feet, still a monstrously large computer. 
None of this makes any concession to practi- 
calities like heat dissipation and communica- 
tion costs, which will increase the size of the 
computer and decrease its efficiency. 

Given the unsuitability of the parallel 
version of Schultz's method for solving 
problems of moderate size, how can it be 
said that "Pan and Reif made their method 
much more efficient for certain commonly 
occurring problems in which the matrices 
have lots of zeros. . . "? The answer is that 
Pan and Reif actually propose two algo- 
rithms: the iterative method described in the 
article and a direct method, based on a 
technique known as nested dissection, 
which is closely related to Gaussian elimina- 
tion. The two algorithms are connected by 
the fact that the first is used to speed up the 
second. Nowhere in the article is this made 
clear. 

Does the combined method promise to 
have a real impact on how linear equations 

are solved? I think not-for the follow in^ " 
reasons. Typically the method of nested 
dissection might be applied to a system of 
linear equations associated with a two- or 
three-dimensional mesh. The order of the 
system is equal to the number of points in 
the mesh. The first step in the method is to 
find a set of points, called a separator, whose 
removal will divide the mesh into two 
pieces. The equations corresponding to 
these points are eliminated from the system 
and the process is applied recursively to the 
two submeshes. The elimination of the 
equations can be accomplished in various 
ways. Pan and Reif propose to do it by using 
their first algorithm to solve systems of the 
same order as the number of ~ o i n t s  in the 
separator. There is more to the algorithm 
than this (for example, the eliminations are 
done in the order opposite that described 
above), but the description will suffice for 
what follows. 

Now consider a 32 x 32 mesh, which 
corresponds to a system of order about 
1000. The separators have 32 points, and 
accordingly Pan and Reif will require about 
32,000 processors to solve a system of order 
32. This is overkill. 

However, by today's standards a 32 x 32 
mesh is a toy problem. A more realistic 
problem might come from a three-dimen- 
sional mesh of dimensions 10 x 100 x 100. 
Here the separators are of order 1000, and 
we are back to the billion processors men- 
tioned above. The difficulty is that n3 is such 
a swiftly growing hnction of n that by the 
time we reach realistic problems the number 
of processors has become unrealistic. 

It is important to keep things in perspec- 
tive. By itself, the method of nested dissec- 
tion is a prime candidate for parallel imple- 
mentation, and in fact a number of people 
besides Pan and Reif are working along 
these lines. Moreover, by coupling nested 
dissection with Schultz's method, Pan and 
Reif have obtained some important theoret- 
ical results on the complexi~  of the solution 
of linear systems. But for the reasons out- 
lined above, the combined algorithm is un- 
likely to have any impact on the way linear 
equations are solved. 
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Response: Stewart makes three main points. 
1) He criticizes what he feels is a general 

lack of accuracy in Kolata's science report- 
ing. 

2) He (correctly) states that there was a 
prior paper of Ben-Israel that had previously 
given a method for initializing the Newton 
iteration method for matrix inversion. 

3) He argues (we believe incorrectly) 
that the parallel algorithms given in our 
paper for solving linear systems cannot be 
practical because of large processor bounds. 

Our reply to point 1 is that, indeed, 
Kolata made some misleading statements in 
her article, particularly in not differentiating 
between the parallel Newton iteration algo- 
rithm for dense matrices (which we view as 
being only of theoretical interest for large 
linear systems) and our parallel nested dis- 
section algorithm for sparse matrices (which 
we have found to be practical for large 
sparse linear systems). 

Also, Kolata gave weather prediction as 
an example of the application of large linear 
systems, when, as Stewart correctly points 
out, weather prediction involves the solu- 
tion of nonlinear systems. But these nonlin- 
ear systems can be linearized by stepping in 
time. Thus the solution of the resulting large 
linear systems is a significant component of 
weather prediction, but not the only one. 
However, the point Kolata was making was 
that the solution of large linear systems is an 
important problem. This is not a controver- 
sial statement-it is widely accepted by the 
scientific community. The solution of large 
linear systems is central in the engineering 
sciences (for example, in structural analysis 
and circuit analysis), in applied physics (for 
example, in the solution of partial differen- 
tial equations), and in many optimization 
problems that occur in economics. 

Stewart is correct about Ben-Israel's prior 
work, but the fault is clearly ours, not 
Kolata's. Although we were not aware of his 
work when we presented our paper in 1985, 
we have long since revised the paper to give 
Ben-Israel credit for this contribution. 

Kolata's reporting, particularly in the ar- 
eas of mathematics and computer science, 
has been credible. She has generally succeed- 
ed in the difficult task of describing complex 
technical ideas in simple terms that can be 
understood and appreciated by the general 
readership of Science. Technical errors, no 
matter how limited, detract from the general 
goals of science reporting. Unfortunately, 
Stewart's comment, which lists what he 
regards as Kolata's errors, actually contains a 
number of what we view as errors. 

Many in the scientific computing commu- 
nity might disagree with Stewart's statement 
that iterative methods are not commonly 
used to improve the accuracy of the solu- 
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tions provided by Gaussian elimination. 
Most, if not all, linear system software pack- 
ages provide routines for exactly such itera- 
tive improvement. 

Finally, we address Stewart's point 3. We 
summarize our response as follows. We will 
show there is a fallacy in his argument that 
the parallel nested dissection algorithm is 
nor practical. In particular, Stewart selec- 
tively ignores the use of the slowdown prin- 
ciple, which allows the algorithm to be used 
in practice. (In fact, our parallel nested 
dissection algorithm has been implemented 
on two massively parallel machines.) 

Before giving a detailed response to Stew- 
art's point 3, we give some background 
information. Our paper "Efficient parallel 
solution of linear systems" (1) was first 
presented at the 17th Annual Association 
for Computing Machinery Symposium on 
Theory of Computing in May 1985. The 
goal of our work had been to develop 
parallel algorithms to solve linear systems by 
using some newly available massively paral- 
lel machines, including the 16,384-proces- 
sor Massive Parallel Processor (MPP) built 
by Goodyear, Inc. for the Goddard NASA 
Space Flight Center at Greenbelt, Maryland, 
and the 65,536-processor Connection Ma- 
chine constructed by Thinking Machines, 
Inc., in Cambridge, Massachusetts. Al- 
though these machines had been built in 
1985, it was not clear at the time which 
parallel algorithms could be used to exploit 
their massive parallelism. 

How can we compare the performance of 
parallel algorithms? The critical resources 
used by a parallel algorithm are the number 
of processors, P, and the time, T. The 
ultimate goal of such massive parallelism is 
to minimize the time bound, T, as much as 
possible. A parallel algorithm is defined to 
be fully parallel if it has a time bound T that 
is polylog [that is, T grows as a constant 
times (log n)', where c is a constant], which 
increases only very slowly with the size, n, of 
the problem. 

The total work done by a parallel algo- 
rithm is defined to be PT, the product of the 
processor bound by the time bound. A 
parallel algorithm is defined to be efficient if 
PT is no more than a constant factor more 
than the best known time bound for a 
sequential algorithm to solve the problem. 
The goal of our paper was to develop paral- 
lel algorithms that were both efficient and 
fully parallel. We succeeded in both goals. 
For a dense linear svstem with n variables 
and n unknowns, the sequential number of 
steps to solve this problem is approximately 
n3 by Gaussian elimination, which can be 
efficiently parallelized to a minimum of n 
time using n2 processors. Gaussian elimina- 

tion cannot be made fully parallel, that is, it 
cannot be made to run with polylog-time 
bounds. In contrast the ~ e w i o n  iteration 
method described in our paper is both effi- 
ciently and fully parallel, with a constant 
times (log n)l  time using less than n3!(log 
n)2 processors (in fact, our processor bounds 
are a power of n somewhat less than 3). 

It is important to define a slowdown 
principle well known to parallel algorithm 
designers. Suppose that an efficient parallel 
algorithm exists with time bound T and 

bound P. Suppose also that we 
wish to implement the parallel algorithm on 
a parallel machine with smaller processor 
bound P' < P. Then we let each of the P '  
processors of the machine sequentially simu- 
late a gi-oup of PIP' processors of the algo- 
rithm, increasing the time bound by a factor 
of PIP' to T' = T (PIP'). The resulting 
slowed-down algorithm is still efficient, 
since P'T' 5 2 PT. Stewart uses this princi- 
ple to slow down parallel Gaussian elimina- 
tion to approximately time n2, using n pro- 
cessors. In his comparison of the Newton 
iteration and the Gaussian elimination 
methods, Stewart does not mention that the 
Newton iteration method can also be arbi- 
trarily slowed down, resulting in an efficient 
parallel algorithm with a time bound to 
approximately n31p for any given processor 
bound P 5 n3/(log n)2. In particular, the 
slowed-down Newton method also takes 
time approximately n2, using n processors. 
Stewart applies the slowdown principle se- 
lectively only to the Gaussian elimination 
method; that method actually is more re- 
strictive and is known to be less numerically 
stable than the Newton iteration method. 
Stewart correctly states that the Newton 
iteration method uses work PT, which is 
approximately n3, but does not mention that 
the widelv used Gaussian elimination meth- 
od has precisely the same asymptotic bound, 
P T  = n3. Both methods are practical for n 
ranging up to a few hundred, but grow in 
cost rapidly as n grows above 1000. 

At any rate, neither of these methods are 
of practical interest for the solution of large 
linear systems where n 2 1000 variables and 
equations, since generally in these cases the 
associated matrices are sparse, that is, have 
mostly zeros. In  many applications these 
sparse matrices have a special structure of 
zeros and nonzeros that can be parameter- 
ized by a variable, S, known as the separator 
bound. In many cases such as in the solution 
of two-dimensional partial differential equa- 
tions, S is approximately 

The parallel nested dissection algorithm 
described in our paper had a time bound of a 
constant times (log n)3 and a processor 
bound of less than S31(log (in fact, our 

processor bounds are a power of S some- 
&hat less than 3). If one assumes that S is 
approximately n the total work of our 
parallel algorithm is PT = n'.5, matching 
the bounds on work done by a previously 
known sequential method given by Lipton, 
Rose, and Tarjan in 1979 (2). This work 
bound (n1.5) is much less than n3 for even a 
moderate n and so is a substantial improve- 
ment over both the Newton iterationmeth- 
od and the Gaussian elimination method, 
which have a work bound of n3. In his 
argument that parallel nested dissection is 
not practical because of large processor 
bound, Stewart again does not mention that 
the ~arallel nested dissection can be slowed 
down, to a constant times time, if we 
use only n processors. In comparison, the 
~arallel Gaussian eliminPtion method takes 
n2 time using n processors, which is orders 
of magnitpde more time-consuming. This is 
the crucial fallacy in Stewart's argument that 
the parallel nestkd dissection algorithm can- 
not be practical because of too large a 
processor bound. 

Also Stewart does not mention (although 
it is prominently mentioned in our paper) 
that after computing a sparse factorization 
of a sparse input matrix, our parallel nested 
dissection then reauires onlv a constant 
times (log n)2 and processo;s to compute 
any further solutions. Thus the algorithm 
runs fully parallel (without slowdown), in 
frequently occurring cases where the coeffi- 
cients of a linear system stay invariant (for 
example, in solution of a b e d  stress analysis 
problem given many distinct loadings or in a 
fixed partial differential equation with vary- 
ing boundary conditions). 

The practicality of our parallel nested 
dissection algorithm was demonstrated by 
its implementations (3)  on two massive par- 
allel machines-the previously mentioned 
MPP and the Connection Machine. 

VICTOR PAN 
State University of New Tovk, 

Albany, NY 12203 
JOHN H. REIF 

Departnzent of Computer Science, 
Duke University, 

Durham, NC 27706 

REFERENCES 

1. V. Pan and J. H. Reif, Proceedings 617th  Annual 
ACM Sympostum on Themy ofComputtng (Assoc~ation 
for Computing Machinery, New York, 1985), pp. 
14.1-152 - - - - - - . 

2. R. Lipton, D. Rose, R. E. Tajan, SL4M J. Numer. 
Anal. 16, 346 (1979). 

3. C. E. Leiserson et al., in Annual SUM Confwence 
(Society for Industrial and Applied Mathematics, 
Boston, MA, July 1986), p. A51;T. 0 sahl and J. H 
Reif, in First Symposium on Frontcers &&ntifc Corn: 
%ti% (NASA Goddard Space Flight Center, Green- 

t e ~ t ,  MD, September 1986), pp. 241-248. 

11 February 1987; accepted 3 March 1987 

24 APRIL I987 




