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Solving Linear Equations 
For some time I have been disturbed bv 

the reporting of applied mathematics in 
Science. However, the article "Solving linear 
systems faster" by Gina Kolata (1) contains 
so many misleading statements about a field 
I know well that I feel obliged to respond. 

The thesis of the article is contained in its 
heading: "A new method [developed by 
Victor Pan and John Reif] that exploits 
parallel computations promises to have a 
real impact on practical problems." At the 
very least this statement is a gross exaggera- 
tion, and to support it the article presents a 
distorted view of algorithms and computing 
practices in the real world, not to mention of 
Pan and Reifs work. To give my comments 
focus, I will begin with a summary of the 
article. 

1) The computer solution of linear systems is a 
problem with important applications in many 
areas-weather prediction for one. There are two 
classes of methods for solving such systems: direct 
and iterative. Of the former, the most commonly 
used method, called Gaussian elimination, has the 
drawback that it is inherently sequential and 
therefore not amenable to parallel implementa- 
tion. Moreover, Gaussian elimination is unstable 
in the sense that rounding error can cause it to 
produce inaccurate answers. Consequently, most 
people use an iterative method to improve the 
solution obtained by Gaussian elimination. 

2) Iterative methods are "stable, efficient, and 
amenable to pardel processing." They start with 
an approximate inverse of the matrix of the system 
and converge to the true inverse, after which the 
system can be solved by multiplying the right- 
hand side of the system of the inverse. The chief 
drawback to these methods is that they require an 
approximate inverse to start the iteration. 

3) The first such iterative method was pub- 
lished by Schultz in 1933 and has been rediscov- 
ered several times since-by Pan and Reif among 
others. However, Pan and Reif also discovered 
how to obtain a starting approximation, thus 
"solving a problem that had been stumping re- 
searchers for 50 years." Pan and Reif also ob- 
served that by using about n3 processors (which 
in theory can be reduced to about n2.5) they could 
parallelize the algorithm so that it would be faster 
than previously proposed stable algorithms. 
Moreover, their method can be made more effi- 
cient for the very important class of sparse sys- 
tems, in which most of the coefficients are zero. 
Although current parallel computers have too few 
processors to realize the full potential of the 
algorithm, bigger ones are in the offing, and 
according to Ronald Rivest of the Massachusetts 
Institute of Technology "the possibilities look 
very exciting." 

This, I believe, is a fair summary of what 
is in the article. I have stuck to the words 
and quotations in the article itself and tried 
to avoid interpolating material from Pan 
and Reifs paper. 

To put the matter of applications in per- 
spective, it should be noted that the equa- 
tions of weather forecasting, like those of 
many other applications, are not linear alge- 
braic equations but nonlinear partial differ- 
ential equations. Although the solution of 
linear systems sometimes plays an important 
role in solving such equations, it is only part 
of the total computation. For this reason 
speedups in the solution of linear systems 
often give disappointingly small speedups in 
applications. 

The statement that Gaussian elimination 
is inherently sequential is incorrect. Indeed 
Pan and Reif themselves point out that by 
the use of O(n2) processors Gaussian elimi- 
nation can be reduced from an O(n3) algo- 
rithm to an O(n) algorithm. Perhaps more 
important, given the small size of current 
parallel processors, is the fact that with only 
n processors Gaussian elimination can run in 
0(n2)  time. All of this is well known to 
researchers in parallel computations. 

The question of the stability of Gaussian 
elimination requires some background. Nu- 
merical analysis grade linear systems accord- 
ing to their difficulty of solution. At one end 
of this continuum are well-conditioned 
problems whose solutions are insensitive to 
small perturbations in the coefficients; as 
one moves away from this end one encoun- 
ters problems that are increasingly sensitive, 
the so-called ill-conditioned problems. No 
method can be expected to solve ill-condi- 
tioned problems to a given precision with- 
out using higher precision somewhere in the 
computations. Gaussian elimination does 
about as well as an algorithm can be expect- 
ed .to do. It solves well-conditioned prob- 
lems accurately, and for all problems, what- 
ever their condition, it produces a solution 
that almost exactly satisfies the equations 
(although it may be very inaccurate). This 
means that if Gaussian elimination fails to 
give an accurate solution, there is something 
wrong with the equations, which must be 
reexamined. For this reason, among others, 
people with real applications rarely use itera- 
tive methods to refine the solutions comput- 
ed by Gaussian elimination. 

There are many types of iterative meth- 
ods, not one, as the article seems to say. Of 
these many types, the article confounds two: 
methods of iterative refinement, which are 
occasionally used to touch up solutions 
computed by direct methods, and iterative 
methods for computing inverses. Moreover, 
it omits the most widely used class of meth- 
ods: those that work directly with the sys- 
tem and do not require approximate inverses 
(although the inverse of an approximation 
can be used to speed some of them up). All 
these methods vary in efficiency and poten- 
tial for parallelization. None of them will 
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solve ill-conditioned problems accurately 
without recourse to higher precision arith- 
metic. 

Algoritlms that compute a matrix in- 
verse, whether iteratively or directly, are 
unsatisfactory for two reasons. First, they 
are a step backward from Gaussian elimina- 
tion. Not only are they less efficient, but 
solutions obtained by inverting and multi- 
plying may fail to satisfy the original equa- 
tions. Second, the inverses of large sparse 
matrices are not usually sparse, and their 
computation increases storage costs dramat- 
ically. For iterative inversion methods the 
problem of obtaining a starting approxima- 
tion is only an additional complication to an 
otherwise unpromising approach. 

Given the drawbacks of iterative matrix 
inversion, it is not surprising that Schultz's 
method has languished (2). Nor has the 
problem of finding a starting approximation 
stumped researchers; it was solved 20 years 
ago by Ben-Israel (3 ) .  The fact that it made 
no splash suggests the status of the problem 
in the numerical community. 

The parallel implementation of Schultz's 
algorithm pro osed by Pan and Reif re- P quires about n processors. The article does 
not alert the reader to the consequences of 
this fact. Let us suppose, very generously, 
that we can place 100 processors with the 
capability of doing floating-point arithmetic 
on a board 8 inches square and that we can 
place the boards an inch apart, so that 100 
processors occupy a volume of 1127 cubic 
feet. Then the billion processors required to 
solve a system of order 1000 (a moderate 
system by today's standards) would occupy 
a 72-foot cube, the size of a-not-inconsider- 
able mansion. When the theoretical number 
n2.5 is used in place of n3 the cube shrinks to 
23 feet, still a monstrously large computer. 
None of this makes any concession to practi- 
calities like heat dissipation and communica- 
tion costs, which will increase the size of the 
computer and decrease its efficiency. 

Given the unsuitability of the parallel 
version of Schultz's method for solving 
problems of moderate size, how can it be 
said that "Pan and Reif made their method 
much more efficient for certain commonly 
occurring problems in which the matrices 
have lots of zeros. . . "? The answer is that 
Pan and Reif actually propose two algo- 
rithms: the iterative method described in the 
article and a direct method, based on a 
technique known as nested dissection, 
which is closely related to Gaussian elimina- 
tion. The two algorithms are connected by 
the fact that the first is used to speed up the 
second. Nowhere in the article is this made 
clear. 

Does the combined method promise to 
have a real impact on how linear equations 

are solved? I think not-for the follow in^ " 
reasons. Typically the method of nested 
dissection might be applied to a system of 
linear equations associated with a two- or 
three-dimensional mesh. The order of the 
system is equal to the number of points in 
the mesh. The first step in the method is to 
find a set of points, called a separator, whose 
removal will divide the mesh into two 
pieces. The equations corresponding to 
these points are eliminated from the system 
and the process is applied recursively to the 
two submeshes. The elimination of the 
equations can be accomplished in various 
ways. Pan and Reif propose to do it by using 
their first algorithm to solve systems of the 
same order as the number of ~ o i n t s  in the 
separator. There is more to the algorithm 
than this (for example, the eliminations are 
done in the order opposite that described 
above), but the description will suffice for 
what follows. 

Now consider a 32 x 32 mesh, which 
corresponds to a system of order about 
1000. The separators have 32 points, and 
accordingly Pan and Reif will require about 
32,000 processors to solve a system of order 
32. This is overkill. 

However, by today's standards a 32 x 32 
mesh is a toy problem. A more realistic 
problem might come from a three-dimen- 
sional mesh of dimensions 10 x 100 x 100. 
Here the separators are of order 1000, and 
we are back to the billion processors men- 
tioned above. The difficulty is that n3 is such 
a swiftly growing hnction of n that by the 
time we reach realistic problems the number 
of processors has become unrealistic. 

It is important to keep things in perspec- 
tive. By itself, the method of nested dissec- 
tion is a prime candidate for parallel imple- 
mentation, and in fact a number of people 
besides Pan and Reif are working along 
these lines. Moreover, by coupling nested 
dissection with Schultz's method, Pan and 
Reif have obtained some important theoret- 
ical results on the complexi~  of the solution 
of linear systems. But for the reasons out- 
lined above, the combined algorithm is un- 
likely to have any impact on the way linear 
equations are solved. 

G. W. STEWART 
Depafiment of Computer Science, 

Institute for Physical Science and Technology, 
Univenity of Mayland, 

Collge Park, ibD20742 
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Response: Stewart makes three main points. 
1) He criticizes what he feels is a general 

lack of accuracy in Kolata's science report- 
ing. 

2) He (correctly) states that there was a 
prior paper of Ben-Israel that had previously 
given a method for initializing the Newton 
iteration method for matrix inversion. 

3) He argues (we believe incorrectly) 
that the parallel algorithms given in our 
paper for solving linear systems cannot be 
practical because of large processor bounds. 

Our reply to point 1 is that, indeed, 
Kolata made some misleading statements in 
her article, particularly in not differentiating 
between the parallel Newton iteration algo- 
rithm for dense matrices (which we view as 
being only of theoretical interest for large 
linear systems) and our parallel nested dis- 
section algorithm for sparse matrices (which 
we have found to be practical for large 
sparse linear systems). 

Also, Kolata gave weather prediction as 
an example of the application of large linear 
systems, when, as Stewart correctly points 
out, weather prediction involves the solu- 
tion of nonlinear systems. But these nonlin- 
ear systems can be linearized by stepping in 
time. Thus the solution of the resulting large 
linear systems is a significant component of 
weather prediction, but not the only one. 
However, the point Kolata was making was 
that the solution of large linear systems is an 
important problem. This is not a controver- 
sial statement-it is widely accepted by the 
scientific community. The solution of large 
linear systems is central in the engineering 
sciences (for example, in structural analysis 
and circuit analysis), in applied physics (for 
example, in the solution of partial differen- 
tial equations), and in many optimization 
problems that occur in economics. 

Stewart is correct about Ben-Israel's prior 
work, but the fault is clearly ours, not 
Kolata's. Although we were not aware of his 
work when we presented our paper in 1985, 
we have long since revised the paper to give 
Ben-Israel credit for this contribution. 

Kolata's reporting, particularly in the ar- 
eas of mathematics and computer science, 
has been credible. She has generally succeed- 
ed in the difficult task of describing complex 
technical ideas in simple terms that can be 
understood and appreciated by the general 
readership of Science. Technical errors, no 
matter how limited, detract from the general 
goals of science reporting. Unfortunately, 
Stewart's comment, which lists what he 
regards as Kolata's errors, actually contains a 
number of what we view as errors. 

Many in the scientific computing commu- 
nity might disagree with Stewart's statement 
that iterative methods are not commonly 
used to improve the accuracy of the solu- 
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