
The Melting Curve of Iron to 250 Gigapascals: 
A Constraint on the Temperature at Earth's Center 

The melting curve of iron, the primary constituent of Earth's core, has been measured 
to pressures of 250 gigapascals with a combination of static and dynamic techniques. 
The melting temperature of iron at the pressure of the core-mantle boundary (136 
gigapascals) is 4800 +. 200 K, whereas at the inner core-outer core boundary (330 
gigapascals), it is 7600 +. 500 K. Corrected for melting point depression resulting 
from the presence of impurities, a melting temperature for iron-rich alloy of 6600 K at 
the inner core-outer core boundarv and a maximum temverature of 6900 K at Earth's 
center are inferred. This latter value is the first experimental upper bound on the 
temperature at Earth's center, and these results imply that the temperature of the 
lower mantle is significantly less than that of the outer core. 

I RON IS CONSIDERED TO BE THE DOMI- with recent advances in static high-pressure 
nant component in both the liquid out- technology and in the measurement of tem- 
er core and the solid inner core of perature under shock loading that the melt- 

Earth; thus, the change in the melting tem- 
perature of iron with pressure is of consider- 
able theoretical and experimental interest (1, 
2). Such a melting curve would provide a 
critical upper bound on the geotherm (the 
temperature as a function of depth) through 
the core. When corrected for the melting 
point depression resulting from the presence 
of impurities, the melting curve of iron-rich 
alloy represents a lower limit for the possible 
temperature distribution through the liquid 
outer core (1, 3). The melting curve also 
gives an absolute upper limit on the tem- 
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ing behavior of iron can be quantitatively 
measured at the conditions of Earth's core. 
Indeed, previous experimental determina- 
tions of t he  meltine curve of iron under " 
static conditions were limited to the pres- 
sure range below 20 GPa, corresponding to 
a depth of 600 km in Earth. Sound-speed 
measurements on shocked iron indicate that 
iron melts at 243 GPa under shock loading, 
but the temperature in these experiments 
could only be calculated with assumed val- 
ues of thermodynamic parameters (5). 

We have measured melting temperatures 
perature at the inner core-outer core of iron (i) with a laser-heated diamond cell 
boundary (4,s). As the inner core is likely to 
be nearlv isothermal. the temperature at the 

to pressures in excess of 100 GPa (7) and (ii) 
under shock loading to determine the melt- 
ing point at -250 GPa. In the static experi- 
ments, melting was established on the basis 
of textural criteria (4, and temperatures 
were determined by a spectroradiometric 
technique (9). Similarly, a four-color optical 

inner core boundary may be taken as close to 5000 , I I 
that at the center of Earth (6). Therefore, an 
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experimentally determined melting curve of 
iron provides vital constraints on the tem- 
perature distribution through the 55% of 4000 - 
Earth's radius spanned by the core. 

Despite the applications of such data to 
theories of Earth's evolution, thermal his- 
tory, and geomagnetic dynamo, it is only & 3000 - 

1 

Flg. 1. Bounds on the melting curve of iron from 
static experiments as a fbnction of pressure. Solid g 2000 - core-mantle 

pyrometer was used to measure tempera- 
tures under shock conditions ( lo) .  Notably, 

triangles represent the highest temperature mea- 
sured on solid iron samples at a given pressure, it and open triangles indicate the lowest tempera- 

these are both the highest pressure static 
data in which a metal has been observed to 
melt (by at least a factor of 5 in pressure), 
and the highest pressures at which tempera- 
tures have been measured under dynamic 

boundary - 
\strong \ 
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conditions. The results of the static experi- 
ments are plotted in Fig. 1, along with the 
previously known phase diagram of iron (2). 
These data represent a summary of nearly 
500 separate experiments on approximately 
15 different samples and i ranges quoted 
throughout are estimated standard devi- 
ations. At each pressure, 25 to 50 tempera- 
ture measurements were made; however, 

ture of liquid samples. Lengths of symbols reflect 
the standard deviation in temperature from the 1000 - 
relevant spectral fit. The low-pressure melting 
curve of Strong et al. (2 )  is also shown, along with - 
the phase equilibria of the known iron crystalline 
phases: a represents the body-centered cubic 
structure, E the hexagonal close-packed structure, so l o o  
and y the face-centered cubic structure (13). Pressure (GPa) 

only the lowest and highest temperatures 
observed in the liquid and solid, respective- 
ly, are plotted. Our data at low pressure 
agree with the lower pressure measurements 
of the melting point of iron (2). 

Figure 2 shows both the static and dy- 
namic data, with a smooth increase in sam- 
ple temperature observed with increasing 
shock pressure. Although sound-velocity 
measurements imply that melting occurs at 
243 + 2 GPa along the Hugoniot of iron 
(5), we find at most a small effect due to 
melting on this trend. This indicates a small 
internal energy difference between the solid 
and liquid phases where the Hugoniot inter- 
sects the melting curve: our data are consist- 
ent with a previously estimated decrease of 
only -350 K in the shock temperature due 
to melting (5). 

On the basis of our determinations, the 
melting point of iron at the pressure of 
the core-mantle boundary, 136 GPa, is 
4800 + 200 K. To evaluate the effect of a 
lighter alloying component on the melting 
temperature, we note that at pressures to 10 
GPa in the iron-sulfur system the maximum 
depression in the melting point of iron 
attributable to added sulfur is about 800 K 
(11). Consistent with this observation and 
previous estimates (1, 3, 5, 12), we take a 
plausible value of 1000 K for the melting 
point depression of iron at core pressures. In 
detail, this estimate of 1000 K is subject to 
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uncertainties in both the identity of the 
lighter alloying component and its chemical 
behavior at core pressures. We thus derive a 
melting temperature of 3800 K for the iron 
alloy at the core-mantle boundary, a value 
that represents a lower bound on the tem- 
perature at the top of the outer core. To 
maintain the outer core in its liquid state, its 
temperature must be higher than the melt- 
ing point. Current estimates of the adiabatic 
thermal gradient within the convecting 
mantle lead to temperatures at the core- 
mantle boundary that are about 1000 K 
below this value for the melting temperature 
of the iron alloy outer core (12). This differ- 
ence in temperatures indicates the existence 
of at least one thermal boundary layer across 

the seismically anomalous D" layer at the 
base of the mantle, hence confirming that 
heat must be emanating from the core into 
the mantle (12). 

Our data also provide an upper bound on 
the temperature at the boundary between 
the solid inner core and the l i ~ u i d  outer 
core: extrapolation of our data yields a 
melting point for iron of 7600 ? 500 K at 
330 GPa, and an estimated liquidus tem- 
perature of 6600 K for the iron alloy that 
makes up the outer core. As the inner core is 
thoughtto support an adiabatic temperature 
rise of at most 300 K along its radius (6), we 
believe that our estimate of 6900 t 1000 K 
represents the temperature at the center of 
Earth. 
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