
the flow of activity in a neural network (3) 
can be described by a simple potential func- 
tion (4). Some computational problems can 
be transformed into a more-or-less equiva- 
lent optimization problem by a so-called 
regularization procedure (5, 6). Hopfield's 
potential function provides the link between 
this optimization problem and its solution 
in terms of neural network, since in the 
network the potential is automatically mini- 
mized (1); and by proper choice of the 
network parameters, notably the neuronal 
interconnections, one can produce any po- 
tential function which is a polynomial of a 
second order (4). A new result is that, 
approximately, any minimization problem 
can be broken down into two minimization 
problems for second-order fimctionals (7), 
and thus can be solved by an appropriately 
constructed neural network. 

In particular for linear optimization prob- 
lems this transformation into a second-order 
minimization problem (8) and the corre- 
sponding network solution appear to be 
very natural (6,9). In general it is, however, 
not at all clear under which conditions this 
transformation of the original problem into 
a network computation is reasonably eco- 
nomic (for example, in terms of the size of 
the network). In many cases a quite differ- 
ent, more economic network solution may 
present itself immediately (1 0). 

From the point of view of economy it 
would be desirable to compare not only dif- 
ferent network approaches with one another, 
but to compare network approaches to more 
conventional approaches to computation. 
Since these network approaches have a strong 
impact on analog computing and special- 
purpose m a c h i n e ~ a s  opposed to their effect 
on the conventional von Neumann computer 
architecture-it is often difficult to compare 
the computational complexity of these new 
network procedures to that of more conven- 
tional computing approaches. 

The long-standing problem of realizing 
an associative memory that can be addressed 
by arbitrary parts of a (stored) pattern- 
often referred to as the problem of pattern 
matching for content-addressable memo- 
ries-has also been considered in the frame- 
work of these networks (11-13). In this 
particular case it seems possible to compare 
the network solution to more conventional 
pattern-matching approaches (14) in terms 
of their computational complexity, that is, 
the number of operations needed in the 
retrieval of a stored pattern from a (suffi- 
ciently large) part of it (15-17). Such a 
comparison may seem to favor the conven- 
tional approaches because of the common 
conviction that a network of n neuron-like 
elements (or nodes) can only store less than 
n patterns reliably (2, 16). However, the 

immense possibilities provided by appropri- 
ate coding of the patterns to be stored have 
been widely overlooked. In fact, a proper 
coding of the patterns to be stored into 
sparse 0-1-sequences (that is, sequences con- 
taining mostly zeroes) makes it possible to 
store effectively (18) much more than n 
patterns in a network of n (neuron-like) 
elements (19). More exactly, if z patterns, 
each containing x bits of information, have 
to be stored. one can use a network of n = 
2 G  elements, provided that the patterns 
are coded into 0-1-sequences of length n 
that contain all the same low number (k 
=&) of ones (20). In the retrieval one , r 

would conventionally need b . z compari- 
sons (1  < b 5 x), whereas the network per- 
forms only less than k - n =2xG simple 
counting operations. 

Therefore, if z (the number of patterns to 
be stored) is large compared to x (the infor- 
mation content of one pattern), a situation 
that is quite typical for the usual applica- 
tions, then the network method is computa- 
tionally simpler than conventional methods, 
and also the number of patterns that can be 
stored (z) is consideraily larger than the 
number of network elements (n), which is in 
clear contradiction to Hopfield's estimate 
(2) z = 0.15 n. But this associative memory 
network only works so well if the patterns 
are coded sparsely [the of a 
nonzero element in a codeword should be 
kln = 1 / ( 2 6 ) ,  whereas usually, for in- 
stance in the spin-glass literature, it is as- 
sumed to be about-1/21. Consequently the 
next step in the network approach to memo- 
ry should be the investigation of sparse- 
coding techniques. GUNTHER PALM 
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Response: The intellectual thrust of our 
article ( I )  was to show the neurobiologist 
how a conceptual framework and method- 
ology could be used to understand how a 
class of model neural circuits solve specific 
computational problems. In addition, we 
used examples of model circuit computation 
to illustrate the general problems neurobiol- 
ogists face in understanding computation in 
biological neural circuits. 

The use of Liapunov functions in stability 
analysis is widespread in physics and engi- 
neering. An energy function (Liapunov 
function) applicable to the task of mapping 
specific problems onto neural networks with 
symmetrical connections was first proposed 
by Hopfield in 1982 (2). The importance of 
this enerev h c t i o n  is that it can be used 

" 2  

with a theory and methodology which to- 
gether provide an understanding of how 
specific problems could be solved bv these 
networks. This is a central idea in the work 
we reviewed (I), and it distinguishes this 
work from that cited by Carpenter, Cohen, 
and Grossberg. As discussed in (I), the 
methodology and conceptual framework to- 
gether with this function were first used to " 
understand the mapping of associative 
memory onto a model neural circuit having 
discretk, stochastic (2), or  continuous (3j 
response. The approach was determined to 
be of general use when it was used to map 
more conventional combinatorial optimiza- 
tion problems onto similar neural networks 
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(4). The model system employed in this 
work is described by a very general set of 
dynamical equations (equation 1 in the tech- 
nical comment by Carpenter et al.). These 
equations have been used in a variety of 
other studies of neural network function. 
However, it is not these equations per se 
that define the theory or body of work we 
reviewed. 

The relation between the stable points 
and dynamics of a system with continuous 
variables and a system with discrete variables 
provides a direct means of understanding 
how particular problems can be solved by 
such networks. This relation provides an 
additional benefit because of the rich statisti- 
cal physics of the spin glass. 

As we stated in our article (I), we agree 
with the assertion of Carpenter et  al. that 
symmetry of connections only simplifies the 
classes of behavior that are exhibited by 
model networks having feedback. The rela- 
tion between symmetry or "equivalent sym- 
metry" and stability is indeed subtle. The 
work we reviewed focused on networks with 
symmetric connections because an under- 
standing of system trajectories is a necessary 
prerequisite to understanding the computa- 
tional capabilities of a model network. Sys- 
tems with stable limit cycles can exist for 
reentrant nonsymmetric networks. Except 
for a few cases of networks with special 
forms of nonsymmetry that we and others 
have studied, we do not in general under- 
stand how to use these reentrant networks in 
a significant computational fashion. We 
would like general principles for under- 
standing how reentrant networks with limit 
cycles (and without equivalent symmetry) 
can be organized for specific computational 
tasks, but useful answers have not yet been 
found. Thus our review considered only the 
case of equivalently symmetric connections 
and simple limit points. 

The "computational approach" exempli- 
fied by the work of Marr (5), which we and 
many others have followed, distinguishes 
between the practical proof of the computa- 
tional power of a neural circuit theory by 
example, and abstract mathematical theo- 
ries. Good examples of this approach have 
been provided in the context of other neural 

network models (6), such as the demonstra- 
tion by Sejnowski and Rosenberg of a lay- 
ered neural network for text-to-speech con- 
version (7) that uses the back propagation 
algorithm (8). 

With respect to the comment by Ko- 
honen and Oja, in our article (I), the travel- 
ing salesman problem (TSP) was chosen to 
illustrate how the class of neural network 
models we discussed could compute solu- 
tions to optimization problems. It was cho- 
sen because it is easily stated, hard to solve, 
and has been the most widely studied opti- 
mization problem. How humans attempt to 
solve the TSP is not relevant to a discussion 
of our article. That neural activities in the 
TSP circuit are a "high level semantic repre- 
sentation" is only the result of the circuit 
design principles being applied to this par- 
ticular problem. For example, at early stages 
of processing in the visual system, the activi- 
ties in single neurons represent simple prop- 
ositions, like the information that a spot of 
light is moving across the visual field in a 
particular direction. Neural circuit models 
based on the design principles we reviewed 
(1) but applied to computational problems 
in early vision (9) describe neural activities 
that represent only such simple proposi- 
tions. 

The work we reviewed focused on under- 
standing principles of operation of given 
neural circuits, irrespective of how they are 
assembled. Nervous system development in 
higher animals involves genetics, self-orga- 
nization, and learning. However, knowl- 
edge of the developmental rules and even a 
detailed anatomical description do not ex- 
plain how a given circuit functions to pro- 
duce an observed animal behavior. Assem- 
bly instructions and a detailed wiring dia- 
gram for a radio do not explain the princi- 
ples of tuned oscillators and their use in 
radio communication. The distinction be- 
tween understanding how a neural circuit 
functions and its anatomical description was 
the main point of the first section of our 
article (1). [Although not the topic of our 
review, Kohonen incorrectly states that no 
learning or adaptive effects have been stud- 
ied in the nonlinear associative memories. 
See, for example (lo).] 

Decisions are an essential part of the 
computational behavior of nervous systems. 
The circuits we described compute decisions 
because of their nonlinear dynamics. Linear 
systems like those described by Kohonen 
and Oja are not capable of computing deci- 
sions. For example, movement detection, a 
decision computed by the fly's visual system, 
cannot be performed by a linear system (1 1 ). 
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