
lished adenylate cyclase system. In hormone- 
dependent adenylate cyclase there is an as- 
semblage of individual components-recep- 
tor, GTP-binding protein, and catalytic 
moiety-for signal transduction (22,23). In 
contrast, the presence of dual activities- 
receptor binding and enzymic--on a single 
polypeptide chain indicates that this trans- 
nlembrane protein contains both the infor- 
mation for signal recognition and its transla- 
tion into a second messenger. It is possible 
that a third signal component (probably a 
lipid or an accessory protein) is needed to 
link these two activities functionally. 

Note added in proof Although the anti- 
body to the 180-kD guanylate cyclase blocks 
guanylate cyclase activity, it does not inhibit 
the binding of ANF to the protein. This 
indicates that either the antibody is solely 
against the guanylate cyclase epitope of the 
protein or that there are two tightly coupled 
180-kll proteins which are inseparable by 
the present techniques. 
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Hopfield and Tank (1)refer to "A new 
concept for understanding the ciynamics of 
neural circuitry" using the equation (in a 
slightly different notation) 

d ~ .  1 
n 

c.-
'dt  

= -
Ri 
- ui + 

j=1 
2Tiif;(uj) + Ii 

( z  = 1,. . ., n) (1) 
for the neuron state variables ui. The con- 
cept is that the variables ui(t) approach 
equilibrium as t + if the collnections Tij 
are symmetric (Ti,= Tj i) .  Hopfield and 
Tank also state that "a nonsymmetric cir- 
cuit . . .has trajectories corresponding to 
conlplicated oscillatory behaviors . . . but as 
yet we lack the mathematical tools to manip- 
ulate and understand them at a computa- 
tional level" (1, p. 629), and that "the 
symmetry of the networks is natural be- 
cause, in simple associations, ifA is associ- 
ated with B, B is symmetrically associated 
with A" (1, p. 629). 

Associations are often asymmetric, as in 
the asymmetric error distributions arising 
during list learning (2). Neural network 
nlodels (3) explain these distributions when 
one uses Eq. 1supplemented by an associa- 
tive learning equation for the connections 

Because of the nonlinear term uix(uj) in 
Eq. 2, T, f Ti.  

Stability theorenls (4) have been proved 
about neural networks which include and 
generali~x: Eqs. 1 and 2. Thus symmetry is 
not necessary to prove associative learning 
and memory storage by neural networks. 
Nor is symnetry needed to design stable 
neural networks for adaptive pattern recog- 
nition (5 ) .Methods have also been devel- 
oped (6) for analyzing the oscillatory behav- 
ior of neural circuits. We believe that the 
relation between symmetry and stability in 
neural networks is much more subtle and 
better understood than Hopfield and Tank 
(1) suggest. 

Nonetheless, symmetry does help to ana- 
lyze the system represented by Eq. l. In fact, 
we (M.A.C. and S.G.) (7) independently 
discovered an energy function for neural 
networks "designed to transform and store 
a large variety of patterns. Our analysis 
includes systems which possess infinitely 
many equilibrium points" (7, p. 818), exam- 
ples of which have been constructed (8). 
These networks are 
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Given symmetric connections (cij = cji), the 
energy function is 

Along system trajectories 

d 
If ai(ui) 2 0 and d:(ui) 2 0, then -V 5 0,

dt 
which is the key property of an energy 
function. We (M.A.C. and S.G.) have noted 
that "the simpler additive neural networks 
. . . are also included in our analysis" (7, p. 
819). The system represented by Eq. 3 
reduces to the additive network (Eq. 1) 
when ai(ui) = C1yl,bi(ui)= -l/Ri ui + 4, 
cij = -Ti and dj(ui) =&(uj). Then 

which includes the energy functions used in 
(1). We (M.A.C. and S.G.) (7) also analyzed 
the more difficult and physiologically im- 
portant cases where the cells obey mem-
brane, or shunting, equations and the signal 
fimctions dj(uj) may have output thresholds. 
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Thus we consider the "new concept" in ( I )  
to be a recent special case of an established 
neural network theory (7, 8, 9). 

Hopfield and Tank also assert that "Unex- 
pectedly, new computational properties re- 
sulted . . . from the use of nonlinear graded- 
response neurons instead of the two-state 
neurons of the earlier models" (1, p. 625). It 
has long been understood that two-state 
neuronal nlodels differ computationally 
from graded-response models with sigmoid 
signal functions (6, 8, 10). 

The application of neural network theory 
to technology would be expelted by further 
consideration of known results (1 1). 
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Hopfield and Tank (1) present a neural 
model, a nonlinear feedback circuit, stating 
that it has a "natural" capacity for solving 
optimization problems. They amplify this 
idea with two examples: the traveling sales- 
man problem (TSP) and the analog-to-digi- 
tal converter. 

It is recognized that neural fhctions and 
control mechanisms of most involuntary ac- 
tions are optimized during evolution and 
ontogenesis. This, however, is not the same 
thing as solving abstract optimization prob- 
lems. For instance, how good are human 
beings at solving the TSP? The main objec- 
tion to this model is that the neuropsy- 
chological hlctions are not sufficiently lo- 
calized and specified for this type of high- 
level semantic representation (2). In particu- 
lar, there are two "unnatural" features in this 
approach. First is the special meaning attrib- 
uted to each neuron, for example, in the 
TSP [figure 5 of (I)], "A g'iven neuron 
(Vx,j)represents the hypothesis that city X 
is in position j in the solution." Although it 
is emphasized that the TSP is a nonbiologi- 
cal problem, the most important process- 
es-formulation of the problem, generation 
of a circuit analogy, feeding of input infor- 
mation, and decoding of the outputs-are 
defined by the authors, not by the system. 
As a physical model, this network is there- 
fore incomplete for simulating biological 
computation. On the other hand, a circuit is 
already known (3) in which a topographic 
order corresponding to a certain degree of 
semantical differentiation will be formed bv 
self-organization. 

The second "unnatural" feature of their 
approach is the dedicated architecture or 
connectivity between the "neurons" which 
must be tailored for every problem. The 
authors apply hindsight in designing the 
model: by conjecturing the form of the 

energy function corresponding to the sys- 
tem structure and parameter values or by 
computing them backward from the output 
state, they end up with the solution to the 
problem. This is especially apparent in the 
analog-to-digital converter example. 

The authors also state that their network 
implements associative memory in a "natu- 
ral" fashion. This was in fact the main result 
of their original work (4). Similarly, in their 
recent article the network interconnectivitv 
is assunled a priori to be proportional to the 
correlation matrix of the wanted state vec- 
tors. If this network were to im~lement a 
genuine associative memory with a physical 
mechanism for both storage and recall, the 
network structure of (4) could be used (5), 
but the couplings should be formed adap- 
tively, relating to the input and output 
signal values actually occurring all the time. 
Such a process then needs additional mathe- 
matical analysis (5, 6). 

Depending on the nature of interconnec- 
tivity, the output state of such a feedback 
system may then relax to the linear range (6) 
or to saturation (1, 3, 4, 7). earni in^ or 
adaptive effects seem to take place in the 
former ("linearized") mode, while no learn- 
ing appears to have been involved in (1) or 
(4). 
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Hopfield and Tank (1) review the use of 
networks for computation. Many current 
investigations are based on Hopfield's ob- 
servation (2) that the asymptotic behavior of 
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the flow of activity in a neural network (3) 
can be described by a simple potential func- 
tion (4). Some computational problems can 
be transformed into a more-or-less equiva- 
lent optimization problem by a so-called 
regularization procedure (5, 6). Hopfield's 
potential f-ur~ction provides the link between 
this optimization problem and its solution 
in terms of neural network, since in the 
network the potential is automatically mini- 
mized (1); and by proper choice of the 
network parameters, notably the neuronal 
interconnections, one can produce any po- 
tential hlct ion which is a polynomial of a 
second order (4). A new result is that, 
approximately, any minimization problem 
can be broken down into two minimization 
problems for second-order functionals (7), 
and thus can be solved by an appropriately 
constructed neural network. 

In particular for linear optimization prob- 
lems this transformation into a second-order 
minimization problem (8) and the corre-
sponding network solution appear to be 
very natural (6,9). In general it is, however, 
not at all clear under which conditions this 
transformation of the original problem into 
a network computation is reasonably eco- 
nomic (for example, in terms of the size of 
the network). In many cases a quite differ- 
ent, more economic network solution may 
present itself immediately (10). 

From the point of view of economy it 
would be desirable to compare not only dif- 
ferent network approaches with one another, 
but to compare network approaches to more 
conventional approachcs to computation. 
Since thcse network approaches have a strong 
impact on analog computing and special- 
purpose machines-as opposed to their effect 
on the conventional von Neumann computer 
architecture-it is often difKcult to compare 
the computational complexity of these new 
network procedures to that of more conven- 
tional computing approaches. 

The long-standing problem of realizing 
an associative memory that can be addressed 
by arbitrary parts of a (stored) pattern- 
often referred to as the problem of pattern 
matching for content-addressable memo-
ries-has also been considered in the frame- 
work of these networks (11-13). In this 
particular case it seems possible to compare 
the network solution to more conventional 
pattern-matching approaches (14) in terms 
of their computational complexity, that is, 
the number of operations needed in the 
retrieval of a stored pattern from a (suffi- 
ciently large) part of it (15-17). Such a 
comparison may seem to favor the conven- 
tional approaches because of the common 
conviction that a network of n neuron-like 
elements (or nodes) cat1 only store less than 
n patterns reliably (2, 16). However, the 

immense possibilities provided by appropri- 
ate coding of the patterns to be stored have 
been widely overlooked. In fact, a proper 
coding of the patterns to be stored into 
sparse 0-1-sequences (that is, sequences con- 
taining mostly zeroes) makes it possible to 
store effectively (18) much more than n 
patterns in a network of n (neuron-like) 
elements (19). More exactly, if z patterns, 
each containing x bits of information, have 
to be stored. one can use a network of n = 

2  6  elements, provided that the patterns 
are coded into 0-1-sequences of length n 
that contain all the same low number (k 
=&) of ones (20). In the retrieval one 

\	 , 

would conventionally need b .z compari-
sons (1 < b 5 x), whereas the network per- 
forms only less than k .  n = 2 x G  simple 
counting operations. 

Therefore, if z (the number of patterns to 
be stored) is large compared to x (the infor- 
mation content of one pattern), a situation 
that is quite typical fot the usual applica- 
tions, then the network method is computa- 
tionally simpler than conventional methods, 
and also the number of patterns that can be 
stored (2) is considerably larger than the 
number of network elements (n), which is in 
clear contradiction to Hopfield's estimate 
(2) z = 0.15 n. But this associative memory 
network only works so well if the patterns 
are coded sparsely [the of a 
nonzero element in a codeword should be 
k/n = 1/(2&), whereas usually, for in- 
stance in the spin-glass literature, it is as- 
sumed to be about-1/21. Consequently the 
next step in the network approach to memo- 
ry should be the investigation of sparse- 
coding techniques. GUNTHERPALM 

Max Plnnck Institutfir 
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Response: The intellectual thrust of our 
article (1) was to show the neurobiologist 
how a conceptual framework and method- 
ology could be used to understand how a 
clasi.of model neural circuits solve specific 
computational problems. In addition, we 
used examples of model circuit computation 
to illustrate the general problems neurobiol- 
ogists face in understanding computation in 
biological neural circuits. 

The use of Liapunov functions in stability 
analysis is widesiread in physics and engi- 
neering. An energy hnction (Liapunov 
function) applicable to the task of mapping 
specific problems onto neural networks with 
symmetrical connections was first proposed 
by Hopfield in 1982 (2). The importance of . -
this energy function is that it & be used 
with a theory and methodology which to- 
gether provide an understanding of how 
s~ecific uroblems could be solved bv these 
networks. This is a central idea in the work 
we reviewed (I), and it distinguishes this 
work from that cited by Carpenter, Cmhen, 
and Grossberg. As discussed in (I) ,  the 
methodology and conceptual framework to- 

"gether with this h ~ c t i o n  were first used to 
understand the mapping of associative 
memory onto a model neural circuit having 
discretk, stochastic ( 4 ,  or continuous (3) 
response. The approach was determined to 
be of general use when it was used to map 
more conventional combinatorial optimiza- 
tion problems onto similar neural networks 
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