
present in all tight epithelia where water 
reabsorption is driven by large transepithe- 
lial osmotic gradients, but clearly the subject 
warrants further study (27). 

intercalated cell was also responsive to ADH and 
that its ratio of basolateral to apical Po,, was at least 
5 : 1 in the resence of the hormone. In the absence 
of ADH, $e ratio of basolateral to apical Po,, in 
~ r i n c i ~ a l  cells and intercalated cells is at least 2 7 :  1 

more, it seems unlikelv that rabbit CCT are ever 
exposed to osmotic as large as 160 mosM 
during antidiuresis. [See, for example, H. Wirz, 
Helv. Physiol. Phamaal. Acta 14 ,  353 (1956);  C. 
W. Gottschalk and M.  Mvlle. Am. 1. Pbvswl. 196. 

k d  I ? :  1, respectivelv. 
J .  B. Wade et al., J .  cell Bwl. 81 ,  439 (1979) .  
As described previously ( 2 ) ,  the optical sectioning 
technique in CCT does not allow us to detect 
volume chan es of less than 6 to 7 % .  The mean 
coefficient o f  variation for tracing C C I  ootical 
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could function as a significant TSH-releas- 
ing hormone. 

To determine the direct effect of AVP on 
TSH release, the anterior pituitary glands of 
male rats (350 to 400 g) of the Sprague- 
Dawley strain (Holtzman) were collected 
upon decapitation, minced into small frag- 
ments, and dispersed in the presence of 
trypsin (Difco) (14). Cells were harvested 
from the trypsinized medium and resus- 
pended in fresh culture medium 199 (Grand 
Island Biological) with 20 rnM Hepes buff- 
er ,pH = 7.4. Cells were aliquoted (4.0 * 
10 cells per tube) into polystyrene test tubes 
in 1 ml of medium for culture at 37°C for 24 
hours in room atmosphere. After this time, 
cells were subjected to low-speed centrifuga- 
tion, the medium was withdrawn and dis- 
carded, and cells were resuspended in either 
1 ml of Hepes-buffered culture medium 199 
alone or 1 ml of buffered medium 199 plus 
synthetic AVP or control peptides (Peninsu- 
la) at doses ranging from lo-' to ~ o - ~ M .  
This procedure was repeated in three sepa- 

Trial l 

240 r lea *** 

'0 - - *** 
Trial 2 , 240 

I 
- 

TRH 
(1 0 -6) 

Trial 3 
160 

80 

0 
Control lo-' 10-5 SRlF 

(1 0-8) 
AVP ( M )  

Flg. 1. Effect of increasing concentrations of 
synthetic AVP (hatched bars) in three separate 
trials on the release of TSH from trypsin-dis- 
persed cells from the anterior pituitary glands of 
adult male rats (mean & SEM). The value of n is 
at the top of each bar. Synthetic Oxy (diagonally 
striped bar), TRH (stippled bar), and SRIF (hori- 
zontally striped bar) were incubated with the 
same cell preparations at a dose of 10-6M for 
comparison of maximum effects. Open bar indi- 
cates the control condition. All peptide solutions 
were incubated with cells in 12- by 75-mrn poly- 
styrene tubes for 2 hours in room atmosphere. 
Levels of significance shown are *, P < 0.05; **, 
P < 0.025; ***, P < 0.001 versus control, as 
determined by analysis of variance and the Stu- 
dent-Newman-Keuls test. 

rate trials with three different vials of syn- 
thetic AVP. In addition, in trial 1, synthetic 
oxytocin (Oxy) at ~ o - ~ M  was included to 
test for analog specificity; in trial 2, synthet- 
ic TRH (10-6M) was used to examine cell 
responsiveness and as a comparison with 
AVP potency; and in trial 3, synthetic soma- 
tostatin (SRIF) was used as a 
contrast to the actions of AVP and TRH. 
Peptide solutions were incubated with cells 
in 12- by 75-mm polystyrene tubes for 2 
hours under air. 

Results from static incubation of cells 
with AVP (Fig. 1) showed that doses as low 
as lo-' or 10-*M significantly stimulated 
TSH release in three trials by approximately 
25%. In two of three incubations, lo-' and 
1 0 - 6 ~  significantly stimulated a greater 
TSH release (approximately 40%). In trials 
1 and 3, ~o-'M AVP produced the same 
degree of TSH release as ~ o - ~ M  AVP. In 

trial 1, ~ o - ~ M  Oxy did not alter TSH 
release, whereas 1 0 - 6 ~  AVP significantly 
increased TSH secretion to levels produced 
by ~ o - ~ M  TRH in trial 2 (Fig. 1).  SRIF at 
1 0 - 6 ~  significantly decreased the release of 
TSH in trial 3. Release of prolactin (Prl), 
growth hormone (GH), follicle-stimulating 
hormone (FSH), and luteinizing hormone 
(LH) were unaffected by any dose of AVP, 

Because the accumulation of secreted 
products in a static incubation system may 
influence the response of pituitaq~ cells to 
administered secretagogues, we also exam- 
ined the effect of AVP on TSH secretion by 
another method. Cells from anterior pitu- 
itary glands of male rats were again dis- 
persed and incubated for 24 hours as de- 
scribed above. Then a dynamic perifusion 
system was set up in which 8 x lo6 dis- 
persed cells were loaded onto each of three 
Bio-Gel P-2 columns (0.4 by 1.5 cm; Bio- 

Medium 
m 
only 

0 

Medium Medium 
rn 
only - only 1 

I I I I I I I I I I 

AVP - Medium control 

0 1  1 I I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Fraction number 

Minutes of collection per fraction 
-C - 8.0 hours - 

Fig. 2. Effect of perifusion of trypsin-dispersed anterior pituitary cells from male rats in the presence of 
synthetic AVP, TRH, or control medium alone on the release of TSH. Dispersed pituitary cells 
(8 X lo6) were loaded onto each of three Bio-Gel P-2 columns and perifused with buffered medium 
199 as described by Gillies and Lowry (16). 
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Fig. 3. Effect of perifusion of trypsin-dispersed 
pituitary cells with synthetic AVP at the concen- 
tration (10-9M) found in hypophyseal portal 
blood on the mean levels (*  SEM) of TSH 
secretion. The peak of release (222 ? 15.1%) was 
statistically significant (P < 0.001). 

Rad) (15). These columns were perifused 
with medium 199 containing 20 rnM Hepes 
buffer according to the methods of Gillies 
and Lowry (16). A period of 3 hours was 
allowed for perifused cells to achieve a stable 
baseline of hormone release. The cells were 
perifused at a flow rate of 0.5 ml per minute, 
and 1-minute fractions were collected for 5 
minutes before the cells were ex~osed to 
peptide-containing medium, for 5 minutes 
during exposure, and for 5 minutes after 
exposure. 

During the intervals between periods of 
1-minute collections, cells were perifused 
with medium without peptide for 120 min- 
utes (recovery periods); fractions were col- 
lected every 10 minutes. Perifused cells were 
exposed to either (i) AVP or T R H  at initial 
doses of ~ o - ~ M  and then to successive doses 
of and 1 0 - 7 ~ ,  or (ii) AVP at 
an initial dose of 1 0 - 9 ~  followed by control 
medium. 

Results from the ~erifusions were ex- 
pressed as nanograms of hormone released 
per milliliter of medium per fraction collect- 
ed. The percentages of stimulation of TSH 
release were determined by comparing the 
mean baseline levels of the five fractions 
obtained before peptide introduction with 
the highest peak of ;elease during perihsion 
with the peptide (Figs. 2 and 3). 

Perifusion of pituitary cells with increas- 
ing logarithmic doses of AVP and TRH 

to 10-7M) produced comparable 
dose-related ~ e a k  stimulations of TSH re- 
lease (Fig. 2), whereas medium alone did 
not affect TSH secretion (Fig. 2). Two 
additional perifusion studies with AVP 
to 10-6M) produced similar dose-related 
stimulations of TSH from cells. The per- 
centage of peak TSH release in Fig. 2 (up to 
646% or 679% with 10-7MAVP or 10-7M 

TRH, respectively) far exceeded the approx- 
imate 40% change in TSH release elicited by 

to ~o-'M AVP or 1 0 - 6 ~  T R H  in 
static incubations. In the same perifusates, 
we detected no effect of AVP on the secre- 
tion of Prl. Perifusion of cells with Oxy 
(lK9 to ~ o - ~ M )  did not influence TSH 
release. 

To establish the reproducibility of the 
effect of the lowest stimulatory dose of AVP 
on thyrotrophs, four Bio-Gel P-2 columns, 
each containing 8 x lo6 dispersed pituitary 
cells, were perifused simultaneously with 
~ o - ~ M  AVP in buffered medium as de- 
scribed above. The lowest dose of AVP 
( l 0 - ~ 2 ~ )  (Fig. 3) produced a peak stimula- 
tion of TSH release (222 i: 15.1%) that 
was statistically significant and corrobora- 
tive of the results from individual perih- 
sions with ~ o - ~ M  AVP (Fig. 2). 

To compare the hypothalamic control of 
AVP with its direct pituitary cell effect on 
TSH secretion, we microinjected synthetic 
AVP into the third ventricle of the hypo- 
thalamus of the conscious male rat. Silastic 
cannulas implanted into the right external 
jugular vein facilitated sequential blood sam- 
pling from undisturbed animals for hor- 
mone measurements. Small doses of AVP 
(5.0 and 0.5 ng), which are below threshold 
for motor activation (17), were injected 
intraventricularly in 2 pl of sterile 0.9% 
NaCl vehicle; control animals received vehi- 
cle alone. Concentrations of TSH, Prl, LH, 
FSH, and G H  in plasma or medium were 
determined by RIA (1 8). Statistical signifi- 
cance was determined by analysis of variance 
and the Student-Newman-Keuls test (19). 

Intraventricular administration of AVP 
significantly suppressed basal TSH secretion 
beginning 5 minutes after infusion. This 
effect lasted for 60 minutes (Fig. 4). The 
inhibition produced by both doses was sig- 
nificantly different from values before injec- 
tion (0 minutes) and from those of saline- 
treated controls. Other plasma hormone 
concentrations were unchanged. 

AVP releases adrenocorticotropic hor- 
mone (ACTH) from the adenohypophysis 
(20). Little has been done since the structure 
of TRH was elucidated (3-6), however, to 
investigate whether AVP can act as a TSH- 
releasing factor. One exception was the ex- 
amination by Fujimoto and Hedge (21) of 
TSH release in the homozygous Brattleboro 
rat, which has a genetic deficiency of AVP 
with consequent diabetes insipidus (DI); 
plasma TSH was elevated in such animals. 
At first this seemed to contradict our finding 
that AVP acts directly on normal dispersed 
pituitary cells to release TSH in vitro. How- 
ever, Fujimoto and Hedge (21) concluded 
that increased TSH levels in these abnormal 
animals resulted from reduced sensitivity of 

100 
lnjectons 

o--- Sal~ne 
1-0 5.0 ng AVP 
x-.-x 

c 
0.5 ng AVP 

E 

01 ' ' I 
0 5 15 30 60 
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Flg. 4. Effect of Injection into the third ventricle of 
0.5 or 5.0 ng of synthetic AVP in 2 p1 of sterile 
0.9% NaCl vehicle or 2 p1 of the saline vehicle alone 
(controls) on plasma levels of TSH (mean t SEM) 
in conscious male rats. At 5 minutes, P < 0.05 
versus 0 minutes (before injection) for both doses. 
At 30 and 60 minutes, P < 0.025 versus 0 minutes 
and versus saline-treated controls for both doses. 

the thyroid gland to TSH, which led to 
decreased thyroid hormone secretion that, 
in turn, enhanced pituitary release of TSH. 
They surmised that elevated TSH was not 
directly related to the absence of vasopres- 
sin. Therefore, the DI  Brattleboro rat, with 
its numerous endocrinopathies (22), may 
not be an appropriate model with which to 
examine the normal relation between AVP 
and TSH. 

AVP-induced release of TSH from pitu- 
itary cells was related to dosage and specific 
for TSH because LH, FSH, Prl, and G H  
release were unaltered in static incubation 
and Prl secretion was unchanged during 
AVP perifusion. Also, the structural homo- 
log Oxy failed to modify basal TSH release. 
Stimulation of TSH release by AVP was 
modest in static incubation when compared 
with the peaks of release elicited by AVP 
perifusion. It is possible that accumulation 
of TSH in static incubation media may exert 
a local feedback on TSH secretion at the 
pituitary level (23). The successive removal 
of released TSH during perifusion circum- 
vents this problem and could account for the 
higher levels of secretion. 

AVP is a pressor agent that, if tested by 
systemic injection in the whole animal, can 
alter cardiovascular characteristics that per- 
turb the endocrine response of the animal. 
Consequently, we selected in vitro methods 
to examine the direct actions of AVP on 
pituitary TSH secretion. The release of TSH 
by AVP provides an explanation for the 
observation that TRH can stimulate AVP 
release in vivo in humans (24) and rabbits 
(25) and in vitro from hypothalamic tissue 
(26) by suggesting that endogenous T R H  
not only produces TSH release by direct 
pituitary action, but also by stimulation of 
AVP secretion to achieve TSH release. In 
addition, AVP is normally present in hy- 
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pophyseal portal blood (27) at the same 
concentrations to ~ O - ~ M )  that we 
find release TSH; AVP is located in the 
external zone of the median eminence in 
high concentrations (28), as are other releas- 
ing factors; AVP receptors are present in the 
anterior pituitary (29); and experimental 
(12) and human (13) hypothyroidism re- 
sults in elevated basal plasma AVP. These 
observations provide additional support for 
the hypothesis that AVP is an important, 
but overlooked, TSH-releasing factor. 

Finally, the fact that centrally adminis- 
tered AVP lowers plasma TSH (Fig. 4) but 
not other hormones is consistent with our 
observations that hypothalamic-releasing 
(14) or -inhibiting (30) factors, at the appro- 
priate ventricular dose, produce effects that 
oDDose their direct actions on their resDec- 
I I 

tive target cells of the adenohypophysis. 
Others (31) have supported this concept of 
negative ultrashort-loop feedback for hypo- 
thalamic releasing and inhibiting factors in 
vitro. 

Thus, AVP at physiological concentra- 
tions acts specificaily. on anterior pituitary 
cells to enhance the release of TSH. The 
finding that AVP is equipotent with T R H  
in stimulating TSH release strongly suggests 
that AVP may indeed be a physiological 
regulator of TSH secretion. In the hypo- 
thalamus. however. AVP mav function as a 
negative autofeedback agent to regulate sig- 
nals for TSH release. 
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Trans-activator Gene of HTLV-11: Interpretation 

We wish to inform the readership of 
Science of a problem in interpretation of our 
studies of the trans-activator gene (tat-11) of 
human T-lymphotropic virus type I1 
(HTLV-11) described in (1). In recent stud- 
ies of cell surface antigen expression, DNA 
polymorphisms of the DR-P class I1 major 
histocompatibility gene complex, and rear- 
rangements of the T-cell receptor p-chain 
gene locus, we have determined that the 
sense tat-I1 gene was not introduced into 
Jurkat T cells, but rather into another T-cell 
line, probably HUT 78. We cannot detect 
either interleukin-2 (IL-2) receptor or IL-2 
gene expression in the uninfected H U T  78 
T-cell line carried in the Dana-Farber labo- 
ratory. Thus, the original conclusion that 
the tat-I1 gene induced the expression of 
these cellular genes may be correct. Howev- 
er, we have also demonstrated that this 
HUT 78 T-cell line. while monoclonal at the 
DR-P gene locus, is a polyclonal population 
of cells as judged by the presence of multiple 
T-cell receptor f3-chain gene rearrange- 
ments. Therefore, it is possible that the 
expression of the IL-2 receptor and IL-2 
genes observed in the four tat-I1 clones 
&died could reflect the outgrowth of unde- 
tectable subpopulations of cells that express 
these cellular gene products independent of 
the presence of the tat-I1 gene. However, in 
support of a specific effect of the tat-I1 
  rote in. the National Cancer Institute and 
Dana-Farber laboratories have observed that 
this gene product induces the IL-2 receptor 
promoter and partially activates the IL-2 
promoter in transient cotransfection assays 

in Jurkat T cells. In addition, using Jurkat 
on HSB-2 T cells, Inoue and colleagues have 
described activation of both the IL-2 recep- 
tor and IL-2 genes by the tat-I gene isolated 
from HTLV-I (2), which shares similar 
structural and functional properties with the 
tat-I1 gene. Each of our three laboratories 
has also confirmed activation of the IL-2 
receptor promoter by the tat-I gene prod- 
uct. The reintroduction of the tat-I1 gene 
into Jurkat T cells is currently being at- 
tempted. 

WARNER C. GREENE* 
WARREN J. LEO NARD^ 

YUJI WANO* 
PENNY B. S V E T L I ~  
NANCY J. PEPPER* 

JOSEPH G. SODROSKI~ t 
CRAIG A. R O S E N ~ ~  
WEI CHUN G o ~ t t  

WILLIAM A. HAS EL TINE^ t 
*Metabolism Branch, 

Natwnal Cancer Institute, 
Bethesda, MD 20892; 

tCell Biology and Metabolism Branch, 
Natwnal Institute for Child Health 

and Human Development, 
Bethesda, MD 20892; AND 

t tDana-Farber Cancer Institute, 
Boston, M A  02115 

REFERENCES 

1. W. C. Greene et al., Science 232, 877 (1986). 
2. J. Inoue, M. Seiki, T. Taniguchi, S. T s w ,  M. 

Yoshida, EMBO J. 5, 2883 (1986). 

2 February 1987; accepted 4 February 1987 

27 FEBRUARY 1987 REPORTS I073 




