
Functional Box-Counting and Multiple Elliptical 
Dimensions in Rain 

Many physical systems that have interacting structures that span wide ranges in size 
involve substantial scale invariant (or scaling) subranges. In these regimes, the large 
and small scales are related by an operation that involves only the scale ratio. The 
system has no intrinsic characteristic size. In the atmosphere gravity causes differential 
stratification, so that the scale change involves new elliptical dimensions (d,,). Fields 
that are extremely variable, such as rain, involve multiple scaling and dimensions that 
characterize the increasingly intense regions. Elliptical dimensional sampling and 
functional box-counting have been used to analyze radar rain data to obtain both the 
multiple dimensions of the rain field and the estimate del = 2.22 2 0.07. 

S OME TIME AGO, LOVEJOY (1) ANA- 

lyzed infrared satellite cloud pictures 
over a wide range of scales by fixing 

an infrared radiance threshold and measur- 
ing all the areas (A) and corresponding 
perimeters (P) of isolated regions that ex- 
ceeded the threshold. Over the range from 
roughly 1 to 1000 km, a scaling relation of 
the form P x A~'' was obtained, where D is 
interpreted as the fractal dimension of the 
(complex) cloud perimeters. Over the nar- 
row range of radiance thresholds examined 

(4-7, 9-14). An immediate consequence is 
the dependence of scale and dimension on 
statistical averages, which has been empiri- 
cally demonstrated in rain data (15, 16) [see 
also (17, 18) for the implications for inho- 
mogeneous measuring networks]. 

For studying the atmosphere, the limited 
early results must be systematically extended 
to determine the diminishing dimensions of 
the increasingly intense (and therefore cold) 
cloud tops, as well as the differential stratifi- 
cation and rotation of clouds (associated 

V 

(corresponding to cloud tops of roughly with, for example, their "texture"). For this 
-5, - 10, and - 15"C), D was nearly con- purpose the original A-P relation is of limit- 
stant (-1.35 * 0.05). ed interest. First, the lower limit of the 

Since then considerable progress has been perimeter dimension is one, since it is a line. 
made in our understanding of both scaling Hence it cannot be used to examine the very 
sets (where the only information of interest 
is whether a point belongs to a set) and A -- 
scaling fields (in which a number is assigned I 

r: 
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to each point in space, for example, the 1 L&,:&fi~> c( -- 1 
I ,$>!3 temperature). Simple types of scaling, in , . I 

which the large scale is a (statisticallv) mag- R c o 
V ,, w - 

nified copy of the small scale (or "self- 
similarity"), are actually a special case. Dif- 
ferential atmospheric stratification and rota- 
tion (due to gravity and the Coriolis force, 
respectively) could be treated with a simple C , , c r u 
anisotropic scaling operation (2-6) that in- 
volved compression as well as magnification 
and could be characterized by "elliptical" 
dimensions (estimated to be 2319 = 2.555 
in the horizontal wind field). Later work (7- 
10) showed that general &isotropic (and 
even nonlinear) scalings were possible in the 
framework of a formalism called "general- 
ized scale invariance." Scaling did not neces- 
sarily depend on the notion of distance; the 
scale could be defined by other notions of 
size, such as the volume of an average cloud. 
Another development was the recognition 
that scaling generally involves not one but 
an infinite sequence of fractal dimensions 

Fig. 1. Functional box-counting analysis of the 
field f(r). In (A) the field is shown with two 
isotines that have threshold values T2 > T I ;  the 
box size is unity. In (B), (C), and (D), we cover 
areas whose value exceeds T, by boxes that de- 
crease in size by factors of 2 and obtain 
NT (1) = l , N T  (112) = 3, andNT,(l14) = 10, re- 
spictively. In (k), (F), and (G) we proceed in a 
similar manner for T = T 2 ,  and obtain 
NT (1) = 1, NT2(l/2) = 3, and NT2(1/4) = 4. Fi- 
nady D ( g  is estimated with the equation 
NT(L) L-D'n. 

intense regions with D < 1. Second, it can- 
not easily be adapted for studying anisotro- 
py. Finally, the perimeter has no obvious 
physical significance. We can now estimate 
the multiple dimensions directly with a new 
technique which we call functional "box- 
counting." This technique is simple, gives 
physically interesting results, and can easily 
be adapted to directly estimate the elliptical 
dimension that characterizes the degree of 
stratification. 

The intuitive notion of the dimension (D) 
of a set of points (whether fractal or other- 
wise) is that the number N(L)  of disjoint 
squares (or cubes of appropriate dimension) 
of size L needed to completely cover the set 
varies as N(L) x L - ~ .  Numerical proce- 
dures called "box-counting algorithms" di- 
rectly use this idea to estimate D [see, for 
example, ( l l ) ] .  To obtain a functional ver- 
sion that is applicable, for example, to cloud 
or rain fields, we must first transform the 
function into an appropriate set of points. 
One way to do this (see Fig. 1) is to start 
with a function f(r), where r is the position, 
that has a certain minimum resolution (in 
space or time) and then fix a threshold 'T. 
The set of interest is defined as the set of 
points such that f(r) 2 T. By varying T, we 
obtain the (decreasing) function D(T). We 
assume that the process is fairly stationary, 
and that large values off represent intense, 
rare events. 

Rather than apply this method to cloud 
pictures [as in (19)], in this case we applied 
it to radar rain reflectivities. These reflectivi- 
ties are probably the highest quality geo- 
physical data available for this purpose. The 
raindrops are efficient natural tracers that 
allow the three-dimensional rain structure to 
be sampled quickly and without permrba- 
tion. The archives at the McGill weather 
radar observatory contain data that span 
over two orders of magnitude in each hori- 
zontal direction, one order of magnitude in 
the vertical direction, five orders of magni- 
tude in time, and six orders of magnitude in 
intensity (the reflectivity, 2). The data we 
analyzed were resampled in coordinates (r, 
0, z )  (range, azimuth, and height above the 
earth's surface) instead of the original polar 
(r, 0, c p )  coordinates with 200 by 375 by 8 
resolution elements. The intensities were 
resolved into 16 logarithmic levels that were 
4 dB apart (a factor of -2.5). The entire 
scale therefore spans a range of 15 x 4 = 60 
dB = factor of lo6. Reflectivity levels in rain 
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can readily exceed the minimum detectable 
signal by a factor of 10'. 

Physically the reflectivity is the integrated 
backscatter of the raindrops. The microwave 
reflectivity for each drop is proportional to 
v2 (where V is the raindrop volume). At the 
10-cm wavelength used the absorption is 
sufficiently small so that the beam is nearly 
unattenuated. When Z is measured in this 
way, the integral over an entire "pulse" 
volume (roughly 1 km3) of v2 of each drop 
is modulated by its phase. Operational (me- 
teorological) use of radar data is limited, 
because the rain rate (R) is a different inte- 
gral, one over the product of V and the fall 
speed. The standard semiempirical relation 
between R and 2, which is only approxi- 
mate, is called the Marshall-Palmer formula: 
Z = 200 R ' . ~  (with Z in millimeters to the 
sixth power per cubic meter, and R in 
millimeters per hour). By studying relative 
reflectivities directly, rather than studying R ,  
we avoid the traditional radar calibration 
problem. Noise and instrumental biases are 
small. 

When functional box-counting is applied 
to the radar-reflectivity data for a single 
radar scan, we obtain the results shown in 
Fig. 2, A and B. In the horizontal direction, 

Flg. 2. (A) Plot of N(L) versus L for the nine 
radar reflectivity thresholds described in the text, 
for a single radar volume scan, analyzed with 
horizontal boxes that increased by factors of 2 in 
linear scale. The different symbols indicate the 
thresholds that increased from top to bottom by 4 
dB and started at 4 dB above the minimum 
detectable signal. The negative slope, D2(T), de- 
creased from 1.24 to 0.40. (6) A similar analysis, 
except that the boxes used are cubical, and yielded 
values of D3(T) that decreased from 2.18 to 0.81. 
Only eight different vertical levels were available. 

we used sectorial (pie-shaped) boxes. The 
angular and downrange box sizes increased 
by factors of 2, and started with the highest 
resolution available (the use of pie-shaped 
boxes eliminates all range-dependent effects, 
such as beam spreading). The straightness of 
the lines shows that scaling is accurately 
followed in both horizontal and vertical 
directions. Note the systematic decrease in 
the absolute slope [which is D(T)] as T is 
increased (total range of reflectivity 
-40,000). Out of 20 radar volume scans 
studied, all yielded fits of similar quality to 
those shown in Fig. 2, A and B. For greater 
values of T, N(L) was too small to give 
reliable estimates of D(T) (20) [for more 
applications of this technique, see (19, 21 )]. 

By applying functional box-counting to 
horizontal cross sections and volumes (us- 
ing horizontal squares and cubes, respec- 
tively), we obtain the functions D2(T) and 
and D3(T) (Fig. 2, A and B). If the rain field 
is isotropic, then D3(T) = 1 + D2(13; that 
is, taking cross sections reduces the dimen- 
sion by one. This means that the codimen- 
sions Cd(T) with respect to the embedding 
space dimension d[Cd(T) = d - Dd(T)] are 
conserved: 

Equation 1 expresses the fact that at any 
scale L, the fraction FT(L) of either the plane 
or volume (more generally, of a space di- 
mension d) covered by the fractal would be 
the same: 

However, atmospheric fields are not iso- 
tropic but stratified. In stratified anisotropic 
scaling, the average structures become flat- 
ter at larger and larger scales (as in Fig. 3); 
for example, for clouds of horizontal length 
L, the height is proportional to Lhz (where 
h, is an exponent that characterizes the 
degree of stratification). Hence the volume 
available for rain structures is L by L by 
Lhz = Ldel, where del < 3 is the "elliptical 
dimension" of the space (2,3,5, 7, lo) ,  that 
characterizes the flattening. For completely 
stratified processes, h, = 0 and del = 2; for 
isotropic fields, h, = 1 and del = 3, as we 
expect. Since rain areas that exceed a fixed 
threshold ( T  > 0) do not fill all space, their 
"volume" increases as LDe'(", with DeI(T) 
< del. However, if measured in the elliptical 
space in which the process occurs (22), the 
fraction occupied by the fractal at size L is 
the same as that of the two-dimensional 
(unstratified) cross section; hence the gen- 
eralization of Eq. 1 is Cdel(T) = C2(T). If an 
inappropriate box-counting space is used 
(defined as Del), it can be shown (10, 22) 
that the correction Delldel must be applied, 
which yields CDeI(T) = C2(T)Delldel. This 

Fig. 3. Elliptical dimensional sampling. Avera e 
eddies at three different scales are represented Ey 
ellipses (dimension d,,); the boxes used to analyze 
the fields are shown as rectangles (dimension 
D,,). In (A) the boxes are too stratified. In (8) 
they are not stratified enough. In (C) they are 
correctly stratified (D,, = d,,). 

result, combined with the hc t iona l  box- 
counting technique, yields a direct method 
for estimating del, which we call "elliptical 
dimensional sampling" (Fig. 3). For each 
degree of stratification Del, we measure 
CD,,(Ti) for all the thresholds Ti (the boxes 
here are of size L by L by LHz, with 
Del = 1 + 1 + Hz).  When we choose boxes 
with exactly the correct stratification (that 
is, DeI = del), then CDe,(Ti) = C2(Ti) for all 
Ti. The method can be slightly improved 
statistically by determining the zero of the 
following function: 

where we have used the empirical CD,, and 
C2 functions that were determined by func- 
tional box-counting. The sum is over the 
number of thresholds (nine in this case). 
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Fig. 4. The functionh~,,)  as described in the text 
is the average of data taken from 20 scans, and is 
based on 15 different values ofDeI and 9 reflectiv- 
ity thresholds (for a total of 9 x 15 x 20 = 2700 
dimensions). Averages and standard deviations, 
indicated by the error bars, are plotted. The least- 
squares linear regression is shown and has a 
horizontal intercept (DeI = del) of 2.22. 

Furthermore, the above formula for CDs,(Ti) 
shows that 

k 

,Pe l )  = (Dellde~ - ~ ) C C ~ ( T ~ )  (4) 
i= 1 

Hence ADeI) is linear. 
Figure 4 shows the result as DeI is varied 

through 15 values between 3.0 and 2.13; 
the latter was the lowest value accessible 
with the data set [this corresponded to 
boxes of 1 by 1 by 1 pixel and boxes 190 by 
190 by 2 pixels (twice the anisotropic scale), 
where 2.13 = 2 + log 2ilog 1901. The same 
nine thresholds were used as before. The 
h c t i o n  ADe1) was determined separately on 
20 radar rain fields; the linear regression 
shown yields del = 2.22 2 0.07. The error is 
the standard deviation of del estimated from 
each of the 20 scans separately. These scans 
were chosen at rando; from -data from the 
Montreal region during summer of 1984, all 
on separate days. The individual slopes and 
axis intercepts varied by k 11 and 2 9  percent, 
respectively, which indicated that any system- 
atic variation is smd .  

An obvious auulication of this result is to 
I I 

quantitatively measure the stratification. For 
example, the rain field is considerably more 
stratitied than the wind field, which has a 
value d,, = 2319 = 2.555 . . . that has been -. 
estimated from energy spectra and dimen- 
sional arguments (6). These elliptical dimen- 
sions are necessary in both additive (8) and 
multiplicative [cascade-type (7, 9, 10, 22, 
23)] stochastic mesoscale modeling (16). In 
numerical weather urediction models. the 
calculated and empirical values of del can be 
compared to study the "stochastic coher- 
ence" (24) of the calculated values. When 
fields are stratified, efficient modeling and 
measurement procedures must involve choos- 
ing discrete vertical and horizontal scales that 
are "comparable"; the elliptical dimension 
gives us the required exponent. This poses 
interesting theoretical questions for dynamical 
models that involve interacting fields with 
different degrees of stratification. 
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Foam Structures with a Negative Poisson's Ratio 

A novel foam structure is presented, which exhibits a negative Poisson's ratio. Such a 
material expands laterally when stretched, in contrast to ordinary materials, 

v IRTUALLY ALL COMMON MATERI- 

als undergo a transverse contraction 
when stretched in one direction and 

a transverse expansion when compressed. 
The magnitude of this transverse deforma- 
tion is governed by a material property 
known as Poisson's ratio. Poisson's ratio is 
defined as the negative transverse strain 
divided by the axial strain in the direction of 
stretching force. Since ordinary materials 
contract laterally when stretched and expand 
laterally when compressed, Poisson's ratio 
for such materials is positive. Poisson's ra- 
tios for various materials are approximately 
0.5 for rubbers and soft biological tissues, 
0.45 for lead, 0.33 for aluminum, 0.27 for 
common steels, 0.1 to 0.4 for typical poly- 
mer foams, and nearly zero for cork. 

Negative Poisson's ratios are theoretically 
permissible but have not, with few excep- 
tions, been observed in real materials. Spe- 
cifically, in an isotropic material (a material 
that does not have a preferred orientation) 
the allowable r a n g  of Poisson's ratio is 

theory of elasticity (1). It is believed by 
many that materials with negative values of 
Poisson's ratio are unknown (1); however, 
Love (2) presented a single example of cubic 
"single crystal" pyrite with a Poisson's ratio 
of -0.14 and he suggested that the effect 
may result from a twinned crystal. Analysis 
of the tensorial elastic constants of anisotro- 
pic single crystal cadmium suggests that 
Poisson's ratio may attain negative values in 
some directions (3). Anisotropic, macro- 
scopic two-dimensional flexible models of 
certain honeycomb structures (not materi- 
als) have exhibited negative Poisson's ratios 
in some directions (4). These known exam- 
ples of negative Poisson's ratios all depend 
on the presence of a high degree of anisotro- 
py; the effect only occurs in some directions 
and may be dominated by coupling between 
stretching force and shear deformation. The 
materials described in this report, by con- 
trast, need not be anisotropic. 

Foams with negative Poisson's ratios were 

from -'" + 0 5 ,  based On thermod~- Department of Biomedical Engineering, University of 
namic considerations of strain energy in the Iowa, Iowa city, IA 52242. 
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