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Development of Two Types of Calcium Channels in 
Cultured Mammalian Hippocampal Neurons 

Calcium influx through voltage-gated membrane channels plays a crucial role in a 
variety of neuronal processes, including long-term potentiation and epileptogenesis in 
the mammalian cortex. Recent studies indicate that calcium channels in some cell types 
are heterogeneous. This heterogeneity has now been shown for calcium channels in 
mammalian cortical neurons. When dissociated embryonic hippocampal neurons from 
rat were grown in culture they first had only low voltage-activated, fully inactivating 
somatic calcium channels. These channels were metabolically stable and conducted 
calcium better than barium. Appearing later in conjunction with neurite outgrowth 
and eventually predominating in the dendrites, were high voltage-activated, slowly 
inactivating calcium channels. These were metabolically labile and more selective to 
barium than to calcium. Both types of calcium currents were reduced by classical 
calcium channel antagonists, but the low voltage-activated channels were more 
strongly blocked by the anticonvulsant drug phenytoin. These findings demonstrate 
the development and coexistence of two distinct types of calcium channels in 
mammalian cortical neurons. 

T HE ENTRY OF CALCIUM THROUGH 

voltage-gated membrane channels is 
essential for many neuronal func- 

tions ( I ) .  In the mammalian brain Ca2+ 
entry participates in the generation of vari- 
ous forms of electrical activity, such as den- 
dritic spikes (2) ,  rhythmic firing (3) ,  normal 
and epileptiform burst discharges (4),  as 
well as in the secretion of neurotransmitters 
and neuromodulators (5). The influx of 
caZ+ may also couple neuronal activity to 
metabolic processes and induce long-term 
changes in neuronal and synaptic activity 
(6). Studies in brainstem slices (3) and 
cultured sensory neurons (7) have demon- 
strated the coexistence of two types of Ca2' 
channels in some mammalian neurons. We 
have employed patch-clamp techniques (8) 
and cultured rat hippocampal neurons (9) to 
investigate whether the ca2+ channels in 
differentiated neurons from a mammalian 

cortical structure are also heterogeneous 
( l o ) ,  and to characterize the development 
and distribution of these channels during 
neuronal growth. 

Hippocampal neurons were dissociated 
from 18- to 19-day-old rat embryos and 
maintained in culture for 4 to 6 weeks (11).  
Whole-cell membrane currents were record- 
ed from the somatic region of the neurons 
(12). Calcium currents (Ic,'s) were isolated 
from other voltage-dependent membrane 
currents by ionic substitution and addition 
of sodium and potassium channel blockers 
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Fig. 1. Calcium currents in dissociated rat hippocampal neurons at two 
stages of development in culture. (A) Ic,'s from a freshly plated cell (5 hours 
after plating). The cell was spherical in shape (diameter -8 pm) and had one 
short (3 to 4 km) neurite. (Top) Current responses evoked by stepping from 
a -90-mV holding potential to various membrane potentials (indicated on 
the left of each trace) for 150 msec. (Bottom) Current-voltage relation 
depicting the peak current intensity at each step potential. Similar observa- 
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Phenytoin 

Control 

tions were made in all cells (n = 27) examined in fresh cultures (3  to 5 hours 
after plating). (B) Ic,'s from a neuron 2 days in culture. This neuron had 
several branching neurites but seems to be spatially clamped, as judged by the 
absence of "notches" and long "tail" currents (see Fig. 3B). (Top) Same as 
(A). Note the sustained current component activated positive to -30 mV. 
(Bottom) Current-voltage relation of peak (closed circles) and sustained IC:s 
(open circles). The sustained Ica was measured at the end of a 150-msec 
pulse, as indicated in the inset, at which time the LVA component is 
presumably fully inactivated. The deflection indicated by the arrow marks the 
threshold membrane potential for activation of HVA Ica component. 
Similar current-voltage relations were observed in 32 additional neurons in 
1- to 3-day-old cultures. Fig. 2. Ionic selectivities and pharmacological 
sensitivities of two types of Ica's in cultured rat hippocampal neurons. 
Depolarizing pulses were delivered at one per 15 seconds. Holding and step 
potentials are indicated to the left and to the right of the dashed line, 
respectively. Records in test solutions were taken ap roximately 30 seconds 
after solution exchange (A) Differential effects of B$+ on (1) LVA and (2) 
HVA Ica's. Calcium in the superfusion solution was replaced by an 
equimolar concentration (10 mM) of Ba2+. Similar effects of Ba2+ were 
observed in all six neurons examined in this way. (B) Suppression of (1) 
LVA and (2) HVA Ica's by 100 phf cadmium. In this neuron and another 
three neurons similarly examined, both LVA and HVA Ic,'s were complete- 
ly blocked. In another five neurons, although HVA Ica was completely 
suppressed by 100 phf cadmium, LVA Ica's were reduced to 10 to 20% of 
the control values. (C) Partial suppression of both (1) LVA and (2) HVA 
Ic,'s by 100 phf yerapmil. Similar effects were observed in all eight neurons 
examined. (D) Differential effects of 100 phf phenytoin on (1) LVA and (2) 
HVA Ic,'s. Similar differential effects were evident in all ten neurons tested 
with phenytoin. 

to the external and internal solutions, re- 
spectively (13). They were further identified 
by their sensitivity to cadmium, a potent 
ca2+ channel antagonist (14). 

Stable recordings from freshly plated cells 
could be obtained as soon as the cells at- 
tached to the polylysine substrate (3  to 5 
hours after plating). Although the cells are 
morphologically undifferentiated at this 
stage, most of them are probably neurons 
because the presence of glia in fresh cultures 
is minimal (9). Whole-cell Ic,'s that were 
typical for these cells were elicited by step 
depolarizations from a holding membrane 
potential of -90 mV (Fig. 1A). They were 
activated at relatively low membrane poten- 
tials (-50 to -40 mV) and their current- 
voltage relation was smooth, attaining a 
maximum between -20 to -10 mV (Fig. 
1A). The activation time course of these low 

voltage-activated (LVA) Ic,'s was sigmoi- 
dal, voltage-dependent, and was faster at 
more positive membrane potentials (Fig. 
1A). The LVA Ic,'s fully inactivated during 
a maintained voltage step. Inactivation was 
similarly accelerated by more positive mem- 
brane potentials (Fig. 1A). The LVA IC,'s 
also exhibited a steady-state inactivation and 
could not be evoked at holding potentials 
more positive than -50 mV. 

After attaching to the substrate, most cells 
rapidly acquired neurite extensions, which 
became larger and more intricate during the 
first week in culture. This process was asso- 
ciated with the appearance and gradual in- 
crease of a high voltage-activated (HVA) 
(between -30 to -20 mV) Ic, component 
(Fig. 1B). After 24 to 48 hours in culture, 
HVA Ic,'s were usually larger than their 
LVA counterparts. Most conspicuously, the 

HVA Ic,'s only partially inactivated during 
maintained depolarizing pulses (Fig. 1B). 
Consequently, they could be activated from 
more positive holding potentials (for exam- 
ple, - 50 mV) at which LVA Ic,'s were fully 
inactivated. 

To test the hypothesis that LVA and 
HVA Ic,'s represent activation of two dis- 
tinct populations of Ca2' channels (termed 
LVA and HVA channels, respectively), we 
have compared several attributes of the two 
types of IC,'s. 

We first tested the channels' selectivity to 
permeating divalent cations by replacing 
extracellular ca2+ with an equimolar con- 
centration of barium. This treatment mark- 
edly reduced LVA currents (Fig. 2A1), sug- 
gesting that LVA channels are less perme- 
able to ~ a ~ + .  In contrast, HVA currents 
were enhanced in this condition (Fig. 2A2). 
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Fig. 3. Time-dependent run down of high volt- 
age-activated calcium currents. Recordings were 
made in a pyramidal-like neuron possessing two 
main branching dendrites in a 2-week-old culture. 
LVA and HVA Ic,'s were evoked by alternatively 
stepping from a -90-mV holding potential to 
-30 mV [(A) LVA only] and to -10 mV [(B) 
LVA and HVA]. Stimuli were delivered at inter- 
vals of 20 seconds. Superimposed traces are taken 
at various times (approximately 5, 10, 15, and 20 
minutes), as indicated, after establishing the 
whole-cell recording. Note in (B) "notches" 
(marked by the dashed line) and long "tail" 
currents indicative of inadequate space-clamp 
control of the HVA Ic,, which persists even when 
the HVA I,, runs down to 20% of its original 
amplitude (at 15 minutes). 

Presumably ~ a ~ +  passes through these 
HVA channels more easily than does ca2+  
(1, 15). 

Interaction with Ca2+ channel antago- 
nists was also examined. Both types of IC,'s 
were strongly suppressed by 100 N cadmi- 
um (Fig. 2B). The organic ca2+ channel 
blocker verapamil reduced LVA and HVA 
Ic,'s to a similar degree at 100 lJJM (Fig. 
2C). However, the anticonvulsant drug 
phenytoin, at a similar dose, preferentially 
blocked LVA Ic,'s (Fig. 2D). The effects of 
all three agents on Ic,'s were readily revers- 
ible upon washing. 

Finally we examined the time-dependent 
"run down" of HVA Ic,'s. Even without 
frequent stimulation, HVA Ic,'s gradually 
declined in amplitude and largely disap- 
peared within 15 to 20 minutes after estab- 
lishing the whole-cell clamp (Fig. 3B). Pre- 
sumably cytoplasmic components essential 
for the metabolic maintenance of HVA 
channels are washed out during pe&sion of 
the cell interior by the microelectrode solu- 
tion (1 6). In contrast, LVA Ic,'s did not run 
down (Fig. 3A). 

From these results we conclude that LVA 
and HVA Ic,'s are conducted by two sepa- 
rate populations of ca2+ channels. The 
question arises whether the differential de- 
velopment of the two channel types in time 
with respect to neurite outgrowth is also 

expressed in their somatodendritic distribu- 
tion. When evoking HVA Ic,'s in neurons 
with extensive dendritic arborizations, we 
commonly observed "notch" currents dur- 
ing the depolarizing voltage step, and large 
and prolonged "tail" currents thereafter 
(Fig. 3B), indicative of inadequate space 
clamp control (17). In the same neurons, 
LVA Ic,'s were adequately clamped (Fig. 
3A). These data are consistent with a pre- 
dominant somatic distribution of LVA 
channels and a more profuse dendritic distri- 
bution of HVA channels. However, a con- 
siderable overlap of the two distributions 
cannot be excluded. Indeed, comparable 
LVA and HVA Ca2+ channels coexist in 
somata of cultured mammalian (7, 18) and 
avian (1 8, 19) sensory neurons, where LVA 
channels are observed in isolation in embry- 
onic stages before there is significant neurite 
outgrowth (20). 

Our findings show that two distinct types 
of Ca2+ channels develop in hippocampal 
neurons during growth and differentiation 
in culture. We have also confirmed their 
presence in well-differentiated hippocampal 
neurons (4 to 6 weeks in culture) of the 
pyramidal-like, stellate-like, and morpholog- 
ically atypical classes. This suggests that 
LVA and HVA Ca2+ channels may play a 
functional role in several types of mamrnali- 
an cortical neurons. LVA channels may be 
involved in near-threshold membrane phe- 
nomena. For example, they may speed up 
depolarization to threshold after neuronal 
h er olarization (3). The blockade of these yI: Ca + channels by the anticonvulsant drug 
phenytoin is thus consistent with its depres- 
sant action on repetitive neuronal firing and 
may contribute thereby to its efficacy in 
suppressing seizure discharge (21 ) . In con- 
trast, HVA channels would be activated 
during the generation of action potentials. 
Because they are widely distributed and 
slowly inactivating, this may cause the intra- 
cellular ca2+ concentration to rise substan- 
tially (22), thereby coupling neuronal dis- 
charge with various membrane (3, 23) and 
metabolic events (6). 
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