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The regional distributions of monoamine oxidase (MAO) types A and B have been 
identified in human brain in vivo with intravenously injected "C-labeled suicide 
enzyme inactivators, clorgyline and L-deprenyl, and positron emission tomography. 
The rapid brain uptake and retention of radioactivity for both "C tracers indicated 
irreversible trapping. The anatomical distribution of "C paralleled the distribution of 
MA0 A and MA0 B in human brain in autopsy material. The corpus striaturn, 
thalamus, and brainstem contained high MA0 activity. The magnitudes of uptake of 
both ["C]clorgyline and L-[llC]deprenyl were markedly reduced in one subject treated 
with the antidepressant MA0 inhibitor phenelzine. A comparison of the brain uptake 
and retention of the "C-labeled inactive (D-) and active (L-) enantiomers of deprenyl 
showed rapid clearance of the inactive enantiomer and retention of the active 
enantiomer within MA0 B-rich brain structures, in agreement with the known 
stereoselectivity of MA0 B for L-deprenyl. Prior treatment with unlabeled L-deprenyl 
prevented retention of L- ["Cldeprenyl. Thus, suicide enzyme inactivators labeled with 
positron emitters can be used to quantitate the distribution and kinetic characteristics 
of MA0 in human brain structures. 

M ONOAMINE OXIDASE (MAC)) 
(E.C. 1.4.3.4) is responsible for 
the oxidative deamination of en- 

dogenous neurotransmitter amines as well as 
arnines from exogenous sources. It exists in 
two forms, MA0 A and MA0 B, which are 
identified by their inhibitor sensitivity and 
by their substrate selectivity (1). Both forms 
may be important for neurotransmitter reg- 
ulation, and fluctuations in functional MA0 

activity may be associated with human dis- 
eases such as Parkinson's disease, depres- 
sion, and certain psychiatric disorders (2). A 
number of MA0 inhibitors are used as 
antidepressant drugs (3); L-deprenyl, an in- 
hibitor of MA0 B, is used to treat Parkin- 
son's disease (4), and brain MA0 B plays a 
key role in 1-methyl-4-phenyl-1,2,3,6-tetra- 
hydropyridine (MPTP)-induced parkinson- 
ism (5) .  Speculation as to the relation of 

MA0 activity to human disease has been 
based on the measurement of platelet MA0 
activity or on the analysis of postmortem 
human brain samples. However, platelet 
MA0 is only MA0 B (6), and, although the 
platelet enzyme is probably a genetic marker 
for serotonergic mechanisms in the brain 
(7), direct attempts to correlate platelet and 
brain MA0 B have failed (8). Furthermore, 
even the process of isolation of MA0 from 
its native environment within a tissue for 
measurement in vitro may change some 
properties of the enzyme (9, 10). 

A major milestone in the study of MA0 
has been the design and synthesis of the 
highly selective, mechanism-based inhibitors 
clorgyline (N-[3-(2,4-dich1orophenoxy)pro- 
pyl] -N-methyl-2-propynylamine) (1 1 ) and 
L-deprenyl [(-)-N,a-dimethyl-N-2-propyn- 
ylphenethylamine] (12), which irreversibly 
inhibit MA0 A and MA0 B, respectively, 
by binding covalently to the enzyme itself 
(13), a process frequently referred to as 
"suicide enzyme inactivation" (14). 

We have explored the feasibility of using 
"C-labeled clorgyline and L-deprenyl for 
mapping functional MA0 in brain directly 
and noninvasively by using the covalent 
bond formation between labeled inhibitor 
and enzyme to label the enzyme in a selec- 
tive and irreversible manner. The regional 
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Flg. 1. PET scans at the level of corpus striatum and the thalamus after injection of ["C]clo'gyline and 
L-["Cldeprenyl. Drawing of anatomical section corresponding to the brain level is shown (center). 

distribution of the "C label retained in 
tissue would reflect regional functional en- 
zyme activity provided that (i) there is sig: 
nificant transport of the "C inhibitor into 
the brain, (ii) the tracer is uniquely reactive 
with the enzyme subtype, and (iii) enzyme 
inactivation is rapid relative to formation of 
product (15). Carbon-1 1 is well suited for 
these studies. It has a 20.4minute half-life 
and decays by positron emission, which 
results in the emission of two body-pene- 
trating 511-keV photons. Simultaneous spa- 
tial and temporal measurement of the con- 
centration of the tracer in the living brain 
(or other tissues) is possible with positron 

emission tomography (PET) (1 6). Further- 
more, we can do serial studies on the same 
day in the same subject at 2.5-hour intervals 
because (i) essentially all (>99.4%) of the 
"C decays to nonradioactive "B within 2.5 
hours after its administration, and, there- 
fore, residual radioactivity does not interfere 
with the next investigation; and (ii) the 
specific radioactivity of the "C tracer is 
sufliciently high that only a small fraction of 
the total amount of MA0 in the brain is 
irreversibly bound, which allows the "C- 
labeled inhibitor to act as a true tracer (17). 
Initial studies demonstrating the specific 
uptake and covalent binding of ["C]clorgy- 

Table 1. Influx rate constants (Ki) for four normal volunteers (studies 1 to 4) and one subject receiving 
phenelzie plus amphetamine for treatment of depression (study 5). Integrated plasma activity for the 
30-minute time period after injection is also presented. 

Ki (milliliters of plasma 
Region per cubic centimeter 

of tissue per minute)* Study Age of (nCi ml-' min)t 
interest 

["CI "[IIC] ["CI "["C] 
Clorgyline Deprenyl Clorgyline Deprenyl 

1 26 Smatum 0.21 0.44 2329 1818 
Thalamus 0.27 0.56 
Cortex* 0.16 0.29 
Brainstem 0.20 0.41 

2 34 Smatum 0.45 3206 2295 
Thalamus 0.51 
Cortex* 0.28 
Brainstem 0.41 

3 39 Striatum 0.18 0.71 3260 1018 
Thalamus 0.17 0.73 
Cortex* 0.16 0.54 
Brainstem 0.17 0.47 

4 86 Striatum 0.19 0.86 361 1 1618 
Thalamus 0.22 0.86 
Cortex* 0.12 0.53 
Brainstem 0.15 0.64 

5 72 Striatum 0.07 0.27 3965 2776 
Thalamus 0.08 0.23 
Cortex* 0.04 0.10 
Brainstem 0.06 0.23 

*Influx rate constants (Ki)  were calculated from the slope of the linear portion of the curve obtained by plomng CtIC 
a p n s t  Jh Cp(t)&ICp. Radioactivity concentration data for experimental times of 15 to 90 minutes were useif 
LuKarity was observed in all cases. tIntegrated lasma activity was obtained from values of the concentration of 
unchanged 9 in the plasma [Cp(t)] over the first 39 minutes h e r  injection of the tracer. The values are corrected for 
the p-ce o "C-labeled metabolites as determined by HPLC analysis. All values were normalized to a 10-mCi 
injection dose. +Samples taken from frontal, parietal, and occipital cortices. 

line and L-["Cldeprenyl in mouse brain in 
vivo (18), and PET studies carried out in 
anesthetized baboons (19) before the initia- 
tion of human studies suggested this ap- 
proach to the in vivo study of MA0 activity 
in the human brain. 

We report here the extension of the ani- 
mal studies to an examination of the kinetic 
behavior and anatomical localization of 
[I 'C]clorgyline and L-[I 'Cldeprenyl in hu- 
man brain through the use of PET. We also 
present experimental evidence that the ana- 
tomical distribution and uptake of these 
tracers arise from attachment of labeled in- 
hibitor to enzyme, which shows that the 
distribution of radioactivity in brain reflects 
functional MA0 activity. 

"C-Labeled clorgybme, D-deprenyl, and 
L-deprenyl were prepared by alkylation of 
the N-demethyl compounds with ["C] 
methyl iodide. Specific radioactivities were 
175 to 445 mCi/pmol at the time of injec- 
tion. Normal volunteers who had given 
informed consent (males, 26 to 86 years 
old) were injected intravenously with saline 
solutions of 8 to 18 mCi (13 to 31 pg) of L- 

["C]deprenyl and then 2.5 hours later by 6 
to 16 mCi (5 to 12 pg) of ["C]clorgyline. 
The order of injection was reversed in stud- 
ies 3,4, and 5 (Table 1). Arterialized venous 
blood samples obtained 0.17 to 110 min- 
utes after injection of each tracer were cen- 
mhged, and radioactivity was determined 
in aliquots of plasma. High-performance 
liquid chromatographic (HPLC) analyses of 
plasma samples taken at 1, 5, 10, and 30 
minutes were performed to determine the 
time course of radiotracer metabolism. PET 
scanning (PEIT VI) (20) began at the time 
of injection and continued for 90 minutes. 
An additional subject (male, 72 years old) 
who had been receiving a combination of 
the MA0 inhibitor phenelzine (Nardil, 30 
mgtday) and dextroamphetamine (Dexe- 
drine, 2.5 mglday) for 4 weeks as a mat- 
ment of depression underwent the same 
serial study with ["C]clorgyline and L- 

[ " ~ l d e ~ r e n ~ l .  On the day of the study he 
received phenelzine 5 hours before injection 
of the first tracer, and the dextroamphet- 
amine dose was withheld until after the 
study. Another normal volunteer (male, 68 
years old) was injected with 3 mCi (10 pg) 
of ~- ["C]de~ren~l  followed by 3 mci (10 
pg) of ~ - [ ~ ~ C ] d e ~ r e n ~ l  with an intervening 
time of 2.5 hours. The PET scanning (Scan- 
ditronix type 384-3B) was similar to that 
described above. Three weeks after this se- 
ries thls same volunteer received a therapeu- 
tic dose (15 mg) of L-deprenyl, and the 
serial PET studies with labeled D- and L- 

deprenyl were performed 24 hours later. 
The regional distribution of radioactivity 

at different times after injection was deter- 
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mined for each tracer (21). The thalamus 
and striatum (caudate and putamen) were 
examined in the anatomical slice shown in 
Fig. 1. The cortex was selected from an 
averaged value from the frontal, parietal, 
and occipital cortices as these regions had 
similar radioactivity concentrations. The 
brainstem region (midbrain) was selected in 
the slice containing the cerebellar vermis and 
was located immediately anterior to this 
structure. Regional brain uptake values were 
calculated from the radioactivity per cubic 
centimeter corrected for decay divided by 
the total amount of "C-labeled tracer inject- 
ed per gram of body weight. 

After the injection of radiolabeled clorgy- 
line and deprenyl, radioactivity rapidly en- 
tered the brain and remained at a constant 
high level throughout the 90-minute PET 
study (Fig. 2). The magnitude of u take for 

!'I ~-["C]de~renyl surpassed that of [ Clclor- 
gyline by a factor of approximately 2 in 
thalamus, striatum, cortex, and brainstem. 
Plasma clearance of total radioactivity was 
rapid for both tracers, and the amount of 
unchanged tracer in plasma also declined 
from 95% to approximately 40% in the first 
30 minutes after injection as determined by 
HPLC analysis. However, the analysis of 
radioactivity concentrations for equivalent 
doses (millicuries) of "C tracer showed a 
significantly greater amount of ["C]clorgy- 
line than ~-["C]de~renyl  in the plasma over 
a 30-minute time period for all subjects 
(Table 1). This lower blood clearance for 
["C]clorgyline was due to a slower clear- 
ance of total "C from the plasma rather than 
a difference in the rate of appearance of "c- 
labeled metabolites (which was similar for 
the two tracers). Hence more ["C]clorgy- 
line was actually available for influx into 
brain tissues. Graphical analysis (22) of the 
measured changes in radioactivity concen- 
trations for brain and plasma showed irre- 
versible trapping of tracer and allowed the 
calculation of a plasma-to-brain influx rate 
constant (Ki) for each subject and each 
tracer (Table 1).  The results of this graphical 
analysis and the observed rapid uptake and 
retention of each of these tracers are consist- 
ent with suicide enzyme inactivation. 

After the administration of both ["cI- 
clorgyline and ~ - [ " C ] d e ~ r e n ~ l ,  the distribu- 
tion of radioactivity in different brain re- 
gions was highest in the thalamus, striatum, 
cortex, and brainstem (Fig. 1) and paralleled 
the areas of high MA0 concentration deter- 
mined by in vitro assay (23). For both 
tracers the radioactivity concentrations and 
the influx rate constants for striatum and 
thalamus were higher than those of cortex 
(Table 1).  In addition, the Ki's for L- 

["Cldeprenyl were consistently higher than 
those for [ll~]clorgyline, an observation 

Fig. 2. Time course of 
uptake for [I lC]clorgy- 
line (A) and L-["Clde- 
prenyl (8) in the corpus 
striatum (diamonds), 
thalamus (squares), and 
cerebral cortex (trian- 
gles) of a normal volun- 
teer (86 years old). Up- 
take values were calculat- 
ed from the nanocuries 
per cubic centimeter cor- 
rected for decay for a 
specific brain region di- 
vided by the radioactive 
dose given per gram of 
body weight. 

10 30 50 70 90 

Time after injection (min) 

Time after injection (min) 

Fig. 3. A comparison of the time course of uptake of L-["Cldeprenyl (open symbols) and D- 

["Cldeprenyl (solid symbols) in striatum (diamonds), thalamus (squares), and cerebral cortex 
(triangles) before (A and B) and after (C and D) a 15-mg dose of unlabeled L-deprenyl (see legend to 
Fig. 2 for the definition of uptake). , 
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Flg. 4. PET images after administration of D-["Clde renyl (top Images) and L-["Cldeprenyl 
(bottom images) in a normal volunteer before (left) anc!after (right) administration of lS mg of L- 
deprenyl. The colors correspond to radioactivity concentration with red > yellow > blue. The PET slice 
is at the same level as Fig. 1. 

that may reflect the higher concentration of 
MA0 B than MA0 A in human brain (24). 
In the four normal volunteers injected with 
both tracers, the K{s for [ "~ ]c lo r~~ l ine  
show less intersubject variability than those 
for ~-["C]de~ren~l .  Although the observed 
higher Ki for L- [I lC]deprenyl could parallel 
the age of the volunteer and thus reflect the 
known increase in MA0 B with age (24), 
the sample size reported in this study is too 
limited to permit a meaninghl correlation. 

In the one subject who was receiving the 
irreversible MA0 inhibitor phenelzine in 
combination with amphetamine for treat- 
ment of chronic depression, we observed a 
significantly lower Ki for both tracers. This 
result provides further evidence supporting 
irreversible enzyme inhibition as the factor 
responsible for the regional uptake and re- 
tention of ["~lclorgyline and ~-["c]de- 
prenyl. Phenelzine inhibits both MA0 A 
and MA0 B with a preference for MA0 A 
(25) and would be predicted to influence the 
uptake of both tracers if MA0 is responsible 
for the observed uptake and retention of the 
"C tracers in normal volunteers. 

Deprenyl, which contains an asymmetric 

carbon atom, exists in two enantiomeric 
forms, D(S)-(+ )-deprenyl and L(R)-(-)-de- 
prenyl, which are synthesized from (S)-( + )- 
amphetamine and (R)-( -)-amphetamine, 
respectively. Because L(R)-(-)-deprenyl is 
25 times as active with respect to MA0 B 
inhibition as D(S)-( + )-deprenyl (26), serial 
PET studies with these two "c-labeled 
enantiomers are a powerful tool in differen- 
tiating specific binding from nonspecific dis- 
tribution because nonspecific distribution is 
generally not governed by stereoselective 
processes (27). A comparison of the time 
course of radioactivity distribution after in- 
jection of ~ - [ "C]de~ ren~ l  with that after 
injection of L- [I lC]deprenyl shows striking- 
ly different kinetics. The appearance of D- 

["C]deprenyl in the brain was initially simi- 
lar to that of ~ - [ " ~ ] d e ~ r e n ~ l ,  but the inac- 
tive D enantiomer cleared rapidly (Fig. 3). 
This observation is consistent with stereose- 
lective labeling of MA0 B, which deter- 
mines the anatomical pattern of distribution 
as well as long-term retention of activity 
within brain tissue. The time course of 
radioactivity distribution with ~ - [ " ~ ] d e -  
prenyl (Fig. 3A) is similar to that observed 

for ~ - [ " ~ ] d e ~ r e n ~ l  in a subject in whom 
brain MA0 was inhibited by prior adminis- 
tration of a therapeutic dose of L-deprenyl 
(Fig. 3D). The selective uptake of L- 

["C]dePrenyl in striatum for a normal sub- 
ject can be seen in Fig. 4 (bottom left 
image), which also shows PET images cor- 
responding to the data for L-['IC]- and D- 

["C]deprenyl plotted in Fig. 3. 
The method we have used should prove 

usem in the examination of MA0 A and 
MA0 B activity in brain and thus provides a 
means of directly examining the two forms 
of MA0 in intact living tissue (28). Since 
clorgyline and L-deprenyl have played a piv- 
otal role in mechanistic studies of the prop- 
erties of MA0 A and MA0 B (1) and are 
used as investigational drugs in the therapy 
of depression (29), and since L-deprenyl is 
currently used as an adjunct to L-dopa thera- 
py of Parkinson's disease (30), the extensive 
base of knowledge resulting from their use is 
a valuable resource for &re studies with 
PET and the "C-labeled tracers. Further- 
more, because these drugs are relatively non- 
toxic at doses sdlicient to inhibit significant 
amounts of the enzyme (29), i tmay  be 
possible to use in vivo titration to directly 
determine MA0 concentration in living hu- 
man brain, as has been done with autopsy 
material (24). and to correlate these mea- 
suremenk ii'th clinical state in individuals 
afflicted with a variety of psychopathologies 
(7). Current studies are under way to use 
PET and ~- ["C]de~ren~l  to measure the 
rate of recovery (synthesis) of MA0 B after 
a single therapeutic dose of L-deprenyl 
(19)-a new approach to the measurement 
of the synthesis of a specific protein in vivo 
and a possible strategy for probing mito- 
chondrial viability. 

Although the study of brain MA0 activi- 
ty with this technique would obviously be of 
high priority because of its implication in 
neurological and psychiatric disorders, in 
principle MA0 activity in other parts of the 
body could also be mapped with "C tracers 
and high-resolution, large field of view PET, 
provided that experiments validating the 
mechanism of uptake and retention of trac- 
ers in organs other than brain were carried 
out. In addition, the rapidly increasing num- 
ber of highly selective suicide enzyme inacti- 
vators suggests that methods for directly 
probing other enzymes in human brain and 
other tissues can be developed. This general 
approach, although most easily accom- 
plished with positron-emitting labeled com- 
pounds and PET, would also be applicable 
to radiotracers labeled with y-emitting iso- 
topes through the use of single photon- 
emission computed tomography (SPECT), 
provided that these radiotracers displayed 
appropriate behavior in vivo. 
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