
not the rapid one, observed in neutrophils 
treated with 30 mM NaPr. We assume that 
membrane fluidization by aliphatic alcohols 
and NaPr is associated with an impairment 
of some necessarv component of ;he slow 
LSR, thus leaving the sistem with the capa- 
bility of executing only the chemotaxis-relat- 
ed rapid LSR (4, 5). Since membrane fluid- 
ization is an integral and inevitable aspect of 
the NaPr incorporation into the neutro- 
phils, the NaPr-induced LSR should opera- 
tionally be referred to as the combined effect 
of N L P  and an aliphatic alcohol (Fig. 1, B 
and C). 

Thus we have shown that the LSR. which 
correlates wi& neutrophil chemotkis, can 
be specifically induced and suppressed by 
defined experimental manipulations of the 
neutrophil cytosolic proton concentration. 
The comparison of the LSR time course 
with the-kinetics of the concurrently in- 
duced cytosolic acidification implies that 
only the initial decrease in p H  is necessary 
for the intracellular signal. Consequently, 

we suggest that the perception of a chemoat- Motility 3, 349 (1983); P. J .  MTdace, R. P. Wersto, 
C. L. Packman, M. A. Lichunan, J Cell Bwl. 99. tractant by its specific receptors is translated (1984). 

into an abrupt~accumulation of protons at 7. 6. D, ~ e w  h d  p. T. stossel, J .  Qin. Invest. 67, 1 

the interface of the plasma membrane and (1981); L. C. McPhail and R. Snyderman, tbtd. 72, 
P92 (1983); L. C. McPhail, C. C. Clavton. R. 

cytoplasm, which cah then trigger the che- Snyderman, J. Bwl. Chem. 259, 5768 (1984). 

motactic signal-transduction cascade. 8. R. I. Sha'afi et al., J. Cell Bwl. 102, 1459 (1986). 
9. T. F. P.  Molsh, P. H. Naccache, M. Volpi, L. LM. 

UToloett. R. I. Sha'ati. Bwchem. Bioahvs. Res. Com- 
mu; 94. 508 11980) R Yassln et'af. 7 Cell Bwl 
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Chaotic Bursts in Nonlinear Dynamical Systems 

Several elementary nonlinear dynamical systems in the complex plane may provide 
models for abrupt transitions to chaotic dynamics. In particular, the complex trigono- 
metric and exponential functions explode into chaos as a parameter is varied. 
Numerical evidence is presented that supports the contention that these explosions 
occur whenever an elementary bifurcation occurs. This numerical evidence, in the form 
of computer graphics, is an example of the increasing importance of experimentation in 
mathematics research. 

R ESEARCH OF MATHEMATICIANS, 
physicists, and others over the past 
20 years has made it clear that many 

systems of physical, biological, or chemical 
interest exhibit highly unstable or chaotic 
behavior. How does a relatively tame or 
stable system make the transition to com- 
plete irregularity or instability? Several dif- 
ferent scenarios for the transition to chaos 
have been put forth. There is the older 
Landau-Lifshitz approach of successive su- 
perposition of frequencies ( I )  and the rela- 
tively new approach of Feigenbaum (2) via 
successive period-doublings. Both of these 
transitions have been shown to be mathe- 
matically feasible and have been observed in 
physical systems (3). But both of these 
transitions are gradual transitions; the sys- 
tems involved become increasingly irregular 
in well-defined stages, which eventually ac- 

cumulate and terminate in complete chaos. 
These scenarios are therefore good models 
for systems such as fluid flows, which gradu- 
ally make the transition from steady state to 
turbulence, and ecological systems, wherein 
the populations change slowly over time 
until a chaotic regime is reached. But they 
do not serve well as models for systems that 
become chaotic rapidly. A number of sys- 
tems in nature exhibit this type of burst or 
explosion into chaos. For example, combus- 

De arunent ofMathemat~cs, Boston University, Boston, Fig. 1. Graphs of  E ,  for real z = x .  Straight line 
d o 2 2 1 5  shows E ,  = x. (A) A < l ie .  (6) A > l ie .  

tion often involves rapid transitions between 
stable and chaotic states. The phenomenon 
in meteorology called microbursts also ex- 
hibits rapid changes of state. 

There are a number of mathematical tech- 
niques for studying such abrupt changes in 
physical systems. For example, the theory of 
shock waves in partial differential equations 
is well developed and can be used to con- 
struct mathematical models that accurately 
describe a rapid change of state. Also, catas- 
trophe theory developed by Zeeman (4) and 
others has been applied to a number of 
systems that undergo such rapid changes. 
Both of these approaches, however, usually 
deal with an apparently discontinuous jump 
in the system between one stable equilibri- 
um and another. These transitions, albeit 
abrupt, do not in general occur between 
stable and completely chaotic states. 

My goal in this report is to suggest some 
simple mathematical models that do exhibit 
this type of transition. These models have 
the advantage of being simple-they are all 
iterated mappings of the plane-and effec- 
tively computable-they involve only com- 
plex sines, cosines, or exponentials. In each 
case, it can be proved rigorously that the 
systems undergo a burst into complete irreg- 
ularity as a parameter is varied. Admittedly, 
these dynamical systems are approximate 
models of real physical systems, but it is my 
feeling that the bursts illustrated with these 
simple models hold the key to understand- 
ing similar phenomena in more complicated 
settings. These sudden chaotic bursts have 
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Fig. 2. (Left) Julia set for the mapping Ek = A cxp(z) where A s llc and N = 50; (center) A 2 llc andN = 50; (right) A 2 llc andN = 200. Note the a- 
plosion into color as A increases past llc, indicating the burst into chaos. 

also been noted in the quasi-periodic route 
to chaos (5) and in studies of intennittency 
(6) 

It is known that iterated mappings of low- 
dimensional spaces provide good models for 
physical systems. For example, the logistic 
equation 

has often been used as a model in ecology 
(7) to predict population growth where the 
parameter k adjusts various biological con- 
stants. This model leads to the iteration of 
the quadratic function 

on the interval 0 5 x 5 1. Similarly, other 
systems governed by differential equations 
may be reduced by a variety of mathematical 
techniques to a simple iteration scheme. 

I will consider only iterated mappings of 
the complex plane C, such as EA(z) = 
A exp(z) or SA(z) = A sin@). Here A should 
be interpreted as a complex parameter A = 
A, + Aim where A, and Aim are the real and 

-7. parts, respectively, of A, and r = - 1 Similarly, the state variable z is 
complex: z = x + iy, where x and y are real 
numbers. Iteration of complex functions has 
a long and interesting history in mathemat- 
ics, going back to the early 20th century to 
the pioneering work of Fatou (8) and Julia 
(9). Although many of the basic theoretical 
developments are due to these men, they did 
not have high-speed computers and com- 
puter graphics to display the spectacular 
results of this iteration process. This was one 
of the contributions of Mandelbrot (lo), 
who recognized that simple quadratic map- 
pings of the complex plane have chaotic 
regions that are ofien fractal in nature. 
These are the Julia sets of complex maps, 
which I will describe below. The Mandel- 
brot set, a compilation of all of the possible 
chaotic behaviors of these quadratic maps, 

is, in its own right, an interesting object of 
study (1 0). 

Consider the problem of iterating a com- 
plex function F. That is, for a given initial 
complex number eo, we compute successive- 
ly 

21 = F(%) 

en = F(e1) = F(F(%)) = F2(eo) 

2s = F ( e )  = F3(eo) 

en = Fn(%). 

Note that Fn means the n-fold iteration of F, 
not F raised to the nth power. The set of 
points {q, zl, 22, . . .} is called the orbit of 
the initial point zo. The basic goal of dynam- 
ical systems theory is to understand the 
ultimate fate of all orbits of a given system. 
The question is what happens to Fn(zo) as n 
tends to infinity. There are many possible 
fates in a given system. 

For example, an orbit may behave rela- 
tively tamely by simply tending to a fixed 
point, as illustrated by the simple mapping 
F(z) = 2. If z,, is a complex number with 
absolute value less than one, then a simple 
computation shows that successive squar- 
ings yield an orbit that tends to 0 in the 
limit. That is, all complex numbers inside 
the cirde of radius one tend to 0 under 
iteration of F (z) = z2. This is stable behav- 
ior: all sufficiently nearby initial choices of% 
lead to the same fate for the orbit. 

As another example, consider the expo- 
nential function EA(z) = A exp z with A > 0. 
For real values of z, Fig. 1 shows that the 
graph of EA assumes two different forms 
depending upon whether A > lle or A < 
lle, where e m2.7128 . . . satisfies In e = 1. 
In Fig. lA, EA has two fixed points, q~ and 
pA, defined by the conditions EA(~A)  = q~ 
and EA(pA) =PA. All points in the interval 
-.a < x < pA lead to orbits that tend to q~ 
as n tends to infinity. On the other hand, in 

the interval p < x < a, all points have or- 
bits that tend to infinity under iteration. For 
values of A > lle (Fig. lB), all points have 
orbits that tend to infinity. This may be 
easily checked with a calculator by iterating 
A exp(x) for various choices of initial x. The 
rigorous proof is also easy (11). It follows 
that the dynamical system Ex has two vastly 
difficult behaviors on the real line depend- 
ing upon whether A > lle or A < lle. This 
is an example of a burst into chaos when 
viewed as a dynamical system in the complex 
plane. 

There are a number of different defini- 
tions of chaos in the literature (121. We will 
adopt the following definition: 'a c~mpletely 
chaotic system must exhibit unpredictabili- 
ty, indecomposability, and recurrence. Pre- 
cise definitions of chaos are in (13); I list the 
following somewhat imprecise definitions 
which are peculiar to the special maps con- 
sidered in this report. An iterated mapping 
is unpredictable if it exhibits sensitive de- 
pendence on initial conditions: given any 
initial state zb there is a nearby state wo 
whose orbit diverges fiom a. That is, the 
distance between en and wn must eventually 
be large. Any numerical computation of the 
orbit of may be suspect: a small initial 
error, perhaps because of roundoff, may 
yield a completely different orbit, thus ren- 
dering numerical study inaccurate. 

The dynamical system is indecomposable 
if there is an orbit that eventually enters any 
preassigned region in the plane, no matter 
how small. Thus, this orbit comes arbitrarily 
dose to any point whatsoever in C, and we 
cannot separate the given system into two 
separate subsystems. 

Finally, a dynamical system exhibits recur- 
rence if, given an initial condition eo, there is 
another initial condition wo that is arbitrarily 
dose to zo and that is periodic. Periodicity 
means that there is an iteration n for which 
Fn(wo) = WO. Consequently, wn+l = wl, 
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Ffg. 3. Julia sets of the function CA(z) = rX cos z. 
h e r .  

wn+2 = w2, and so forth, and the orbit of tpo 
is a cycle or periodic orbit. Periodic orbits 
are usually regarded as among the most 
important motions in a dynamical system, so 
our assumption is that they abound. 

A dynamical system in C is completely 
chaotic if it exhibits all three of the above 
properties. This definition is intended to 
mirror the properties of physical systems 
that exhibit turbulence. 

Spurred on by the computer graphics of 
Mandelbrot (10,14), a number of mathema- 
ticians such as Sullivan, Keen, and Goldberg 
have given effectively computable criteria for 
a dynamical system to be completely chaotic 
(15,16). For example, in the case of systems 
such as X exp(z) or X sin@), all we need to 
do is follow the critical orbits of the system. 
For the exponential mapping, this is the 
orbit of 0 (the omitted value), and for the 
sine mapping, these are the orbits of the 
critical points km12 (where the maxima and 
minima occur on the real line). The critical 
orbits are defined to be the orbits of the 
critical and asymptotic values, where critical 

(M) A is approximately 0.67; (right) A is slightly 

values are simply the images of the critical 
points. Note that the sine mapping has 
infinitely many critical points but only two 
critical values and no asymptotic values, so 
checking the above criteria is straighttbr- 
ward. One consequence of Sullivan's recent 
"no wandering domains" theorem (15) is 
that if all critical orbits of these maps tend to 
infinity, then the dynamical system is com- 
pletely chaotic on the whole plane. In the 
example EA(z) = X exp(e), where X > llc, it 
is easy to check that 0 indeed tends to 
infinity, so EA is completely chaotic in the 
whole plane when A > 1Ie. 

Now let us contrast this with the case 
0 < X < llc. Consider the vertical h e x  = 1 
in the complex plane. By Euler's formula 

this vertical line is mapped to the circle r of 
radius k' < 1. Moreover, each point in the 
plane to the left of this vertical line is 
mapped inside the d e  r. Thus, the whole 
left half plane (real part ofz I 1) is contract- 
ed inside itself and, in fact, inside r. Now 

Fig. 4. Julia sets of the function SA(z) = (1 + AQ sine. (M) A = 0, there is a large basin of atuaction 
(black) consisting of points attracted to 0; (right) A 0, the basin is destroyed and the. entire screen . .  - . 
b 4 t h  color, Ggg&ting a burst into chaos. 

apply EA again: r is contracted further inside 
itself. Continuing in this fashion, we see that 
EA cannot be chaotic in this half-plane; for 
example, there cannot be any cydes or peri- 
odic points outside of r. Indeed, one may 
check that the only cyde to the left ofx = 1 
is the fixed point g discussed above. 

Thus we see that as A increases through 
A = lle, there is a dramatic change in the set 
of points on which the dynamical system is 
chaotic. When A < lle, there are no such 
points to the left of x = 1, whereas when 
A > lle, EA is completely chaotic on the 
entire plane. This is the burst into chaos. 

The set of points in the complex plane for 
which a dynamical system such as X exp(z) 
or X sin@) is completely chaotic is called the 
Julia set. This set is often a fkactal (10) and 
may assume spectacular geometric shapes. 
There are a number of different techniques 
for plotting the Julia sets numerically. A 
procedure that works for polynomials is 
described in (1 7) and (18). For the transcen- 
dental maps that we are considering there is 
a special and rather simple algorithm due to 
Hubbard that allows for easy plotting of the 
Julia set (18). It is known that the Julia set of 
a map such as A exp(z) or A sin@) is the 
closure of the set of points whose orbit tends 
to infinity (17). That is, any point whose 
orbit tends to infinity and any limit point of 
such points lies in the Julia set. Note an 
a p e t  contradiction: periodic cydes must 
occur arbitrarily close to any point in the Julia 
setaccordingtothedehitionofrecummce, 
but so too must mints whose orbits tend to 
in6nity. Indeed,*bounded and unbounded 
orbits accumulate at all points ofthe Julia set, 
giving further indication of the unpredictabili- 
ty of these systems on the Julia set. 

Using Hubbard's algorithm, we may thus 
plot the outline of the Julia set by iterating a 
grid of points in the plane a preselected 
number of times N. If the orbit of the point 
remains bounded for all N iterations, we 
assume that the point docs not lie in the 
Julia set and color it black. If, however, the 
orbit escapes to infinity (that is, becomes 
too large for the computer), we assume that 
the point lies in or near the Julia set. To 
capture the dynamics on the Julia set, we 
color such a point according to a scheme 
that assigns the color depending on the 
number of iterations that have occurred 
bebre escape. Points that are colored shades 
of red escape very quickly. Points are then 
colored shades of orange, yellow, green, 
blue, and violet in increasing order, so that 
violet points escape only after a number of 
iterations close to N. 

I have plotted the results for A exp(z) in 
Fig. 2. Note the small chaotic region for 
A s llc (I&). In this picture, almost the 
entire plane is black. Black points never lie in 



the Julia set; indeed, all of these points are 
attracted to the fixed point that I have 
denoted by qA. No matter how large N is 
chosen, a similar picture results. The two 
different pictures for A Z. lie (Fig. 2, center 
and right) are computed with different val- 
ues of N and different values of A. We have 
set N equal to 50 in Fig. 2 (left and center); 
choosing N larger will result in the disap- 
pearance of the black region as more points 
have a chance to escape. N was chosen to be 
200 in Fig. 2 (right). 

These results, together with many similar 
bursts, were suggested initially by mathe- 
matical experimentation. The idea of experi- 
mentation is becoming increasingly impor- 
tant in mathematics as the comwter be- 
comes the mathematician's laboratory. Ex- 
perimentation has led to a number of 
significant new ideas, particularly in dynam- 
ical systems. As further examples of this, the 
above algorithm may be used with minor 
adjustments to find bursts in other families 
of complex entire functions. Figure 3 illus- 
trates a burst in the family iA cos(z) as A is 
changed from ~ 0 . 6 7  (left) to a value slightly 
larger (right). Figure 4 illustrates a burst in 
the family (1 + hi) sin z for A = 0 (left) and 
A 2 0 (right). 

Each of these bursts may be rigorously 
proven to occur. For the cosine family, 
CA(z) = iA cos z, the mechanism that pro- 
duces the burst is analogous to that which 
occurs in the e~~onentiaifamily: an elemen- 
tary saddle-node bifurcation occurs at the 
critical parameter value and allows the criti- 
cal orbits to slip away to infinity. For the 
sine family, however, the mechanism is en- 
tirely different. The family A sin z experi- 
ences an elementaw bifurcation as A in- 
creases through the value 1. This bihrcation 
is reminiscent of the period-doubling bifur- 
cation as described in (2, 13), although it is 
technicallv somewhat different. It is known 
that such a bifurcation does not lead to a 
burst into chaos; rather, the states both 
before and after the bifurcation are auite 
stable. Nevertheless, if a different rouk in 
parameter space is chosen through the value 
A = 1, then a burst is possible. Figure 4 
(left) depicts the Julia set of (1 + Xi) sin z; 
note the large black basin on either side of 0. 
For A small and positive, the Julia set of 
(1 + Xi) sin z changes dramatically, as 
shown in Fig. 4 (right). As before, the 
computer screen fills with color, suggesting 
the explosion. Indeed, one may prove that 
there are parameter values arbitrarily close to 
1 for which the corresponding Julia set is the 
whole plane (19). In fact, the above results 
suggest that any elementary bifurcation in 
complex dynamics (for entire transcendental 
functions) is accompanied by a direction in 
parameter space that leads to a similar burst. 
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Forskolin and Phorbol Esters Reduce the Same 
Potassium Conductance of Mouse Neurons in Culture 

Second messenger systems may modulate neuronal activity through protein phospho- 
rylation. However, interactions between two major second messenger pathways, the 
cyclic AMP and phosphatidylinositol systems, are not well understood. The effects of 
activators of cyclic AMP-dependent protein kinase and protein kinase C on resting 
membrane properties, action potentials, and currents recorded from mouse dorsal root 
ganglion neurons and cerebral hemisphere neurons grown in primary dissociated cell 
culture were investigated. Neither forskolin (FOR) nor phorbol 12,13-dibutyrate 
(PDBu) altered resting membrane properties but both increased the duration of 
calcium-dependent action potentials in both central and peripheral neurons. By means 
of the single-electrode voltage clamp technique, FOR and PDBu were shown to 
decrease the same voltage-dependent potassium conductance. This suggests that two 
independent second messenger systems may affect the same potassium conductance. 

HOSPHORYLATION OF INTRACELLU- 

lar proteins may affect a variety of 
neurobiological control mechanisms 

(1 ) . Second messenger systems such as aden- 
osine 3',5'-monophosphate (CAMP) and 
phosphatidylinositol (2) are important in 
regulating protein phosphorylation through 
protein kinases. Adenylate cyclase catalyzes 
the conversion of adenosine triphosphate to 
CAMP, which increases kinase A 
activity (3). Phospholipase C hydrolyzes 
phosphatidylinositol 4,5-bisphosphate to 
inositol ~hos~ha te s .  which mobilize intra- 

L L 

cellular calcium, and to diacylglycerol, 
which activates protein kinase C (4). We 
have investisrated the effects of activators of " 
protein kinases A and C on resting mem- 
brane properties and action potentials re- 
corded from mouse dorsal root ganglion 
(DRG) neurons and cerebral hemisphere 
neurons grown in primary dissociated cell 
culture. Forskolin (FOR) indirectlv acti- 
vates protein kinase A by activating adenyl- 
ate cyclase (5, 6) whereas phorbol esters, 

which can substitute for diacylglycerol, di- 
rectly activate protein kinase C. FOR and 
the phorbol ester phorbol 12,13-dibutyrate 
(PDBu) increased the duration of calcium- 
dependent action potentials in central and 
peripheral neurons without altering resting 
membrane properties. Data obtained by 
means of the single-electrode voltage clamp 
technique demonstrated that FOR and the 
PDBu-decreased the same voltage-depen- 
dent potassium conductance. 

Application of PDBu ( 1 m  or FOR (10 
or 100 plt) prolonged action potentials in a 
saturable and additive manner for DRG 
(Fig. 1; A l ,  A2, and B1) and cerebral 
hemisphere (7) neurons. Prolongation was 
maximal on the first action potkntia~ after 
application and action potential duration 

Deparunent of Neurologv, Neuroscience Laboraton, 
Buildin 1103 East Huron, University of ~ i c h i ~ k ,  
Ann Artor, MI 48104. 
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