
The Volatility of Stock Market Prices 

If the volatility of stock market prices is to be understood 
in terms of the efficient markets hypothesis, then there 
should be evidence that true investment value changes 
through time sufficiently to justify the price changes. 
Three indicators of change in true investment value of the 
aggregate stock market in the United States from 1871 to 
1986 are considered: changes in dividends, in real interest 
rates, and in a direct measure of intertemporal marginal 
rates of substitution. Although there are some ambigu- 
ities in interpreting the evidence, dividend changes appear 
to contribute very little toward justifying the observed 
historical volatility of stock prices. The other indicators 
contribute some, but still most of the volatility of stock 
market prices appears unexplained. 

W HY ARE STOCK MARKET PRICES SO VOLATILE? THE 
standard deviation from 1871 to 1986 of the January-to- 
January percentage change in the real Standard and Poor 

composite stock price index P, (Fig. 1, solid line) is 17%. The real 
index rose 85% between 1927 and 1929, and fell 52% between 
1929 and 1932. It rose 69% between 195'4 and 1957. It fell 56% 
between 1973 and 1975. What is it that is so different about the 
demand for, or supply of, corporate shares from one year to the next 
that might account for such big price movements? 

Price changes have long been attributed to psychological factors: 
investor overreaction to earnings, dividends, or other news; waves 
of social optimism or pessimism; fashions or fads. However, 
statistical evidence amassed during the past few decades has been 
widely interpreted as implying that markets are "efficient" (1, 2). 

According to the efficient markets hypothesis, price changes occur 
when new information about the true investment value of stocks 
becomes available to the public: the price changes are big because 
the information is about something very important. However, 
statistical analyses (3-9) of aggregate historical data have recently 
raised questions of whether something sufficiently large does indeed 
happen to true investment value to justify the price movements. 

The Simple Eecient Markets Model 
The simple efficient markets model states that the real return R, on 

stocks cannot be forecasted, that all information about future prices 
is efficiently incorporated in today's price, and one can never know 
that stocks are a better or worse investment today than at any other 
time. Formally, the model can be written: 

paid on the stock between time t and t + 1, and r is a constant. E, 
denotes the mathematical expectation (or optimal forecast) condi- 
tional on the set of information available to the public at time t, a set 
which includes P,, PI- l, Pt-2, . . . , Dl- ,, Dt-2, . . . and current and 
lagged values of other data. Equation 1 map be described as a 
random walk hypothesis for prices corrected for dividend payments. 

It follows (10) from Eq. 1 (and a condition that price does not 
have an upward trend through time if dividends do not) that price is 
given by 

P, = E,P: (3) 

P; E D,/(l + r) + D,+l / ( l  + r12 + D,+2/(l + r)3 + . . . (4) 

That Eq. 3 also implies Eq. 1 can be easily verified by substitution 
into Eq. 2 (11). In words, P, is the optimal forecast of P;, the true 
investment value, and P: is the present value, discounted at constant 
rate r, of actual future real dividends. P: map also be described as the 
perfect-foresight price, which is the price that would obtain by the 
efficient markets model (Eqs. 1 or 3) if everyone knew all future 
dividends with certainty. 

The Variability of Forecasts and Forecasted 
Variables 

The optimal forecast of any random variable x cannot be as 
volatile as x itself unless the forecast is very accurate. If, for example, 
the forecast ofx were as volatile as x but only weakly correlated with 
it, then high values of the forecast would tend to be associated with 
negative forecast errors, low values with positive forecast errors. 
This would then mean that the forecast error was somewhat 
forecastable, and so the forecast could not be optimal. 

Formally, the optimal forecast E,x must satisfy 

where p denotes the correlation coefficient and u the standard 
deviation. Since p cannot exceed 1.00, in no cases can the volatility 
of the optimal forecast exceed that of the variable forecasted. 

The Variability of Prices and Perfect- 
Foresight Prices 

One can use Eq. 5 to test the model Eq. 3 by computing P; and 
comparing this with the actual real price P,. This was done (Fig. 1, 
dotted line) with the actual real dividend series D,, which is shown 
in Fig. 2. The discount rate r was taken as the average real return R, 
for this index over the entire sample, which was 8.2% (with a 
standard error of 2 1.6%). Of course no one now knows annual 
dividends after 1985; it was assumed that these are such as to make 

Here, R, denotes the total real return (capital gain plus dividend . . \ L  " 1 
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Fig. 1. Real stock prices and their perfect-foresight counterparts, 1871 to 
1986 (4, 9).  P, (solid line) is the Standard and Poor composite stock price 
indcx in January of year t times 100 and divided by n,, the producer price 
index for year t. The series T, is for January starting in 1900, annual average 
before that. P; (dotted line) is computed from Eq. 4 in the text using the 
dividend series D, that is shown in Fig. 2. P:̂  (dashed line) is computed from 
Eq. 7 in the text using r, = ~ , [ a , + ,  (1 - rl,/200) (1  - r2,/200)]-' - 1, 
where r,, is the January value and r2, is the July value of the prime 4- to 6- 
month comr~iercial paper rate (6-month rate starting in 1979) in annual 
percent. 

1';gS6 = Changing this assumption for P T ~ ~ ~  would have only 
the effect of dragging up or down the recent values of P; [note that 
1/(1.082)10 = 0.45, so that the weight the assumption has in 
determining is less than half that in determining PyYs6; that in 
determining P T ~ ~ ~  is only 4% of that in determining P ; ~ ~ ~ ] .  

As can be seen from Fig. 1, the PT so computed is dramatically less 
variable than the actual real price P,. The forecast P, has shown 
trerncndous variability, whereas the variable forecasted, P;, has 
rlhrnained quite close to a smooth trend line. This appears to 
contradict Eq. 5 where u(x) is the standard deviation of detrended 
I-', (defined as the ratio of P; to an exponential curve, the long-run 
deterministic "trend," drawn through PA)  and cr(E,x) is the standard 
deviation of detrended P, (defined as the ratio of P, to the same 
smooth curve). This finding and analogous findings in terms of 
other measures of variability have been interpreted as seriously 
calling into question the simple efficient markets model (3-9). 

One must be cautious in concluding from this evidence that stock 
prices are too volatile to satisfy Eq. 3. Since the half-life of the 
weighting pattern defining P; in Eq. 4 is about a decade, then even 
tliough \ire have 116 annual observations, we essentially have no 

Fig. 2. Real dm~dends, 1871 to 1985. The nominal dividend series starting 
in 1926 is dividends per share adjusted to index, four-quarter total, fourth 
quarter, from Standard and Poor statistical service. The nominal dividends 
before 1926 are equal to Cowles series Da-1 (24) times 0.13 to correct for 
change in base year In the index. The Cowles series was constructed to 
correspond to the Standard and Poor composite index (by its earlier base 
year). U ,  is the nominal dividend divided by the annual average producer 
price indcx. 

more than about a half dozen more or less independent observations 
of P;. We should not regard the year-to-year choppiness of PI when 
compared to P; as evidence against the model Eq. 1 (12).  Still, a half 
dozen observations could suffice to reject a statistical hypothesis 
convincingly, if the evidence is strong enough.  moreo over, although 
the efficient markets model does not necessarily imply this, it might 
have turned out that people have a great deal of information about 
hture dividends, which would imply substantial correlation even 
between the pear-to-year changes in PI and P;; that would be 
convincing evidence for the efficient markets model, which was not 
found. 

Criticisms 
The conclusion that the behavior of P; is inconsistent with the 

efficient markets model Eq. 3 has been quite controversial. One 
concern of critics (13) has related to the fact that with "smooth" 
time series, the sample standard deviation is in small samples a 
downward biased measure of the true standard deviation. Since P; is 
a smoothed version of dividends, there is reason to suspect that the 
downward bias might be greater for the estimated standard devi- 
ation of P; than it is for the estimated standard deviation of P. If P, 
were only a little more variable than P;, then we might attribute the 
apparent violation of Eq. 5 to such bias, and not to the failure of the 
efficient markets model. However, Kleidon (14) argued that this 
bias alone is unlikely to account for the fact that the standard 
deviation of detrended P, is so much higher than that off';. Another 
criticism (15, 16) of the conclusion against market efficiency is that it 
relies on the assumption that the trend path of dividends was known 
in advance: the so-called "deterministic trend" map in fact be a 
random walk and the uncertainty about future dividends may well 
have been much larger than is suggested by the slight variations 
around the ultimate realization of the random walk. This criticism is 
potentially important but not conclusive ( 1 3 ,  and several papers 
have provided alternative tests that sought to deal with this criti- 
cism, tests that were interpreted as showing excess volatility relative 
to Eq. 3 for stock prices (7-9). 

Price-Dividend Ratios 
A simple way to respond to the criticism concerning trend is to 

detrend by dividing by D,-l, and compare P,/D,- with P;/D,- 1 .  

Since is known at time t, the detrending at time t makes use 
only of information available at that time. Equation 3 implies that 
P,/D,-I equals the optimal forecast of P];/D,-~, and P;/D,-l is 
proportional to a weighted average over h of Dt+k/Dr-l. The model 
thus says that P,/D,-l should be high when dividends can be 
forecasted to increase in the not-too-distant future, and low when 
dividends can be forecasted to decrease. 

A plot of P,/D,-I and P];/D,- I appears in Fig. 3. Here, P,/D,- is 
more variable than P;/D,-I, but it is only slightly more variable. 
However, since the correlation p between P;/D,-l and P,/D,-1 is 
only 0.03, we may say using Eq. 5 with x = P;ID,-~ that P,/D,-l is 
vastly more variable than it should be given the information it 
conveys about future dividend changes. It is worth noting, though, 
that P,/D,-l and P;/D,- I in Fig. 1 share some movements, each over 
a few years or so, until the early 1950's. (The correlation berween 
the nvo series 1872 to 1950 is 0.06.) These shared movements 
might be regarded as suggesting some element of truth to the 
efficient markets model (9). The shared movements occur because 
some of the transient short-run movements in dividends are not fully 
reflected in price, and both P,/D,-l and P;/D,-~ share the same 



denominator. But this is faint praise for the efficient markets model. 
If P, had instead been equal each year just to a simple sum of real 
dividends over the preceding 20 years, implying P, had been much 
less volatile than it was, then the correlation for 1891 to 1986 
between P,lD,-l and P;/D,-, would have been 0.72. 

An Alternative Efficient Markets Model with 
Interest Rate Data 

The evidence regarding market efficiency does not take into 
account any expected variability of real interest rates. To those 
accustomed to hearing that the market rally since 1982 is due to 
declining interest rates, this omission will seem important. Equation 
1 may be replaced by E,(R, - r,) =8, where r, is the 1-year real 
interest rate (the nominal interest rate corrected for the actual 
inflation between time t and time t + l ) ,  and8  is a constant. This 
alternative acknowledges that stocks earn more on average than do 
interest-bearing assets, presumably to compensate stockholders for 
the greater risk inherent in stocks, but that the relative attractiveness 
of stocks versus interest-bearing assets does not change through 
time. It follows as above then (disregarding the fact that the 1-year 
real interest rate r, is not known with certainty at time t) that 

P, is the optimal forecast of PL*, the true investment value in this 
model, and P:* is just the present value of fbture dividends 
discounted by the actual future real interest rates. 

As above, P:* was computed with data on actual dividends paid 
and also data on real interest rates, the latter computed with 
historical data on prime commercial paper. The expected return 
differential8 between stocks and commercial paper was estimated as 
the sample mean differential from 1871 to 1985: 4.8% with a 
standard error of * 1.7%. The P[* with this8 and with a terminal 
condition that makes pri986 = Plgg6 is plotted in Fig. 1 (dashed 
line). P:* is slightly less variable than P,, contrary to the implications 
of the model, and shows virtually no correlation with P, except for 
trend. The stock market rally from 1982 to 1986 is indeed explained 
by the change in real interest rates, but other movements in P, are 
not matched by movements in P:*. There is a conspicuous shared 
movement in P:* and P, between the years 1920 and 1929, but a 
sharply opposite movement between 1929 and 1933. P,lD,- 1 and 
P:*~D,-~ (Fig. 3) are negatively correlated (1872 to 1986, 
p = - 0.02) (18). 

A Consumption-Based Efficient Markets 
Model 

Another way to incorporate time-varying real discount rates into 
the efficient markets hypothesis is to look at nonfinancial evidence 
that might suggest movements in rates of discount. Per capita real- 
consumption expenditure at time t, C,, is an indicator of current 
economic well-being for individual investors. When C, is low 
relative to expected future C,, it is plausible that demand for stocks 
would tend to be low, and thus expected return (and hence the rate 
at which future dividends will be discounted to today's price) must 
be high to induce investors to hold existing shares. In simple terms, 
in bad times people will be inclined to sell some of the shares to 
consume the proceeds, and so price must fall to clear the market. For 
this purpose, bad times must be defined as times when people expect 
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Fig. 3. Price dividend ratio and perfect-foresight counterparts. Shown are 
series plotted in Fig. 1 divided by the D shown in Fig. 2 for the preceding 
year. 

higher C, in the future; they would not be tempted to consume their 
savings if they expected worse times yet in the future. 

This intuitive notion may be formalized by specifying that 
the representative investor maximizes an expected utility func- 
tion E,U, ,E,[u(C,)l(l+ h) + u(C,+l)l(l + h)2 + u(C,+;?)l(l + 
h)3+ , . . ] where u (C ,+~)  is the instantaneous utility from consum- 
ing Ct+k, k 2 0, and h is the subjective rate of time discount. If the 
representative consumer chooses consumption subject to a budget 
constraint to maximize this utility function, it follows that the Euler 
equation u' (C,) = E,[(1 + R,)uf (C,+ 1)]/(1 + h) must hold, where 
u' is the marginal utility, that is, the derivative of the instantaneous 
utility function. The left-hand side of the Euler equation is the rate 
at which marginal utility is given up by consuming an increment less 
today. The right-hand side is the rate at which expected marginal 
utility is gained by consuming the proceeds of the investment the 
following period. If the former did not equal the latter, the 
individual would be better off either by saving more or consuming 
more. It follows from the Euler equation as above that P, is given by 

Pt = E,F* (8) 

c* E DJI1 + Dl+lSt2 + D1+2S13 + . . . (9) 

Stk 26' (Ct+k)l[@' (Ct) (1  + h)k] ( lo)  
Here, c* is the true investment value and Stk is the intertemporal 
marginal rate of substitution between C, and Ct+k. 

We can compute e* using historical data on C, and D, if we 
assume a functional form for u(C,); a common form in the 
theoretical finance literature is u(C,) = ~1-*1(1 -A) ,  A > 0. The 
larger the parameter A (the coefficient of relative risk aversion), the 
more the representative investor is assumed to dislike variation in 
consumption, and the more volatile the c* will be. WithA = 4, and 
1 + h chosen as the sample mean for 1889 through 1984 of 
(1 + R,) (C,/C,+1)4, c* is about as volatile as P, (Fig. 4) (6). 

For the earlier part of the sample there is some positive correlation 
in c* and P, beyond trend, although there is essentially no 
correlation in the years since 1950. The correlation we have 
discovered here is essentially the well-known correlation of the stock 
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Flg. 4. Real stock prices and perfect-foresight counterpart, 1889 to 1985 (6, 
20) .  P, (solid line) is the annual average Standard and Poor composite stock 
price index times 100 divided by a:, the consumption deflator for nondura- 
b le~  and services for the year. (dashed line) is computed from Eq. 9 in the 
text using the nominal dividend series described in the legend to Fig. 2 (24) 
times 100 and divided by a;. C, is the total for the year real per capita 
consumption on nondurables and services. 

market with the so-called "business cycle," a correlation that has 
diminished since 1950 (6). 

For large enough A, (considerably above 4) we will find that Eq. 
5 is satisfied where x is detrended E*. Grossman, Melino, and 
Shiller (19) estimatedA = 21.2 for the sample 1890 to 1983. Such 
a high value ofA may be implausible. For this estimatedd, the Euler 
equation implies, for example, that a person who knows that 
consumption C, will increase 5% between this year and next will 
require an expected return on stocks of over 180% in order to be 
willing to hold the existing shares. 

Anyway, movements in the aggregate stock market are largely 
independent of movements in prices of other long-term assets such 
as housing or land (20). This is not what we would expect if these 
rate of discount movements dominated the movements in the stock 
market. 

Statistical Issues 
Changes in stock market prices have a probability density that 

departs distinctly from the usual bell-shaped normal density. The 
density is "fat-tailed," meaning that occasional big outlier observa- 
tions tend to occur, outliers that are many sample standard devi- 
ations from the mean. The stock market tends to bring up occasional 
new "surprises" that seem outside the expected range provided by 
conventional statistical methods. 

The fact that the usual normal density is not really well suited for 
statistical analysis poses serious problems for formal hypothesis 
testing with financial data. Mandelbrot (21) has suggested that the 
normality assumption be replaced by the assumption of another 
distribution in the stable Paretian family. Such distributions have 
infinite standard deviations. The sample standard deviation will of 
course always be finite, but in no way can it be regarded as an 
estimate of the true standard deviation. In this case, one cannot use 
Eq. 5 ,  which was the foundation of the above analysis. 

Our understanding of the fat-tailed nature of changes in stock 
prices has been altered by the discovery that the variability of 
changes in stock prices changes through time and that this variability 
can be forecasted. For example, Bollerslev (22) has shown in the 
context of a "generalized auto-regressive conditional heteroskedas- 
ticity model" of time-varying variability that the distribution of 
changes in the monthly postwar Standard and Poor composite index 
conditional on recent changes is somewhat less fat-tailed than the 

unconditional distribution. In his model, the unconditional proba- 
bility density of stock price changes does have a finite standard 
deviation. 

The problem posed by the fat-tailed density is however just one 
manifestation of a deeper statistical problem. There is no well- 
defined theoretical statistical model of true investment value, and 
thus there is no way to be sure that any measures of historical 
variability accurately represent the potential variability. It is conceiv- 
able, for example, that the stock market's ups and downs during the 
last century represented genuine new information about a potential 
big disaster (for example, a nationalization) or big windfall (for 
example, a technological revolution) that would utterly change the 
outlook for future dividends. There is really no way to ensure that 
people were not right to change their minds from time to time about 
the possibility of such a rare big event. All we can say is that nothing 
actually happened in history that would seem to justify the price 
movements. Those who criticize the studies finding excess volatility 
in stock prices under the assumption that dividends are a random 
walk (14) or that managers smooth dividends (15) are really also 
relying on an assumption that the outlook for future dividends is 
much different than the historical record would suggest: their 
criticisms imply that dividends will not always stay as close to a 
simple trend line in the future as they have in the past. 

Conclusion 
The price P, or its ratio to dividend P,ID,- 1 generally appears to 

show too much variability given its correlation with its perfect- 
foresight counterpart under any of the models considered here. This 
is not to say that there might not be an element of truth to some of 
the models (witness some of the shared movements in subperiods of 
the series noted above), and statistical significance of these results is 
a difficult issue still unresolved in the literature. But there is certainly 
little indication that the source of stock price movements ought to 
be considered explained by any of these models. 

For the aggregate stock market, the widespread impression that 
there is strong evidence for market efficiency may be due just to a 
lack of appreciation of the low power of many statistical tests (23). It 
should be borne in mind, however, that there are individual 
investment assets whose true investment value does not look like a 
simple trend; for some of these, true investment value may predict- 
ably change sharply, even by orders of magnitude. For such assets, 
the efficient markets hypothesis does appear to suggest useful 
models. The notion of efficient markets, of course, also has value in 
the simple sense that stock market returns are not highly forecast- 
able. 
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Laser Remote Sensing of the Atmosphere 
DENNIS K. KILLINGER AND NORMAN MENYUIC 

Laser beams can be used as long-range spectroscopic 
probes of the chemical composition and physical state of 
the atmosphere. The spectroscopic, optical, and laser 
requirements for atmospheric laser remote sensing are 
reviewed, and the sensitivity and limitations of the tech- 
nique are described. A sampling of recent measurements 
includes the detection of urban air pollution and toxic 
chemicals in the atmosphere, the measurement of global 
circulation of volcanic ash in the upper atmosphere, and 
the observation of wind shear near airports. 

L ASER REMOTE SENSING OF ATMOSPHERIC PROPERTIES 

from a single location is referred to as lidar, an acronym for 
light detection and ranging, and is analogous to radar (1-6). 

In lidar, the projection of a short laser pulse is followed by reception 
of a portion of the radiation reflected from a distant target or from 
atmospheric constituents such as molecules, aerosols, clouds, or dust 
(Fig. 1). The incident laser radiation interacts with these constitu- 
ents, causing alterations in the intensity and wavelength according 
to the strength of this optical interaction and the concentration of 
the interacting species in the atmosphere. Consequently, informa- 
tion on the composition and physical state of the atmosphere can be 
deduced from the lidar data. In addition, the range to the interacting 
species can be determined from the temporal delay of the backscat- 
tered radiation. Lidar has been used to measure the movement and 
concentration of air pollution near urban centers, the chemical 
emission around industrial plants, and atmospheric trace chemicals 
in the stratosphere. Lidar has also been used to measure the velocity 
and direction of winds near storms and airports and to track the 
global circulation of volcanic ash emitted into the atmosphere after 
recent eruptions, such as those at Mount St. Helens and El Chich6n. 
Under optimal conditions lidar can be extremely sensitive. An 
example is the ground-based laser remote sensing of sodium and 
lithium atoms in the stratosphere at ranges greater than 90 km and 
in concentrations as low as a few atoms per cubic centimeter (5). 
More commonly, detection ranges are on the order of a few hundred 
meters to several kilometers and concentration levels on the order of 
parts per million to parts per billion. 

The use of optical backscatter to measure properties of the 
atmosphere is not new, extensive experiments having been conduct- 
ed in the early 1900's with large searchlights. The field of optical 

remote sensing was greatly advanced by the laser, which offers 
several improvements over conventional light sources. These include 
narrow spectral width (<0.01 nm), a frequency or color that is often 
tunable, and high peak power (>lo6 W) available in a short pulse 
(<1 pec)  and in a narrow beam ( < l o  cm in diameter). These 
attributes make the laser an ideal spectroscopic probe of the 
atmosphere. In this regard, a lidar system may be thought of as an 
"activd') remote sensing system since it can illuminate the target 
region, in contrast to a "passive'' optical sensor which detects 
ambient light or thermal emission from the target. 

The applications of lidar systems for the remote sensing of 
atmospheric properties were appreciated soon after the discovery of 
lasers in the early 1960's. Early lidar measurements were made in 
1962 bv Fiocco and Smullin (71 who bounced a laser beam off the 

\ ,  

moon and who also investigated the turbid layers in the upper 
atmosphere; in 1963 by Ligda (8) who used a ruby laser to obtain 
the first lidar measurements of cloud heights and tropospheric 
aerosols; and in 1964 by Schotland (9) who used a temperature- 
tuned ruby laser to detect water vapor in the atmosphere. Progress 
has been continuous since that time, but the discovery of different 
laser sources in the past decade, coupled to improvements in optical 
instrumentation and data processing, has been responsible for the 
recent surge in the number of laser remote sensing systems. This 
improved capability has been accompanied by an increased aware- 
ness of the need to monitor the impact of natural and anthropogenic 
influences on the environment. 

Remote sensing of the atmosphere by optical techniques can be 
accomplished in several ways. One technique involves measurement 
of the absorption spectrum of the atmosphere over a long path 
separating a spectroscopic optical source and a detector (5). Another 
long-path absorption technique uses a configuration, described by 
Hinkley and Kelley (lo), in which a tunable laser source and 
detector are located together and a retroreflecting mirror is placed at 
a distance of several hundred meters; such a system is useful when 
the laser source is weak, since the retroreflector greatly enhances the 
returned radiation. In this article we will primarily be concerned 
with a pulsed lidar system where the laser and detector are located 
together and no retroreflector is used as the target; in this case the 
returned laser radiation is due to backscatter from aerosols or dust in 
the atmosphere or a topographic target such as a hill or trees. 
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