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Randomlv Exact Methods 

Important advances in the understanding of "random" 
processes have produced a variety of stochastic algorithms 
that offer unprecedented scope and utility in the study of 
physical systems. These algorithms represent a departure 
from the usual philosophy inherent in the study of many- 
body problems and have a number of significant features. 
Chief among these features are simplicity, weak depen- 
dence on dimensionality, and ease of transition between 
classical and quantum-mechanical descriptions. These 
methods are also readily adapted for use on massively 
parallel computer architectures. These new stochastic 
methods represent a valuable addition to the tools avail- 
able for the analysis of both equilibrium and tirne-depen- 
dent many-body problems. 

A CURIOUS FEATURE OF PHYSICAL SCIENCE IS THAT THERE are few problems for which the hndamental equations of 
the underlying theory can be solved exactly and the resulting 

predictions compared directly with macroscopic observations. The 
cases for which this can be done are vital for testing the adequacy of 
basic theories, but mathematical difficulties prevent us from making 
such connections on a general basis. Our understanding of macro- 
scopic physical phenomena, therefore, is of necessity based on 
intuition formed from these few important examples and from 
results of approximate calculations. Often these approximate calcula- 
tions are inadequate and typically contain untested assumptions. In 

areas such as chemistry and condensed matter physics, this situation 
is especially frustrating since it is generally felt that the underlying 
microscopic theory is complete. Were we in a position to solve the 
basic equations exactly, meaningful predictions of the equilibrium 
and time-dependent properties of materials, both real and hypo- 
thetical, would be possible. Such predictions could be of significant 
assistance, for example, in the search for new substances with 
desirable physical, chemical, or biological properties. A new class of 
numerical methods based on the study of random processes (1, 2) 
offers the possibility of a general solution to this unsatisfactory 
situation. These "randomly exact" methods represent an unusual 
combination of simplicity, generality, and power. 

Physical science and mathematics are largely concerned with the 
study of order. Thus the study of random processes is, at first glance, 
somewhat odd. Experience has shown, however, that many appar- 
ently random processes when more deeply studied exhibit regular 
behavior. This being the case, a common viewpoint concerning 
random phenomena could be termed "hostile tolerance," hostile 
because of the implicit and often untidy chaos, but tolerant since 
much of the chaos can ultimately be understood or eliminated. In 
this article we describe the evolution of this position of tolerance 
into one of advocacy. 

The study of random phenomena has historically yielded a rich 
harvest of interesting mathematics. An important example is the 
distribution of random errors. Repeated measurements of a well- 
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defined p r o p e q  made with the use of an instrument having finite 
resolution will result in a collection of values distributed about a 
unique limiting mean. That the results contain statistical scatter is 
not surprising. That the distribution of the measurements about the 
mean tends to be of a particularly simple and universal form, the 
Gaussian distribution, is, however, an intriguing expression of 
order. 

A second, and perhaps ultimately the richest, example of order in 
a random process is found in Brownian motion (1, 3 ) .  Originally 
observed by the botanist Robert Brown in the early 19th century as 
the erratic movements of small particles suspended in liquids, this 
phenomenon provided a crucial link in the development of atomic 
theory. Viewed in modern molecular terms, the collisions of solvent 
molecules with the suspended particles cause these particles to 
execute a random walk. What thus appears as macroscopic random 
motion of the suspended particles is, upon closer analysis, only a 
reflection of the ordinary, atomic scale motion of the solvent. 
Viewed on this microscopic scale, Brownian motion contains, 
adapting Kac's words (4, p. 70), "no coins, no chance, no mystery." 
A deeper study of Brownian motion has led to a number of other 
important discoveries. Wiener's formulation of Brownian motion in 
terms of path integrals (5) and his harmonic analysis of random 
processes (6) are two important examples. Much of the motivation 
for the theory of fractals (7) drew heavily on ideas and images from 
Brownian motion theory. Such studies have also refined our under- 
standing of the connection between reversible and irreversible 
processes. 

Having found order in chaos, one might have expected that we 
would have been satisfied. In the past 40 years, however, we have 
witnessed the emergence of another direction of investigation in 
random processes, a line of development that amounts essentially to 
an inversion of the philosophy sketched above (4, 8).  Rather than 
being the objects of study, random processes are now frequently the 
tools by which "regular" systems are investigated. No longer viewed 
as unsettling, these processes are now routinely added to problems 
that contain no physically random aspects. The driving force behind 
this about-face is twofold. On the conceptual level, one often finds 
that addition of suitable noise can actually simplify rather than 
complicate a problem. On the practical level, the development of 
large computing machines makes it possible to utilize these stochas- 
tic approaches quite efficiently. In fact, random methods now form 
the basis of practical, nonapproximate tools for the study of many- 
body problems. 

Monte Carlo Integration Methods 
Classical equilibrium statistical mechanics (9) is an example of a 

field in which stochastic algorithms have made important contribu- 
tions. Basic to this field is the calculation of thermodynamic 
properties starting from microscopic force laws. These properties are 
generally expressed as averages over well-defined, but often compli- 
cated probability distribution functions. The averages are of the 
generic form, 

where x represents a set of coordinates, f(x) is the quantity to be 
averaged expressed as a function of those coordinates, and p(x) 
describes the equilibrium distribution of possible coordinate values 
for the system under study. Except for a few special cases, these 
averages are not calculable by analytic means. Furthermore, ordinary 
numerical methods, such as Gauss quadrature schemes, are not 
especially useful since the integrations are typically of quite high 
dimension. 

In the early 1950's Metropolis et al. (10) devised an ingenious 
stochastic method for the evaluation of averages of the type shown 
in Eq. 1. Their approach was a special case of what have become 
known as Monte Carlo methods. In these methods, as can be 
guessed from the colorful name, one devises a suitable random - 
"game" in which the answer to the question under study emerges as 
the game is played. For the integration problem above, the game is a 
random walk in x-space designed in such a way that the probability 
of visiting a particular point x is proportional to the statistical 
weight for that point, p(x). So constructed, the set of points visited 
in an N-step random walk, (x,), n = 1, . . ., N, can be used to 
estimate <f, in Eq. 1 according to the expression 

For finite AT this estimate will have a statistical uncertainty associated 
with incomplete sampling that can be shown to be proportional to 
qf/V%, where crf is the standard deviation off; and is defined by 

The Metropolis method has a number of remarkable features. At 
its core the method is a curious one since it represents the exchange 
of a well-defined problem, that of computing integrals, for one 
involving the study of an artificially constructed random process. 
This exchange, however, produces an algorithm with significant 
advantages. Chief among these advantages is that the resulting 
method applies with equal ease to small or large dimensional 
problems, producing the l/V%convergence rate in either case. The 
method has the additional feature of variable resolution: short 
random walks rapidly produce order-of-magnitude estimates where- 
as more extensive random walks permit further refinement. This 
variable resolution allows the precision of a calculation to be 
adjusted to match the particular problem under study. 

Of particular importance is the simplicity of the Metropolis 
method and its convenience with respect to use on present and 
future computing machines. Anticipating parallel computing appli- 
cations, it is important to note that Monte Carlo games can be 
played independently, implying that these methods can easily take 
advantage of relatively simple and large-scale parallel machines. 

The Metropolis approach is extensively (11) used, with one class 
of applications, "numerical experiments," being especially valuable. 
The calibration of approximate analytic theories is an important 
task. If well understood with respect to accuracy and limitations, 
predictions of such theories can be used with confidence. Without 
such calibrations, such methods frequently are reduced to expres- 
sions of hope. Comparisons of the predictions of approximate 
methods with experimental results are generally ambiguous since the 
effective force laws describing the interaction of composite systems 
(such as atoms or molecules) are themselves often unknown. Since 
the Metropolis method can proceed, without untestable assump- 
tions, from the specification of a microscopic force law to a 
prediction of equilibrium properties, it can serve as a source of 
synthetic data on model systems with specified interactions against 
which the quality of approximate analytic theories can be judged 
unambiguously. Conversely, one can probe the quality of a particu- 
lar interaction force law (empirical or otherwise) by comparing the 
results of numerically exact Monte Carlo predictions with laboratory 
data. 

The development of recent theories of dense fluids illustrates the 
role of Monte Carlo methods as numerical experiments (12). Such 
experiments make it possible, for example, to discern those portions 
of the microscopic interactions that are principally responsible for 
determining fluid structure. Since nature has the final word concern- 
ing its microscopic forces, it would be difficult to devise a physical 
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Fig. 1. Radialdistribution 1.6 I i I 1 

functions, ~ ( r ) ,  for a simple 
Lennard-Jones fluid com- ,2 
puted via classical Monte 
Carlo methods. Results ob- - 
tained by using the full in- 0.8 

teraction are denoted by 
CM and those obtained by 0,4 
using the repulsive portion - WCA 

of the interaction 1121 are 
denoted by WCA. ~he ' t em-  
peramre is kT/e = 5.0 and 0.6 1.0 1.4 1.8 2.2 2.6 

r '0 
the density is pa3 = 0.365. 

experiment that would directly probe the assumptioil, for example, 
of short-range, packing dominance of dense fluid structure. Design- 
ing such an unambiguous test using Monte Carlo methods, hourev- 
er, is a relatively simple matter. Figure 1 shows the results of a 
Monte Carlo calculation of a particular thermodynamic property, 
the radial distribution function, for a chosen thermodynamic state of 
a simple classical fluid. The radial distribution function denotes the 
ratio of the density observed in the fluid as a fhction of the distance 
from a specified atom compared with the overall bulk fluid density. 
In one set of classical mechanics calculations (CLM), the atoms in the 
fluid are assumed to interact by means of painvise additive Lennard- 
Jones potentials, 

where E and u are energy and distance parameters, respectively. In 
the second set of results (WCA), the pair interaction is taken to be 
the repulsive portion of the Lennard-Jones interaction 

VWo(rlu) = 4~[ (u l r )  l 2  - (u/Y)~] + E, for Y < u 
= 0, otherwise 

the Weeks-Chandler-Andersen (WCA) form (12). The agreement of 
the two results in Fig. 1 is a measure of the quality of the assumption 
of the dominance of short-ranged, repulsive forces for this example. 
Similar numerical experiments provided the motivation for the 
development of simple perturbation theories of dense fluids orga- 
nized around short-range reference systems (12). The development 
of these theories is an example of the intelligent, interactive combi- 
nation of analytic theory and numerical experiment. 

Stochastic Dynamics 
In the preceding section we have examined the application of 

random methods to a broad class of equilibrium problems. Varia- 
tions of the same algorithms are also well suited to investigation of 
time-dependent problems and represent an important generalization 
of familiar molecular dynamics methods (13). Using these general- 
izations, we can study stochastic differential equations with only 
minor modifications of the techniques that have been devised for the 
study of their ordinary counterparts. 

As a particular example of how these dynamical applications 
proceed, consider the Langevin equation for a free particle, 

dpldt = - yp + R(t)  (4) 

This equation describes the time development of the momentum, p, 
of a particle in a viscous medium, a medium that supplies both a 
frictional force, characterized by the constant y, and random thermal 
noise, denoted by R(t) .  Since we are ultimately interested in 
stochastic differential equations that do not have simple analytic 
solutions, we seek a general approach to the treatment of Eq. 4. The 

required approach is implicit in Chandrasekhar's classic review (3) of 
Brownian motion. If we discretize Eq. 4 on a time grid where 
t, = nAt, it is not difficult to show that if At is small, then Eq. 4 
implies that 

Here the At term arises from the systematic frictional force while B, 
is defined in terms of the random force by 

r i n  + l 

From the properties of Brownian noise, it can be shown that B, is a 
Gaussian random variable with a mean and second moment speci- 
fied by 

<B,> = 0 (7a) 
<B,$I> = tin1(2mykTAt) (To) 

where m is the particle mass, k is Boltzmann's constant, and T is the 
temperature of the medium. Equations 5 through 7 provide a recipe 
by which we can solve the original Langevin equation numerically in 
the same fashion as we would an ordinary differential equation, 
except that we must add suitably constructed "noise" to our 
procedure. This noise is not arbitrary, but, as indicated in Eq. 7b, 
must be balanced with the frictional dissipation to ensure thermal 
equilibrium. The present method avoids the pitfall of attempting to 
develop quadrature expressions for the time integral of the random 
force, a difficult task in view of its variation on all possible time 
scales. It is straightfonvard to generalize the above approach to the 
case of many-body interacting systems and to problems with time- 
dependent frictional terms requiring solution of the generalized 
Langevin equation (14). 

Numerical Langevin equation methods, such as those sketched 
above, have played a valuable role in the study of condensed phase 
systems. A variety of such approaches have been used to study gas- 
moleculelsolid-surface collision processes, for example (14, 15). For 
this problem, it is unnecessary and inefficient to describe in detail the 
time evolution of the entire lattice since in a typical gas-solid 
collision the incident species interacts strongly and directly with 
only a relatively small number of lattice atoms. The remainder of the 
lattice functions as a heat bath capable of exchanging energy with 
the interaction region. This physical observation translates mathe- 
matically into the replacement of the equations of motion for the 
entire adsorbate-lattice system with Langevin-like equations for a 
reduced set of "prima$' variables. By means of this rigorous 
transformation, the gas-solid study, originally involving the study of 
a large set of ordinarp differential equations, is reduced to the study 
of a relatively small set of stochastic equations. The use of random 
processes is a general device to reduce the dimensionality of the 
problem under study. Extensions of these methods to study the 
structure and dynamics of molecular fluids have been developed by 
Adelman (16). Details of numerical Langevin applications are 
discussed extensively elsewhere (14, 15). 

Related stochastic dynamics methods are linked to the original 
Metropolis equilibrium method and can be used to justify the 
frequent use of that approach as a pseudo-dynarnical technique. To 
see this connection more explicitly, consider a particularly simple 
case in which the classical equations of motion are propagated 
numerically, constrained so that the velocities are completely ther- 
malized prior to each iteration. Although no longer Newtonian, the 
coordinates generated by such a trajectory will be described by a 
Boltzmann distribution, Since particles are moved according to a 
procedure that takes into account their interactions, one might 
expect that this sampling procedure would be efficient. If the 
propagation of the classical equations of motion is inaccurate 
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because of numerical round-off error or inadequate nunlerical 
integration methods, then one must take additional steps to assure 
that a proper thermal distribution is produced. This means that 
rather than accepting the results of the stochastic algorithm directly, 
they must first be "filtered," with a secondary random process 
chosen to produce the desired statistical distribution. Operationally, 
this means that the stochastic algorithm is used to generate "trial" 
configurations that are subsequently accepted or rejected according 
to the principles of detailed balance. The Metropolis Monte Carlo 
method corresponds to a particular choice of the stochastic algo- 
rithm used to generate trial configurations, a choice that incorpo- 
rates thermal randomization, but one that ignores the microscopic 
forces in the subsequent propagation (17). The microscopic forces 
enter the basic Metropolis procedure only through the secondary 
rejection process. 

Monte Carlo Path-Integral Methods 
The discussion has thus far been principally concerned with the 

equilibrium and time-dependent applications of stochastic methods 
to classical-mechanical problems. These methods, however, have 
broader applicability: Brownian motion theory and quantum me- 
chanics can be coupled for the study of analogous problems. This 
flexibility and ease of transition between quantum and classical 
descriptions is a particularly valuable characteristic of the current 
approaches. Moreover, the ability to generate effectively exact 
solutions to the basic quantum-mechanical equations for complex, 
interacting, many-body problems offers us an unprecedented analyt- 
ic tool. 

The origins and use of quantum Monte Carlo methods to study 
ground-state solutions to the Schrodinger equation have been 
reviewed by Ceperley and Alder (18). In this approach, the isomor- 
phism between the wave equation in complex time and the diffusion 
equation with branching is exploited to develop a Monte Carlo 
diffusion algorithm that generates the solution to the original 
quantum-mechanical problem. Applications of this approach show 
great promise for both few- and many-body problems. 

Monte Carlo methods are also available to treat equilibrium and 
dynamics problems at finite temperature. Here the general approach 
is to concentrate attention on the quantum-mechanical density 
matrix, p(xl,x,P), defined in terms of the Hamiltonian H, as 

where p = l1kT. Knowledge of p for real values of (3 is sufficient to 
calculate equilibrium properties. If, in addition, we have knowledge 
of p for complex P, then we can also extract dynamical information. 

Various practical procedures for constructing the relevant density 
matrix elements can be developed, starting with a path-integral 
representation (1 8-20). In this approach we parameterize the paths 
that enter into the formal representation of the density matrix, 
thereby transforming the path-integral problem into a high-dimen- 
sional, but otherwise ordinary problem in integration. The opera- 
tional result of this procedure is to transform the original quantum- 
mechanical problem in the variable x into an effective classical 
problem in an enlarged space that contains the original coordinate 
plus all path variables. Chandler and Wolynes have discussed this 
"classical isomorphism" extensively (19). The point for the present 
discussion is that ordinary Monte Carlo integration methods, 
familiar within classical-mechanical applications, can thus be 
brought to bear on quantum-mechanical problems. This develop- 
ment gives us the same type of general, exact stochastic methods for 
quantum-mechanical problems that have previously proved so useful 
within classical mechanics. 

Table 1. Calculated Gibbs free energy offormation of a 13-particle cluster of 
argon atoms as a function of temperature (T) at a pressure of 1 a m .  Quoted 
are results of both classical (CM) and quantum-mechanical (QM) Monte 
Carlo calculations. Approximate quantum-mechanical results (24) are shown 
for comparison (HPW). Numbers in parentheses are Monte Carlo uncertain- 
ties in the last reported digit. 

The scope of applications of path-integral Monte Carlo methods 
is expanding rapidly (21). We consider here a few such examples, 
each chosen both to illustrate a generic application and to indicate 
the general insight that such methods can supply. 

The study of molecular clusters is important both from a concep- 
tual and from a practical point of view. Studies of cluster properties 
as a function of their size make it possible, for example, to probe the 
onset of bulklike behavior. Cluster studies enable us to examine the 
process of solvation and the effects of solvent cages on the dynamics 
of various molecular processes. Knowledge of the thermodynamic 
properties of nucleation microclusters would, in particular, enable us 
to estimate the kinetics of homogeneous nucleation and would lead 
to an improved understanding of condensation phenomena (22, 
23). Methods aimed at predicting the thermodynamic properties of 
clusters have to contend with problems that are simultaneously 
many-body, anharmonic, and quantum-mechanical in nature. Typi- 
cal approaches to such problems have tended to concentrate on one 
or another of these aspects, proceeding on the assumption that the 
others represented small effects. Using path-integral Monte Carlo 
methods, it is possible to study the properties of molecular clusters 
without resorting to such approximations. Table 1 lists some 
representative results of a particular path-integral Monte Carlo study 
of the equilibrium properties of prototype clusters. Shown are the 
changes in the Gibbs free energies resulting from the formation of 
13-particle argon clusters from dispersed atoms. To investigate 
quantum-mechanical and anharmonic effects, we computed results 
(20) by using a variety of methods, including classical Monte Carlo 
(CM), path-integral Monte Carlo (QM), and an approximate 
quantum-mechanical calculation (24) based on harmonic force law 
assumptions (HPW). For simplicity the argon atoms in the Monte 
Carlo calculations were assumed to interact by painvise Lennard- 

Fig. 2. Gibbs free energies 
of formation of n particle 
argon clusters at a tempera- 
ture of 10 K and a pressure 
of 3.34 x 10-18 atm. Both 
quantum (QM) and classical 
(CM) Monte Carlo results 
are indicated (20). 

12 DECEMBER 1986 ARTICLES 1359 



Jones potentials. Table 1 illustrates that at low temperatures the 
clusters are quantum-mechanical in nature, but that at these low 
temperatures their behavior is essentially harmonic in character. 
Conversely, at high temperatures the clusters are appreciably anhar- 
monic but classical. Most importantly, there is a temperature range 
over which the argon clusters are neither classical nor harmonic in 
their behavior, implying that attempted treatments of cluster prop- 
erties based on either of these assumptions will, in general, fail over 
some finite temperature range (Table 1). Figure 2 illustrates the 
quantum and classical free energies of formation of these argon 
clusters as a function of cluster size for a particular temperature and 
pressure. The two sets of results differ with respect to details, 
implying that for these particular conditions quantum effects are 
significant. Both sets of results predict a prominent free-energy 
barrier, commonly discussed in terms of surface effects, and both 
predict "magic number" behavior, local free energy minima associat- 
ed with cluster sizes that are thermodynamically metastable with 
respect to growth or decay. 

These cluster results emphasize a common pitfall in the analysis of 
experimental data. Empirical microscopic interactions are often 
inferred by fitting approximate theories to experimental data. If the 
predictions of the approximate theories are inaccurate, then the 
interactions extracted bv such a ~rocedure will necessarilv be flawed. 
Exact methods of the type discissed above avoid this difficulty. 

Quantum-mechanical corrections to extended systems have also 
been studied with the use of Monte Carlo path-integral methods. 
Figure 3 illustrates one such prototypical application. Shown are the 
classical and quantum-mechanical radial distribution functions com- 
puted for a particular model of a specific thermodynamic state of 
liquid helium. Quantum corrections are large for this system. 
Extensive applications of path-integral methods to condensed phase 
systems, including those with appreciable exchange effects, are 
discussed elsewhere (25-27). 

One exciting recent development is the use of Monte Carlo path- 
integral methods in quantum dynamics. As emphasized by a number 
of investigators (28-32), knowledge of the density matrix for 
complex temperature is sufficient to extract a variety of dynamical 
information. Current approaches are limited to relatively short-time 
information, but even this information is adequate for a variety of 
important problems. The origin of this short-time limitation is 
related to the mathematical problems inherent in performing Monte 
Carlo integrations of rapidly oscillatory integrands, a situation that 
arises as a result of the complex exponential in the propagator. 
Significant progress in this area is likely. 

6 1 1 1 1 '  Fig. 3. Radial distribution 
functions, ~ ( r ) ,  for liquid 
helium computed by both 

4 quantum (QM) and classical 
(CM) Monte Carlo meth- 

m ods. The temperature is kT1 

2 E = 0.5 and densiry is 
pu3 = 0.365 (26). 

increasingly becoming the tools for its analysis. Stochastic approach- 
es now form the basis of general methods for the analysis of 
equilibrium and time-dependent problems in both classical and 
quantum physics. These approaches are subtle in construction, 
simple in practice, and increasingly important in physical science. 
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