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Fig. 5. Best-fit rectangular hypcrbolns (Michnclis- 
Mcntcn plots) for the mcdri nor~l~al  valucs (upper 
cuwc) and for the patient's t i~ t a  (lower curve) in 
t!lc red blood cell (KBC:) cMux assay, cxtrnpolatcti 
to 37°C ;uld to high lnctatc Ic\,cls. The I<,, ~ralucs 
arc the s.tmc as ill Fig. 4; the V,, valucs Jrc 8.0 
~ i f i i l n i i n(SEM 11%)for the control subjects and 
2.4 ~ i v l l l m i n(SEM 16%) for the p~tictit. At 
lactatc lcvcls above 8 1nA4 (whrcl~ normallv occur 
only in musclc), the patient's cclls canriot signifi- 
c;ultly incrcnsc lnctntc efflux to limit frlrthcr clcva- 
rions. 

blood cell lactate transpon-er and a fc~ilure of  
IIIUSC~C lactatc to  decline normally after cxcr- 
cisc. The only parsimotlious explanation is 
that human skclctal muscle and erythrocytes 
share the same genetic lactate transporter, or 
at least a common genetic subunit, which is 
defective in this patie~lt. 

Why call this a disease of muscle, when 
the ciefect is most convincingly demonstrat- 
cci ill the erythrocyte? The reason becomes 
clear fi-otna comparison of the mean norrllal 
and the patient's l ~ y ~ ~ c r b o l i c  plots at highcr 
lactate levels (and at body temperat~ire). 
This is easily cionc, since the bitlding con- 
stant chaiigcs little mith temperature, and 
the activdtion energy is known (11). 'l'he 
discrepat~cy from normal only bccotiics 
a~arkcd above 8 trlM lactate, where the 
patient's efflux can n o  longer itlcrcasc signif- 
icantly upon further lactate increase (Fig. 5). 
The only tissue in the body nornmally har- 
boring such high levels is skclctal musclc, 
whcrcitl the lactlltc may reach 25 to 30 nuM 
upoti cxtrcmc cxcrcisc. Indeed, an important 
role of the erythrocyte carrier may be to  
assist the musclc's lact~ltc excretion. Since 
the red blood cclls contain a third of the 
tot31 water volume of  blood, their rapid 
upmke of lactate egressing from rrluscle to 
plasin~l would retard the rise of plasma 
lactatc concentration and ElcilitLlte colltill- 
ucd efflux from inusclc. 

After extreme exercise, then, this p;ltictlt 
in:ly be ~11lab1c to dccrcasc his intr;~rnuscular 
acidosis with sufficient rapidity and ~llight 
therefore be at risk of acute r11abdorn)-olpsis 
and myoglobinuria. 111 the :lbsetice of  es-
trcnic stress, however, he might encounter 
no difficulties; and this defect, like myo- 
denyl late deanlitlase deficiency (8) ,  niay 

well bc encountered it1 asyinptonlatic sub- 
jects, once the methods for detection arc 

wiciely applieci. ~ ~tra~lsportcr defect ~ t 
flya)' ultimatcly be k)und to a comnoll 
cause of chronically clcvatcd serum CK Icv-
cls and of ~mcxplaincd attacks of rhabdo- 
myolysis 2nd nlyoglobinuria in patients utl- 
ciertaking extreme muscular activity. 
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Energy Sources for Detritivorous Fishes in the 
Amazon 

Detritivorous fishes form an important part of the ichthyomass in the Amamn basin. 
Most of these fishes are contained in the orders Characiformes and Siluriformes 
(catfishes). The Characiformes constitute more than 30%of the total fish yield in the 
Amman basin, whereas the catfishes are of rninor importance. Stable isotope data 
indicate that Characiformes species receive most of their carbon through food chains 
originating with phytoplankton, while the Siluriformes receive a significant part of 
their energy from other plant sources. 

THE I'lIIILWlIY I'ROTEIN SOURCE F011 

the human population it1 the Ama-
zon basin is fish (1).More than 30% 

of the fish consumed in the Amazon basin 
arc dctritivorcs (2-4), and evidence shows 
that this percentage has risen in recent years 
(4, S).Most of thcsc detritivorous fishes arc 
contained in the order Characiforines (fam- 
ilies l'rochilodontidac and Curimatidac), 
whereas the catfishes (Siluriformes) form a 
second minor group. 

Effective managanent of thcsc popula- 
tions will rccluirc an undcrstanditlg of fac- 
tors controlling their production. A critical 
first step will be to  identify the plant carbon 
sources that fuel the detritivore food chain. 
'filere arc four gcncml groups of autotrophs 
in the Amazon region that could support 
detritivorous fishes, either directly o r  indi- 
rectly: trees, phytoplankton, periphyton, 
and aquatic macrophptes. Both aquatic mac- 

rophytcs (5, 6) and trees (,7)have bccn 
suggested as the principal carbon source for 
detritivorous fishes in the Amazon. There is 
also some evidence that algae can be impor- 
tant in the dctritivorc diet (5, 7). These 
hypotheses, however, arc largely b~lscd on  
visual analyses of  stomach contents, which 
can be misleading. These fishes are bottom 
feeders, and the stomach analyses generally 
rcvc:ll a complex mosaic of food itenis in 
their diet, including microinvertebratcs, al- 
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gae, bacteria, and detritus, usually domitlat- 
cd by detritus (5, 7, 8).  It is not clear, 
though, which of these food items is digcst- 
cd and assimilated by the fish (8)and, with 
the exception of live algae, it is not possible 
to idcntifj the autotrophic carbon sourcc 
from which the material originated. 

Stable isotope tracers offer an alternative 
and more direct approach to this cluestion. 
Isotope analysis based on the use of 6I3C, a11 
effective tracer of carbon flow through food 
chains (9 ) ,  has been cspccially useful it1 
identifying t l ~ c  plant carbon sources that 

Fig. 1. l'lant and POC (closed circles) and fish 
(open squares) collection sites in the central Ama- 
zon basin. 
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support production at h~gher troph~c levels 
(9). We present here the rcsults of a 6I3c 
tracer study of c,lrbon How through fish 
detr~t~vorefood chalns In the central Ama- 
zon bas~n. Our objcct~vc was to ~dcn t~ fy  the 
principal autotrophic carbon sources sup-
porting detritivorous fish production in the 
Amazon. 

Plant (n = 147) and fish (n = 56) sam- 
ples were collected during high- and low- 
water seasons in 1984 and 1985 (10). Sus- 
pended particulate organic carbon (l'OC), 
phytoplankton, pcriphyton, tree parts, and 
aquatic macrophytes were sampled at a vari-
ety of sites in the central Aniazotl basin (1 1)  
(Fig. 1). Fish samplcs wcre collected near 
Manaus and over niost of the Amazon River 
system by the Manaus fishing Heet (Fig. 1). 
Preliminary processing of the samplcs was 
carried out at Itlstituto Nacional dc Pcsclui- 
s3s da AmazBnia (INl'A) in Manaus (12), 
and isotope analyses were pcrfornled at Cen- 
tro dc Encrgia Nuclear na Agricultura 
(CENA) in Pir~cicaba (13). 

7I he rcsults of the isotope analyses arc 
shown in Fig. 2. Some published valucs for 
Ammnian plants were also used in dctermin- 
ing the mc&s, ranges, and 95% confidence 
intervals for the plant end members (14). 

The C4 macrophytes (principally Echin- 
ochloa polyrtachya and Paspalurn repcns) were 
the heaviest (that is, most positive) plant 
end mcmbcrs with a mean 6'" value of 
-12.9 per mil. The next heaviest plant 
groups were pcriphyton, C3 macrophytcs, 
tree wood, and tree seeds with mean 6I3C 
values of -26.8, -27.6, -27.6, and -28.3 
per mil, respectively. A Student-Newman- 
Kculs (SNK) test indicated no significant 
difference after paired comparison of these 
four means ( P  2 0.05). Tree leaves were 
significantly lighter than tree wood and 
seeds (SNK tcst; P < 0.05) with a mean 
valuc of -30.0 per mil. 'l'he mean 6% 
valuc fix POC samplcs containing more 
than 60% live phytoplankton was -33.3 per 
mil, and the mean for all POC samplcs was 
identical. The similarity of these nvo means 
suggests that POC in the lakes is derived 
primarily from phytoplankton. Since phyto- 
plank to^^ is the most negative plant end 
member, this result is tulambiguous: the 
contribution of carbon from other plant end 
mcmbcrs must be relatively small. 

The mean 613C values for the characiform 
dctritivore species ranged between -32.5 to 
-34.2 per mil and wcre not sig~lificantly 
different (SNK test; 1' 0.05). The siluri- 
form catfishcs wcre significantly heavier 
(SNK tcst; 1' 5 0.05) with a mean 6°C 
valuc of -26.0 per mil. 

The 6% values for the catfishcs fell in the 
middle of the plant end-member values. 
Since there are more than two plant end 
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Fig. 2. Ranges (horizontal lines), means (vertical 
lines), and confidence intervals (rectangles) of 
8°C values (per mil) for POC, the seven autotro- 
phic end mcmbcrs, Silurifommcs, and five Characi- 
forlncs fish species. Four Silurifor~ncs fish species 
wcrc pooled. 

members, the carbon sourcc for this fish 
group is uncertain. Catfishes could be re- 
ceiving carbon pri~llarily from pcriphyton or 
from an unknown mixture of plant end 
members. We can only conclude that neither 
phytoplankton nor C4 macrophytcs provide 
all the energy for this group. 'l'he results for 
the characiform species arc easier to intcr- 
prct since their 6I3C valucs fell close to the 
most ~lcgativc end member, phytoplankton. 
111 this case the result is unambiguous. The 
Characiformes must receive a large fraction 
of their carbon from phytoplankton and 
very little from the other plant groups (15, 
16). The maximum contribution of tree 
leaves (the lightest alternative carbon 
source) to the carbon balance of Sernaprochi- 
lodus taeniurus, and the other characiform 
species is 30 and O%, respectively, whereas 
the contribution of C4 macrophytes (the 
heaviest alternative carbon sourcc) docs not 
exceed 5% for any of the five species (1 7). 

Although it was possible to idcntifv the 
carbon sourcc only for the characiform spe- 
cies, this result is important. The characi- 
form detritivorcs are the most important 
group of food fish in the Amazon, account- 
ing for over 99% (2) of the dctritivorous 
fish yield and over 30% of the total fish 
harvest (2, 3).Thus, our rcsults suggest that 
a large portion of the fish consumed in the 
Amazo11 is derived through food chains 
beginning with phytoplankton. Macro-
phytes, which have been proposed as a 
major energy source for detritus-based food 
chains, appear to be relatively unimportant. 
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Expression of Bovine 1701-Hydroxylase Cytochrome 
P-450 cDNA in Nonsteroidogenic (COS 1) Cells 

Cortisol production requires the activity of only 17a-hydroxylase, whereas the 
formation of sex steroids requires both 17a-hydroxylase and 17,20-lyase activities. 
Studies in reconstituted enzyme systems have suggested that a single steroid hydroxy- 
lase, 17a-hydroxylase cytochrome P-450 (P-45Ol7,), catalyzes both activities. By 
expression of bovine adrenocortical P-45017u in COS 1 (transformed monkey kidney) 
cells, which normally contain no detectable P-45Ol7,, it has now been established in 
situ that a single polypeptide chain does catalyze both the 17a-hydroxylase and the 
17,20-lyase reactions. This heterologo~is system supports 17a-hydroxylation of preg- 
nenolone and progesterone with equal efficiency, but catalyzes about five tinles as 
much 17,20-lyase activity when 17a-hydroxypregnenolone is the substrate than when 
17a-hydroxyprogesterone is the substrate. For these activities to be observed in COS 1 
cells, newly synthesized apocytochrome P-45Ol7, must bind heme and insert into the 
endoplasmic reticulum such that endogenous cytochrome P-450 reductase can support 
hydroxylation. Thus, COS 1 cells are a usefill system for expression and study of 
various forms of cytochrome P-450. 

?runrss OF MICRC)SC)MAL 17a-HY- 
droxylasc cytochromc P-450 (P- 
45017n), as with other eukaryotic cy- 

tochron~es P-450, have bccn conlplicatcd by 
problcn~s associated with purification frorll 
thcir mcmbrane (microsoma1 or inner rnito- 
chondrial) environments and subsequent re- 
constitution of thcir activities in vitro. The 
sinlilaritics in phj~sical and biochemical char- 
acteristics of different cytochromcs 1'-450 
( I )  together with potential artifacts gcnerat- 
cd during solubilization, purification, and 
reconstitution proccdurcs (2) hme made it 
difficult to  unambi~~o~ouslv .tssian one or 

ties changes during purification proccdures 
(3 )  and in vivo under differing physiological 
conditions (4). Also, in humans, deficiencies 
associated with thcsc activities have been 
reported for cithcr 17a-hydroxylasc activity 
(5) or 17,20-lyasc activity (6). Thus, afier 
identifying and characteri~ing a con~plemcn- 
tary DNA (cl3NA) clone specific for bovine 
P-45OI7, (3, we sought to  clarifU the unccr- 
tainty surrounding the reported dual activi- 
tics associated with the 1'-45017, polypcp- 
tide chain. 

Our strateg)~ Ivas to  analyze the activities 

- 
~llore dctivitics to  an individual forlll of M. X Zubm and E. l i .  Sinips~n, 1)' " t n1~11 t~o f  

I31ochcnlistiy and Obstetrics and C;ytieco[)g\. and the 
cytochromc P-450. Preparations of purified ce,;l rr ,,,d lda ~,.,,,, cellrer, u,l;,,e,;, of .Texas 
~dreI locor~ica~ and tcsticular P.45Ol7, pas. Health Scic~~ce Ccriter, I>allas, 1'X 75235. 

M. li .  l\'ater~nan, I>epattnlent of Riochcm~st~y, Uni\ler- 
sess l7a-hydroxylasc activity necessary for ,;,. Of.~csas ~ ~ i ~ ~ l ~ h  science center, ~ > ~ l l ~ ~ ,  TX 75235. 
the uroduction of cortisol. as lve11 as 17.20- - - 
lJ ldS~ act,vit): rccluired for sex *Presnt address: l>epartsllerlt of Riochc~llistry ,lnd Mo- 

lccular Biology, I~ianlard U~livcrs~ty, Cambridge, M A  
tion (3). Honevcr, the ratio of these act i~i-  02138. 

SCIENCE, VO1,. 214 


