
Predicting New Solids and Superconductors 

It is now possible to start with a simple model of a solid 
composed of atomic cores and itinerant valence electrons 
and compute the total energy for a given structural 
arrangement of atoms with enough precision to predict 
the existence of new solids and their properties. The 
application of the model based on the pseudopotential 
method is described with silicon chosen as a prototype 
material. With only information about the constituent 
atoms, the electronic, structural, vibrational, and even 
superconducting properties of solids can be calculated 
from first principles. The successful predictions of super- 
conductivity in highly condensed hexagonal silicon and 
the existence of new high-pressure semiconductor phases 
are highlighted. A discussion is presented of the use of the 
method to discover new stable or metastable solids at 
high pressures. 

W ITH MICROSCOPIC THEORY, IT IS NOW POSSIBLE TO 

predict the existence and properties of stable solid struc- 
tures from only the atomic numbers and atomic masses 

of the constituent elements. Successful examples (1) have led many 
researchers to believe this is the beginning of an era in which 
materials with desirable properties will be designed through the use 
of computers and quantum theory. 

Quantum theory was created in the 1920's; but unlike its impact 
on the study of atoms, its direct application to specific solids was 
slow in coming. Idealized models of solids were constructed, and the 
basic physics governing many phenomena such as superconductivity 
was determined without detailed descriptions of the material- 
dependent interactions or forces involved. For example, in the 
highly successful Bardeen-Cooper-Schrieffer (BCS) (2) theory of 
superconductivity, the nature of the fbndamental mechanisms and 
interactions was determined, but application of the theory to 
compute such specific properties as the superconducting transition 
temperatures of particular sollds had to wait until a more reliable 
description of the nonsuperconducting or normal state of the solid 
was developed. 

Why did theoretical understanding of solids lag behind that of 
atoms? For atoms, the unraveling of optical spectra provided the 
major insight into their properties. Spectra of gases yield sharp lines 
that can be Interpreted in terms of electron transitions between the 
discrete energy levels of atoms. When gases become solids, the 
narrow energy levels of the Isolated atoms broaden into bands of 
energy because of the sharing of electrons between the atoms when 
they are separated by distances comparable to their sizes. Electron 
transitions between the widened energy levels in many solids give 
relatively smooth optical spectra. These spectra bear little resem- 
blance to the sharp lines of the spectra of the constituent atoms and 
are more difficult to interpret. 

Despite their lack of sharp structure, the optical spectra of solids 
ultimately proved to be rich in information. The use of quantum 
theory to interpret spectra (3-5) that were modulated (6) to refine 
their structure resulted in a deeper understanding of the electronic 
energy bands and of the nature of interactions between particles in 
solids. By the use of pseudopotentials to determine electronic 
structure, a realistic, workable model of a solid emerged, a model 
that is being applied to determine properties of a broad class of 
condensed-matter systems. 

Model of a Solid 
Solid-state properties are often dominated by effects that cannot 

be explained from the properties of isolated atoms. It is the collective 
and interacting features of a system of atoms that introduce new 
phenomena. The model used here separates the valence electrons of 
atoms from their cores, and the solid is viewed as a periodic array of 
atomic cores or ions embedded in a sea of electrons that were 
formally the atomic valence electrons (Fig. 1). Each atomic core 
consists of a positive nucleus surrounded by tightly held core 
electrons. Once the valence electrons are removed, each core has a 
positive charge equal to the valence of the atom. It is assumed that 
the cores are unchanged in the transition from a gas to a solid. 
Therefore, lt is the change in the valence-electron configurations 
that dictates solid-state properties such as bonding and crystal 
structure. The result is a simpler quantum mechanical system but 
still with more than charged particles per cubic centimeter 
interacting through electromagnetic Coulomb forces. 

One approach (1) toward determining crystal structure by this 
model is to calculate the total energy of a given system for different 
structural arrangements and separations of the cores. The preferred 
structure and core se~arations are then determined under the 
assumption that the system will have the configuration with the 
lowest total energy for a specified pressure or volume. Hence, a 
calculation of the total energy is needed, and it must be precise since 
the variation in energy with structure can be small. 1n-addition to 
the kinetic energies of the cores and valence electrons, the total 
energy includes core-core, electron-core, and electron-electron inter- 
actions. The kinetic energies and core-core Coulomb interaction 
sums are straightforward. The electron-core and electron-electron 
terms are more formidable, and the success in evaluating the total 
energy with sufficient precision to obtain structural information 
depends on the quality of the calculation of these contributions. 

Similarly, the evaluation of superconducting properties-such as 
the transition temperature at which superconductivity occurs-also 
requires a detailed knowledge of the above interactions plus a 
description of how the electrons interact with the cores when they 
are displaced by a lattice vibrational wave. 
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The Pseudopotential 

A fi-uitll approach for computing the electron-core and electron- 
electron interactions is to assume that each electron moves in an 
average electrostatic potential generated by the cores and other 
electrons. This one-electron or Hartree model requires a potential 
V(r) to generate the one-electron wave function +(r) by solving 
Schrijdinger's equation 

- "  - 

where p, m, and E are the electron momentum, mass, and energy. 
The electron density p(r) at each point in space is given by 

If both core and valence electrons are considered, the Coulomb 
potential of the positive nucleus would be used in this all-electron 
calculation. However, in the pseudopotential model corresponding 
to Fig. 1, core electron states are not considered. The core potential 
has a charge equal to the atomic valence (+4c for silicon) at large 
distance since the negative core electrons balance part of the positive 
nuclear charge. The core potential is further reduced because the 
Pauli principle requires that valence electrons be excluded from the 
core-electron states, and this is manifested as a Pauli repulsive 
potential that reduces or cancels the Coulomb attraction of the core. 
A schematic illustration of the cancellation (Fig. 2) shows the 
reduction of the strong ion potential near the core. The net 
"pseudopotential" is weaker than the ionic Coulomb potential. 

It is customary to use the term "pseudopotentid" in connection 
with models of the type illustrated in Fig. 1 where the core-electron 
states are not computed or when only the outer patt of the valence- 
electron wave function is studied. In some schemes, such as the 
empirical pseudopotential method (EPM) (4, 5, 7), experimental 
data are used as input, wble in other ab initio approaches only the 
atomic numbers of the elements involved are used to generate the 
pseudopotential. 

The pseudopotential method was invented in 1934 by Fermi (8), 
who used it to compute the perturbation caused by foreign atoms on 
outer orbits of alkali atoms in a gas. Fermi approximated the 
valence-electron wave function by a smwth pseudo-wave function 
without any nodes in the core region. Indepepdently, others (9) 
recognized the advantages of a pseudopotential approach, and in the 
late 1950's (10, 11) the Pauli repulsive potential description given 
here was developed. In &e 1960's and 1970's, the EPM was used to 
(4,5,7) unravel optical spectra and electronic structure through the 
solution of Eq. 1 with experimentally fit Fourier coefficients or fbrm 
faaors of the pseudopotential. Usually only three form fictors for . 

Nucleus \ 
Core electrons- 
Valence electro 

F' . 1. Pseudopotential model of a 
sotd. 

Fig. 2. A schematic pseudopotential 
showing the reduction of the Cou- 
lomb potential near the core. 

each element in the solid gave excellent agreement between the 
calculated properties of a large number of materials and a variety of 
experimental measurements. The electronic band s t r u a  predict- 
ed by the EPM are still the most accurate available for many 
materials. 

In the 1970's, technical advances in the pseudopotential method 
contributed to a renaissance in surface physics. Since electron 
density readjusts at interfaces, the ptential for an electron near an 
interface can differ considerably from that in the bulk solid. If atoms 
near the interface are constrained to ideal bulk positions, changes in 
the electron-electron interactions are responsible for the chapges in 
the potential. Hence, the electron-core and electron-electron poten- 
tiah need to be treated separately. A powem approach (1513) for 
surfaces and intehces is to construct an ab initio pseudopotential 
for the core and a separate electron-electron potential that depends 
locally on the density of electrons. 

Several similar methods for constructing ab initio pseudopoten- 
tials have been developed (1,14-18). Figure 3 illustrates a pseudo- 
wave function having no nodes from a standard all-electron 3s radial 
wave function for silicon. The pseudo-wave function is forced to be 
identical to the all-electron wave function for distances beyond the 
outermost maximum where solid-state &errs are important. Be- 
tween the outer maximum and l e  outertndst node, the two wave 
functions separate, h d  the pseudo-wave function is smoothly 
extrapolated to zero with the normalization kept fkkd. The genera- 
tion of a pseudopotential to produce the pwudo-wave function can 
be illustrated by assuming +(r) in Eq. 1 to be a pseudo-wave 
function and solving for the pseudopotential, 

where p is the operator -ifiV. 
The pseudopotential depends on the orbital angular momentum 

state of the wave function. ~ e n c e ,  these "nonlocaln pseudopoten- 
tials that reflect core-electron differences are constructed for each 
orbital angular momentum t = 0,1,2,3 . . . (s,p,4f. . . )  Fsr exam- 
ple, in silicon there are six core p electrons in the n = 2 sh~ll since 
the atomic core configuration is ls?2.?2p', but for carbon, with its 
l.&Z? configuration, no p electrons exist in the core. Hence, silicon 
has a strong Pauli repulsive pseudopotential for valence p electrons, 
whereas carbon has none. Some consequences of this differmce will 
be discussed. 

The other important compoqent of the total energy comes from 
electron-electron interactions. Model potentials have been con- 
structed to simulate the effects of electron-electron Coulomb inter- 
actions (Hqrmee potential), the Pauli principle (exchange potential), 
and higher-order terms (correlation potentials). The most versatiIe 
models are those which depend only on electron density, such as the 
Thomas-Fenni approximation. A useful approach for calculating 
ground-state (such as structural) properties of solids is to use a local 
density approximation (LDA) (19) for the model electron-electron 
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potentials. In the LDA, each of the above components of the 
electron-electron potential is expressed in terms of the density p(r), 
and the resulting potential is local, that is, the potential at point r 
depends only on the density at r. 

Hence, the "standard" modern pseudopotential approach (1) uses 
ab initio core pseudopotentials generated from atomic wave func- 
tions and the LDA for the electron-electron effects. Another impor- 
tant ingredient in the method is self-consistency. This condition is 
achieved by solving Eq. 1 for a specific bulk or surface core 
arrangement with an approximate V(r) to obtain +(r) and hence the 
p(r) that is then used to generate the LDA electron-electron 
potential. The core pseudopotential is added to the LDA potential 
and Eq. 1 is solved again. When input and output potentials are 
equal, the calculation is said to be self-consistent. Usually about a 
half-dozen loops are required. 

Structures of Solids 
The principal types of crystalline binding (20) are covalent, ionic, 

metallic, van der Waals, and hydrogen bonding. They originate 
from electrostatic forces, and, with suitable modifications, the 
approach described in the previous sections can be applied in all five 
cases. Pseudopotential applications have focused on the first three 
types and combinations of them. A triumph of the approach is that 
the same scheme is used in all cases with comparable success, and no 
a priori conditions such as a particular choice of wave functions are 
imposed to comply with specific characteristics of each type of 
binding. Hence the pseudopotential approach is robust. It can 
describe the properties of metallic solids with almost constant 
electron density, or covalent crystals with electronic charge piled up 
in directional bonds, or ionic compounds in which electronic charge 
has been transferred between atoms to produce electrostatically 
interacting charged ions. Only the atomic numbers of the constitu- 
ent elements that generate the pseudopotentials and a choice of 
crpstal structures are used as input information about the material 
being examined. The output electron density p(r) for the solid 
displays the bonding nature, and the structural properties are 
computed directly. 

The use of a total energy calculation to search for the lowest 
energy structure at a given volume has been discussed. Applications 
have been made to a variety of semiconductors, insulators, and 
metals. Silicon has been the most-studied material, and its use here 
illustrates the approach and the results. In Fig. 4, the calculated total 
energy, at 0 K, is plotted as a function of volume for four possible 
structures: diamond, white tin, simple (or primitive) hexagonal, and 
hexagonal close-packed. The volume is normalized to the measured 
volume in the diamond structure which is both the observed 
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atmospheric pressure structure and the lowest energy structure 
resulting from the calculation. At smaller volumes, which can be 
achieved with pressure, each of the other structures sequentially 
becomes lowest in energy (diamond -* white tin --+ simple hexag- 
onal --+ hexagonal close-packed), and three solid-solid structural 
phase transitions are possible in this range of volumes. 

Table 1. Static structural properties of silicon, 
germanium, and carbon. 

Lattice Bulk 
Element constant modulus 

(4 (Mbar) 

Silicon 
Calculated 
Experimental 
Difference (%) 

Germanium 
Calculated 
Experimental 
Difference (%) 

Carbon 
Calculated 
Experimental 
Difference (%) 

Several properties of the low-pressure diamond structural phase 
can be computed from the energy-volume E ( q  curve of Fig. 4. The 
position of the energy minimum gives the volume or lattice constant 
of silicon. By using the curvature of E(V), the compressibility of 
silicon or its inverse, the bulk modulus, can be computed. The 
calculated results for the diamond-structure phases of silicon, germa- 
nium, and carbon (Table 1) are in excellent agreement with 
experimental results. Estimates of the theoretical uncertainties sug- 
gest that for many materials agreement on the order of 1% for the 
lattice constants and 5 to 10% for the bulk moduli is expected. 

The structural properties of the high-pressure phases are comput- 
ed like those of the diamond phase, and the characteristics of the 
pressure-induced solid-solid phase transitions can be determined. 
The first high-pressure (low-volume) phase of silicon is the white- 
tin structural phase (Fig. 4). A common tangent shown by a dashed 
line is drawn between the diamond and white-tin phases to illustrate 
the transition path. At the volume corresponding to point 1 in Fig. 
4, the system is in the diamond phase. Polnts 2 and 3 denote the 
beginning and end of the transition. The volumes at points 2 and 3 
are the transition volumes, and these are given by the theory to 
about 1% of their measured values. At point 4, the entire system is 
in the white-tin structural phase. Measuring the slope of the dashed 
line gives the pressure at which the transition occurs. The calculated 
pressure is 90 kbar, which is within the range of experimental values 
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Fig. 5. Total valence charge density plots in the 110 plane for carbon and 
silicon in the diamond structures. The charge densities are in units of 
electrons per primitive cell, and the contour step is 4. The axes are scaled to 
facilitate comparison; hence the length scale is different in these two plots. 
The black dots denote the atomic positions. Straight lines are drawn to 
illustrate the atomic chains. 

of 88 to 125 kbar. Uncertainties in the calculation suggest that 
transition pressures for many materials should be calculable within 
10% of the experimental value. 

The first calculations for silicon predicted a transition to the 
hexagonal close-packed phase at about 400 kbar. Two experimental 
groups (21, 22) found this phase at pressures near the predicted 
value, and in addition discovered the simple hexagonal phase around 
130 kbar. When the method was applied to germanium, the 
transition pressure to the white-tin phase was calculated to be about 
100 kbar, which is close to the transition pressure for Si and in 
agreement with the experiment. However, the transitions to slrnple 
hexagonal and hexagonal close-packed were predicted to be much 
higher in germanium (-800 kbar and >1 Mbar, respectively). The 
predicted simple hexagonal transition has been verified (23). In 
contrast, for carbon no transition to simple hexagonal or hexagonal 
close-packed is predicted (24). 

Why do the high-pressure properties of carbon, silicon, and 
germanlum differ? All three are covalent group IV elements with 
four valence electrons per atom having the ?p2 atomic configura- 
tion. However, their cores differ, and pseudopotential theory can be 
used to illustrate the consequences. In Fig. 5, the electronic densities 
(24) for silicon and carbon are plotted with contour lines of constant 
density. The plot for carbon shows two peaks along the bond but a 
single peak for silicon. The origin of this difference is the repulsivep 
pseudopotential discussed earlier. For silicon the p-core states push 
the p-valence electrons into the bond to form a single peak. For 
carbon, there are nop-core states or repulsivep potentials; hence the 
peak in electron density is near the peak in the density for the atomic 
p electrons. It is likely that this difference is connected with the 
multiple bonding character of carbon. Even though carbon and 
silicon are considered to have similar covalent bonds, the statement 
"carbon gives biology, but silicon gives geology" (20) and the 
double-hump versus single-hump charge configuration (Fig. 5) 
illustrate the difference. 

A similar argument relative to d-electron states in the germanium 
core explains why higher pressures are needed for the transition 
from white-tin to simple-hexagonal structure but not for that from 
diamond to white tin. The latter corresponds to s andp properties of 
the electrons, whereas the former seems to depend on the d nature of 
the electron states. Both silicon and germanium have p-core elec- 
trons, but silicon does not have d states in the core and germanium 
does. Hence, the repulsive d-potential in germanium keeps valence d 
states from descending in energy under pressure, and very high 
pressures are necessary for the structural phase transition. 

Superconductivity 

A particularly interesting recent development is the application of 
the methods described here to superconductivity. As described 
earlier, the BCS theory explains the mechanisms of superconductiv- 
ity, but a prediction of the transition temperature, T,, requires 
precise knowledge of the normal state of the solid. Except for a few 
cases, theorists have not been successful in predicting new supercon- 
ductors, nor have they provided significant information on how to 
raise T,. Some hints from theoretical studies of the maximum 
allowed T, suggest that free electronlike systems are not desirable. 
Covalentlike charge distributions like those in Fig. 5, but with 
metallic conduction, seem to be favorable (25) for superconductiv- 
ity. This observation led to the suggestion that high-pressure 
metallic simple-hexagonal and hexagonal close-packed silicon would 
be candidates for superconductivity. The electronic charge densities 
(26, 27) for these phases are metallic with covalent peaks similar to 
those shown for silicon in Fig. 5. However, to predict T,, it is 
necessary to precisely calculate the interactions that cause supercon- 
ductivity. 

The main interactions determining the superconducting transi- 
tion are the Coulomb repulsion between electrons and the attractive 
electron-electron interaciion caused by the polarization of the lattice 
(Fig. 6). The Coulomb repulsion represented by the parameter p 
results from the exchange of virtual photons (electromagnetic 
quanta) between electrons. The attractive term, described by the 
parameter A, involves the exchange of phonons which are the quanta 
associated with lattice vibrations. If A > p, electrons bind to form 
pairs; according to the BCS theory (2), the formation of these 
Cooper pairs is fundamental to the transition to the superconduct- 
ing state. The BCS transition temperature equation can be written as 

where Eph is a phonon energy. Modern versions of Eq. 4 have 
modified the A and y parameters, but the general features are the 
same. 

The pseudopotential approach can be used to compute lattice 
vibrational frequencies (1) and A (28) with the atomic mass as the 
only added input necessary. The calculation of T, for simple 
hexagonal silicon is limited by the fact that is estimated from 
previous studies of other superconductors; otherwise the calculation 
is based on first prmciples. The predicted T, is between 5 and 10 K 
(29), and the calculation indicates that Tc should be a function of 
pressure. If no structural change takes place in the simple hexagonal 
phase until the hexagonal close-packed phase is reached at -400 
kbar, the theory predicts that Tc should first decrease with pressure 
and then rise as the hexagonal close-packed phase is approached. 
However, a structural transition (21) may occur in this range. 

The prediction of superconductivity was confirmed by an experi- 
ment (29) in which T, decreased with pressure up to 260 kbar, the 
limiting pressure in this first experiment. Although no evidence for a 
minimum followed by an upturn in T, (P) appeared in these results, 
more recent experiments at higher pressures confirmed the theoreti- 
cal predicted behavior (30). 

The Future 
The dramatic confirmation of the predictions of new structural 

phases and superconductivity in simple hexagonal silicon and its 
pressure dependence give added impetus to this new area. Although 
silicon was the prototype here, the total-energy-pseudopotential 
method has been applied to a number of other systems (1). Metals 
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from periodic table columns I, 11,111, and V have been examined, as 
have group IV, 111-V, 11-VI, IV-VI, and I-VII semiconductors and 
insulators. Measured structural, electronic, vibrarional, and structur- 
al phase transition properties of these materials have been explained, 
and, where measurements are not available, theoretical predictions 
have been made. Some of these predictions have been verified, and 
others are being examined. Other theoretical approaches (31, 32) 
have also been successful, particularly with studies of structural 
properties of metals. Simple sp metals, noble metals, transition 
metals, and even f-band metals have been studied. 

On the experimental side, the development of diamond anvils, 
which are constructed from opposed flat diamond surfaces mechani- 
cally pushed together, has made high pressures generally available. 
As a result, theoretical predictions of the properties of solids at high 
pressures can be tested. Future experimental-theoretical collabora- 
tive research will likely test theoretical models, interpret existing 
data, and predict new materials and properties. 

From the point of view of basic science, these studies should 
clarify the electronic, structural, vibrational, and other properties of 
matter in transition from atoms to molecules to clusters to extended 
solids. A knowledge of the properties and interactions will allow 
theorists to guide experimentalists in their search for new, useful 
materials. Computer calculations also stimulate the creation of 
simple models for estimating physical properties. One example of 
this type of development is that it is now possible to calculate (33) 
the bulk moduli of a class of semiconductors and insulators on the 
basis of only the lattice constant of the compound. 

It will also be fruitful to search for new metastable phases of 
solids. For example, a metastable phase of Si exists in the body- 
centered cubic structure with eight atoms per cell (BC-8), and this 
phase is calculated to lie above the dotted transition line in Fig. 4. 
Because the calculated barrier between the white-tin structure and 
BC-8 is relatively small, it is likely that BC-8 can be produced from 
the white-tin phase by rapid changes in pressure and temperature. 
Perhaps other "hidden phases" are accessible in this way. More 
experience is needed in choosing structures to test, and new 
approaches are being developed to choose candidate structures 
using sampling methods such as Monte Carlo techniques. 

For superconductivity, the benefits of raising superconducting - .  

transitioi temperatures to high values are enormous. The methods 
described here suggest that, by studying a variety of systems 
theoretically, we will be able to isolate the common features of high 
T, materials. Studies of the pressure dependences of the various 
interactions may reveal the origin of the often-noted apparent 
connection between superconductivity and structural phase transi- 
tions. 

Theory has moved beyond the highly idealized model stage, and 
real materials can be examined. These new methods, together with 
experimental measurements, have helped to clarify some basic 
properties of solids. In the future, these schemes should lead to the 
creation of new materials with desirable properties. 
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