
primordial germ cells. Alternatively, the 12. D. H ,  Ohlendorf, W. F. Anderson, B. W. Matthews, 27. M. R. Rubin et d., unpublished data. 
J.  Mol. Evol. 19, 109 (1983). 28. K. Zinn, D. DiMaio, T. Maniatis, Cell 34, 865 MH-3 gene may be and play a 13. C. D. Pabo and R. T. Sauer. Annu. Rev. Biochem. 11983). 

in embryonic cells that are not of the germ 
cell lineage. 

In contrast to the defined functions of 
Drosqhzla homeo box genes, nothing is 
known about the functions of the 10-20 
homeo box genes in mice. Their relationship 
to the control of development remains to be 
determined. 
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Bright Light Resets the Human Circadian Pacemaker 
Independent of the Timing of the Sleep-Wake Cycle 

Human circadian rhythms were once thought to be insensitive to light, with synchro- 
nization to the 24-hour day accomplished either through social contacts or the sleep- 
wake schedule. Yet the demonstration of an intensity-dependent neuroendocrine 
response to bright light has led to renewed consideration of light as a possible 
synchronizer of the human circadian pacemaker. In a laboratory study, the output of 
the circadian pacemaker of an elderly woman was monitored before and after exposure 
to 4 hours of bright light for seven consecutive evenings, and before and after a control 
study in ordinary room light while her sleep-wake schedule and social contacts 
remained unchanged. The exposure to bright light in the evening induced a 6-hour 
delay shift of her circadian pacemaker, as indicated by recordings of body temperature 
and cortisol secretion. The wexpected magnitude, rapidity, and stability of the shift 
challenge existing concepts regarding circadian phase-resetting capacity in man and 
suggest that exposure to bright light can indeed reset the human circadian pacemaker, 
which controls daily variations in physiologic, behavioral, and cognitive function. 

I N THE 25 YEARS SINCE DECOURSEY 
discovered the phase response curve to 
light in the flying squirrel ( I ) ,  the reset- 

ting of biological clocks by light has been 
characterized in nearly all species studied 
except man. Synchronization of the human 
circadian system, which usually has an in- 
trinsic period greater than 24 hours (2, 3), 
to a 24-hour day implies that our biological 
clocks are reset daily. Yet, a specific resetting 
stimulus that shifts the phase of the human 

circadian pacemaker has not been identified. 
In a controlled case study, we have demon- 
strated that critically timed exposure to 
bright indoor light can rapidly reset the 
human circadian pacemaker by about 6 
hours, even when the timing of the sleep- 
wake cycle is constant. 

Despite documentation of human neuro- 
anatomic structures analogous to those sub- 
serving circadian rhythmicity and photic en- 
trainment in other mammals (4, attempts 
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to assess the specific role of light in the 
synchronization of the human circadian sys- 
tem have been methodologically difficult. In 
contrast to the results of animal studes, the 
light-dark cycle was reported to be too weak 
a synchronizing cue to entrain human circa- 
dian rhythms (5); however, these experi- 
ments were confounded by the subjects' 
access to auxiliary lighting. In 1981, we 
demonstrated that a true light-dark cycle 
could entrain human circadian rhythms (6). 
However, studies of light-dark cycle entrain- 
ment in humans cannot distinguish whether 
synchronization occurs (i) directly through 
an action of light on the endogenous circadi- 
an pacemaker or (ii) indirectly by an influ- 
ence on the behavioral rest-activity cycle (7). 
Because subjects attempt to sleep when it is 
dark and are awakened by light, the light- 
dark cycle influences the timing of the sub- 
jects' sleep-wake cycle, which itself may be a 
synchronizing agent (6, 8) .  

Having demonstrated that bright light 
must exceed a minimum threshold (>2500 
lux) to suppress melatonin secretion (9 ) ,  
Lewy has suggested that bright light may 
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have a more powerful effect on circadian cycle normally occurs during the customary 
rhythms than &dinary indoor illumination sleep time in diurnal animals (11). ~ h u s ,  
(10). However, it is inherently difficult to stimulation of the subject by light would 
demonstrate a direct physiologic synchro- intrude on the normal sleep-wake cycle. 
nizing effect of light beyond its potential Hence, we decided to search for individuals 
indirect influence via behavior because the with a normal sleep-wake cycle and a mark- 
maximally responsive phase of the circadian edly advanced endogenous circadian phase 

Time of day 

Fig. 1. The core body temperature (solid line) of a healthy, 66-year-old woman (subject 505) under 
baseline (first 24 hours) and constant routine (remaining 40 hours) conditions. The subject was free 
from dementia or other central nervous system pathology, psychopathology, and medications. These 
data are superimposed upon average (r SEM) temperature data collected from 29 young, normal 
subjects on the same protocol (vertical hatch marks). Data from the controls are averaged with respect 
to their habitual bedtimes, normalized to her bedtime of 24:OO (12 midnight). Black bar represents the 
bed rest episode of subject 505, which was scheduled at its regular time. Hatched bar represents the 
period of constant routine [40-hour regimen of enforced supine wakefulness in constant indoor light 
(about 150 lux), with the daily nutritional intake equally partitioned into hourly liquid aliquots]. This 
regimen is designed to expose the endogenous component of the circadian rhythm of core body 
temperature by minimizing the masking effects of sleep-wake and light-dark transitions and exogenous 
environmental and behavioral stimuli (15). The encircled cross marks the minimum of a harmonic 
regression model fitted to the temperature data with the method of Brown et al. (33). Note that the 
ECP minimum of subject 505 occurred at 23:35 (11:35 p.m.), advanced 6.7 hours earlier than her 
regular waketime of 06: 15 (6: 15 a.m.); however, this advanced internal phase was not revealed during 
the day preceding the constant routine because of masking effects. The rhythm of cortisol secretion was 
similarly phase advanced during her constant routine. Her marked phase advance was confirmed on two 
subsequent repetitions of this constant routine protocol. 

Time of day 
24 12 24 12 24 

2 = 23.7 hours 

T = 27 hours 

(ECP) position (12), our reason being that 
the portion of the circadian cycle sensitive to 
phase-delay shifts by light might be accessi- 
ble during their usual waking hours in the 
evening, a time ordinarily free from expo- 
sure to  bright light. 

Because there is an age-related shortening 
of the internally synchronized free-running 
period (13), we hypothesized that, on av&- 
age, the circadian timing system in the elder- 
ly would be internally phase advanced with 
respect to sleep. On screening a group of 
healthy elderly subjects (14), we identified a 
woman whose sleep was normal, but who 
had a marked internal phase advance of her 
endogenous circadian oscillator, as deter- - 
mined by an extension of the constant rou- 
tine technique originally proposed by Mills 
(15) (Fig. 1). 

We initially tested whether this subject's 
markedly advanced internal phase position 
during entrainment was associated with a 
shortened intrinsic period of the circadian 
pacemaker. We scheduled her to a 27-hour 
day, thereby forcing desynchrony between 
the rhvthm of bod; tekeratur; and the 
behavibral rest-activity cycle. Two indepen- 
dent assessment techniques validated that 
her circadian pacemaker did have an excep- 
tionally short intrinsic period of 23.7 hours 
(Fig. 2). 

We then com~ared circadian ~ h a s e  assess- 
ments before and after laboraton7 entrain- 
ment to a 24-hour day, with and without 4 
hours of exposure to bright indoor light 
every evening (Fig. 3).  The intensity of the 
artificial light stimulus (7,000 to 12,000 
lux) was equivalent to ambient outdoor 
light intensity just after dawn (see cover), 
which is an order of magnitude less than the 
intensity of sunlight at midday (>100,000 
lux) (16). During laboratory entrainment, 
the subject lived o n  a hlly scheduled regi- 
men [scheduled bed rest (dark), activity 
(light), mealtimes, and social interactions; 
with a period of 24 hours], in an environ- 

Fig. 2. A 27-hour sleep-wake schedule was imposed in subject 505 
to force internal desynchronization between the behavioral rest- 
activity cycle and the output of the circadian pacemaker, as reflected 
by the endogenous component of the body temperature rhythm. 
The rest-activity pattern is double plotted in raster format, with 
successive days plotted both next to and beneath each other. Solid 
bars represent episodes of scheduled bed rest. Open horizontal bars 
represent constant routines (15). The encircled crosses represent 
ECP minima obtained as in Fig. 1, and provide an estimate of the 
intrinsic circadian period of 23.73 hours. A single plot of the times 
that the body temperature was below the normal entrained mean 
(36.83"C) is overlaid with stippling. A second independent estimate 
of the intrinsic circadian period was obtained by applying nonpara- 
metric spectral analysis-waveform eduction (34) to parts of the data 
set disjoint from those used in the ECP estimates. The dashed line 
indicates the midtrough of the body temperature cycle thus deter- 
mined, which indicated a period of 23.79 hours. There is a 
significant correlation between the results of these two period 
estimation techniques (P < 0.01) (35). 
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mental scheduling facility free of external 
time cues (6). The subject's bedtimes and 
waking times were scheduled to correspond 
with her habitual ones, as calculated from a 
prior sleep-wake log. Social contact was 
limited to members of the staff. The ECP 
evaluations (Fig. 3A) and spectral analysis- 
waveform eduction of the temperature data 
(Fig. 3B) before and after laboratory en- 
trainment with ordinary room light suggest 
a small cumulative advance of the ECP 
minimum (Fig. 3A), consistent with the 
subject's intrinsic circadian period of less 
than 24 hours (17) (Fig. 2). 

In contrast, the intervention with bright 
light caused a phase-delay shift of the en- 
dogenous component of the body tempera- 
ture rhythm of nearly 6 hours (Fig. 3C). 
The shift was unexpectedly large, but three 
independent estimates corroborate the oc- 
currence of an approximately 6-hour delay. 
First, as estimated by phase evaluation be- 
fore and after the intervention, the ECP 
minimum was shifted by -5.7 hours (that 
is, to a later hour). Second, spectral analysis- 
waveform eduction of the temuerature data 
during the intervention indicated a shift of 
-7.1 hours, which was evident by the sec- 
ond day (Fig. 3D). Third, the secretory 
patterns of cortisol monitored during con- 
stant routines before and after the interven- 
tion also demonstrated a 6-hour phase-delay 
shift (Fig. 4). This resulted in a 90-degree 
change in the relationship between the tim- 
ing of the sleep-wake cycle and the cortisol 
secretory pattern. Subsequent ambulatory 
temperature monitoring of the subject indi- 
cated that the temperature cycle drifted back 
to its original, advanced phase position over 
the course of 7 to 10 days after the light 
pulses were discontinued and the subject 
returned to her home environment. Mea- 
surement of her ECP l month after dis- 
charge confirmed that it had returned to its 
markedly advanced position. 

Although appropriate caution must be 
exercised in drawing conclusions based on 
data from an individual case, the results of 
this study challenge previous understanding 
of the temporal organization of the human 
circadian system. First, the phase shift of 
the thermoregulatory and neuroendocrine 
markers of the endogenous circadian oscilla- 
tor was induced by light and occurred de- 
spite the fact that the timing of the sleep- 
wake cvcle remained constant. Second. the 
6-hour, light-induced shift was uncharacter- 
istically large since mammals typically have 
weak phase response curves to light com- 
pared to insects and plants. Third, the shift 
took place with unexpected rapidity. Al- 
though the large magnitude of the phase- 
delay shift observed in this subject could be 
associated with the short period of her en- 

dogenous circadian oscillator, there is also 
evidence of a diminution of phase-resetting 
capacity with advancing age (18). 

Even when all environmental and behav- 
ioral synchronizing cues are shifted simulta- 
neously, as in jet lag, the human circadian 
pacemaker is thought to require about a day 
of adaptation for every one to two time 

zones crossed, depending on the direction of 
travel (19). Although our protocol design 
did not allow us to determine precisely the 
length of time required to achieve a com- 
plete phase shift, the temperature data in 
Fig. 3D suggest that critically timed expo- 
sure to bright light may induce more rapid 
phase shifts than the more haphazard expo- 
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Fig 3 Evening exposure to br~ght indoor light an pacemaker Symbols as In (A). The subject was 
reset the circadian pacemaker of subject 505 bv exposed to bright Indoor light of 7,000 to 12,000 
about 6 hours, even whlle her rest-activltv cycle lux, comparable In intensity to natural outdoor 
was held fixed (A) ECP evaluat~ons before and sunlight around twilight (16) (see cover). She was 
after entrainment schedule (T = 24 hours) In- exposed to the l~ght  while seated in front of a 
volvlng exposure to ordinary room l~ght  (50 to bank of 16 4-foot, 40-watt Vltallte w ~ d e  spectrum 
250 lux) suggest a small cumulative advance of fluorescent lamps (Durotest Corp, North Ber- 
the ECP minlmum consistent with her 23 7 hour gen, NJ) between 19 40 and 23 40 (7 40 p m 
lntrlnslc c~rcadlan per~od establ~shed In Fig. 2 and and 11 40 p m ) each day for 7 davs (open vertical 
the observation that subjects tend to drlft In the box) Light intensltv was measured at her fore- 
direct~on of their intrlnslc per~od whlle In the head bv a digital photometer (Model TL1350, 
laboratory environment, presumably because ~t Internat~onal L~ght, Inc , Newburyport, MA), 
offers weaker synchronizing cues than those ofthe w ~ t h  the sensor directed toward the line of gaze 
home envlronment (17) Svmbols as In Fig. 2, Flfteen mlnutes of ~ntermed~ate level l~ght  (3000 
hatched bars lndlcate bed rest ep~sodes reported to 6000 lux) preceded and followed each 4-hour 
from home sleep-wake diar~es durlng ambulatory exposure (D) Raster plot of body temperature 
monitoring (B) Raster plot of body temperature troughs (bodv temperature below baseline-en- 
troughs durlng control study Symbols as In Fig tralned mean of 36 69°C) before and during the 
2, with the addit~on of horizontal black bars lnterventlon study. This plot confirms the magni- 
h~ghl~ghtlng the spec~fic tlmes and days when tude of the phase-delay shlft shown In (C) and 
body temperature was below the basel~ne-en- demonstrates the unexpected rap~dlnr of the shlft, 
trained mean (36 83"C), from whlch the st~ppled which IS evident 1 to 2 days after the start of the 
area is derlved. Although there is no phase shift, intervent~on. Although the disappearance of the 
there is an apparent translent shortening of her trough between 19.00 and 24 00 (7.00 p.m and 
average temperature-cycle per~od during entrain- 12 midnight) could be due to a maslung effect of 
ment to a light-dark cycle w ~ t h  ordlnary room I~ght, the extension of the trough into the 08.00 
light in the laboratory (C) ECP evaluations 10 to 14.00 (8 00 a.m. to 2:00 p m.) per~od cannot 
months later In the same subject before and after be so readily explained Svmbols as In (B). Esti- 
entrainment schedule as descr~bed In (A), w ~ t h  the mates of the phase shift were based on spectral 
addit~on of an lnterventlon st~mulus consisting of analvsis of data sets disjoint from those used to 
evening exposure to br~ght indoor light. T h ~ s  derlve the estlmates of the ECP minima shown In 
caused a 5.7-hour phase-delav shift of the c~rcadi- (C). 



Fig. 4. Superposition of the serum 
cortisol concentrations of subject 
505 before (filled circles and solid 
line) and after (open circles and 
dashed line) intervention with 
bright indoor light. To align the 
secretory patterns the horizontal 
time scale for the data after the 
intervention has been shifted to the 
left by 6 hours. Blood samples were 
collected while the subject was in 
ordinary room light (50 to 250 lux) 
during constant routines performed 
immediately before and after the 
intervention (Fig. 3). The subject's 
habitual bedtime (24:OO; 12:OO 
midnight) for the week before the 
intervention (solid vertical line) and 
for the week after the intervention 
(dashed vertical line) are therefore 
separated by 6 hours on the hori- 
zontal time scale. Thus, the inter- 
vention did not change the shape of 
the cortisol secretory pattern but 
caused a phase delay of 6 hours 
with respect to both clock time and 
sleep. 

Time of day 
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sure to synchronizing cues characteristic of 
transmeridian travel (20). Our data are con- 
sistent with the report by Wever et al. that 
bright light extends the range of entrain- 
ment of the synchronized human circadian 
system to 29 hours (21). However, a differ- 
ent experimental design is required to dem- 
onstrate the true range of entrainment, free 
of the masking effects and the systematic 
error in estimating the range of entrainment 
inherent in a design involving a continuous- 
ly lengthening schedule (22). 

Our results have theoretical significance 
for models of human circadian rhythms. 
Most important, the phase shift obtained 
through the intervention was consistent 
with the phase response model derived from 
animal studies (1) in that there was a phase- 
delay shift in response to a stimulus in the 
early half of the subjective night. After the 
abrupt phase shift, continued presentation 
of the stimulus at the same clock hour but at 
an earlier relative phase produced a much 
smaller response that was sufficient to main- 
tain stable entrainment, as expected of a 
phase response curve to light. 

Our data also support a hierarchical mod- 
el in which the external light-dark cycle 
ordinarily synchronizes the endogenous cir- 
cadian oscillator (6), which in turn governs 
the internal organization and spontaneous 
duration of sleep (3, 23). These data are 
incompatible with alternate models in which 
sleep must play either a primary or an 
essential intermediate role in the entrain- 
ment of physiologic rhythms. This conclu- 
sion is consistent with recent findings in 
depressed patients suggesting that prior 
light exposure affects the time of onset of the 

Time of day 
before intervention (-) 

nocturnal rise in melatonin secretion, even 
when the timing of sleep is held constant 
(24). Also, the magnitude of the change in 
internal phase relations that we observed 
implies that bright light must be acting 
directly on the endogenous circadian pace- 
maker, rather than through an intermediary 
process as we had earlier concluded (25). In 
addition, the apparent drift of phase to 
earlier hours under entrained laboratoy 
conditions is consistent with the conclusion, 
based on analysis with our mathematical 
model, that the laboratoy is a weaker syn- 
chronizer than the external environment 
(26). 

Demonstration that light can have a direct 
effect on the human circadian oscillator also 
has important practical implications. Sleep- 
wake disorders such as delayed sleep phase 
insomnia (27), jet lag (28), and shiftwork 
insomnia (29) may respond to manipulation 
of circadian phase with therapeutic exposure 
to light. Since Lewy e t  d, discovered the 
enhanced biologic effects of bright light as 
compared to ordinary room light (9), pho- 
totherapy with bright light has been used 
clinically in the treatment of affective illness; 
however, there is disagreement as to wheth- 
er its mechanism of action has a circadian 
basis (30). Evaluation of the use of photo- 
therapy in such conditions has relied on either 
subjective measures of clinical response or 
biologic markers with no established rela- 
tionship to the endogenous oscillator. We 
have now demonstrated an effective proto- 
col for objectively quantifying changes in 
the phase position of the circadian pace- 
maker before and after a therapeutic inter- 
vention. This protocol could be used to 

correlate changes in internal phase relations 
with clinical response to treatments aimed at 
correcting hypothesized abnormalities of 
circadian phase orientation. This would pro- 
vide important corroborative evidence for 
the hypothesized role of circadian dysfunc- 
tion in affective illness. 

Finally, although it is possible that these 
results are found only in those individuals 
who have a stably advanced circadian phase, 
this is an unlikely interpretation of the data 
for several reasons. First, the advanced phase 
position in our subject is a predicted conse- 
quence of the short intrinsic period of her 
circadian pacemaker. An analogous range of 
circadian period is seen among individuals 
of a given animal species without attendant 
alteration in the nature of the phase re- 
sponse mechanism (31). Second, the phase 
orientation of our subject is commonly ex- 
pressed by otherwise normal subjects upon 
exposure to free-running conditions (2, 3).  
Third, the nature of the response to light, a 
finite delay produced by stimulation during 
that phase typically associated with the first 
half of the subjective night, is consistent 
with the response in virtually all other spe- 
cies tested, both diurnal and nocturnal (27). 
Although it would be useful to confirm 
these results on subjects with more standard 
circadian phase orientations, studies in sub- 
jects with a stable internal phase advance 
provide important evidence to resolve the 
heretofore inseparable link between the 
physiologic and behavioral components of 
the light-dark cycle as a synchronizer of the 
human circadian system. 
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