
Computing with Neural Circuits: A Model 

A new conceptual framework and a minimization princi- 
ple together provide an understanding of computation in 
model neural circuits. The circuits consist of nonlinear 
graded-response model neurons organized into networks 
with effectively symmetric synaptic connections. The neu- 
rons represent an approximation to biological neurons in 
which a simplified set of important computational prop- 
erties is retained. Complex circuits solving problems 
similar to those essential in biology can be analyzed and 
understood without the need to follow the circuit dynam- 
ics in detail. Implementation of the model with electronic 
devices will provide a class of electronic circuits of novel 
form and function. 

A COMPLETE UNDERSTANDING OF HOW A NERVOUS SYSTEM 

computes requires comprehension at several different levels. 
Marr (1) noted that the computational problem the system 

is attempting to solve (the problem of stereopsis in vision, for 
example) must be characterized. An understanding at this level 
requires determining the input data, the solution, and the transfor- 
mations necessary to compute the desired solution from the input. 
The goal of computational neurobiology is to understand what 
these transformations are and how they take place. Intermediate 
computational results are represented in a pattern of neural activity. 
These representations are a second, and system-specific, level of 
understanding. It is important to understand how algorithms- 
transformations between representations-can be carried out by 
neural hardware. This understanding requires that one comprehend 
how the properties of individual neurons, their synaptic connec- 
tions, and the dynamics of a neural circuit result in the implementa- 
tion of a particular algorithm. Recent theoretical and experimental 
work attempting to model computation in neural circuits has 
provided insight into how algorithms can be implemented. Here we 
define and review one class of network models-nonlinear graded- 
response neurons organized into networks with effectively syrnmet- 
ric synaptic connections-and illustrate how they can implement 
algorithms for an interesting class of problems (2). 

Early attempts to understand biological computation were stimu- 
lated by McCulloch and Pitts, who described (3) a "logical calculus 
of the ideas immanent in nervous activity." In these early theoretical 
studies, biological neurons were modeled as logical decision ele- 
ments described by a two-valued state variable (on-ofl), which were 
organized into logical decision networks that could compute simple 
Boolean functions. The timing of the logical operations was con- 
trolled by a system clock. In studies of the "perceptron" by 
Rosenblatt (4), simple pattern recognition problems were solved by 
logical decision networks that used a system of feed-forward synap- 
tic connectivity and a simple learning algorithm. Several reviews of 
McCulloch and Pitts and perceptron work are available (5). More 
recent studies have used model neurons having less contrived 
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properties, with continuous dynamics and without the computerlike 
clocked dynamics. For example, Hartline e t  al. (6) showed that 
simple linear models with continuous variables could explain how 
lateral inhibition between adjacent photoreceptor cells enhanced the 
detection of edges in the compound eye of Lirnulus. Continuous 
variables and dynamics have been widely used in simulating mem- 
brane currents and synaptic integration in single neurons (7) and in 
simulating biological circuits, including central pattern generators 
(8) and cortical structures (9) .  Both two-state (10, 11) and continu- 
ous-valued nonlinear models (12) have been extensively studied in 
networks organized to implement algorithms for associative memo- 
ries and associative tasks (13). 

The recent work being reviewed here has been directed toward an 
understanding of how particular computations can be performed by 
selecting appropriate patterns of synaptic connectivity in a simple 
dynamical model system. Circuits can be designed to provide 
solutions to a rich repertoire of problems. Early work (10) was 
designed to examine the computational power of a model system of 
two-state neurons operating with organized symmetric connections. 
The inclusion of feedback connectivity in these networks distin- 
guished them from perceptron-like networks, which emphasized 
feed-forward connectivity. Graded-response neurons described by 
continuous dynamics were combined with the synaptic organization 
described by earlier work to generate a more biologically accurate 
model (14) whose computational properties include those of the 
earlier model. General principles for designing circuits to solve 
specific optimization problems were subsequently developed (15- 
17). These networks demonstrated the power and speed of circuits 
that were based on the graded-response model. Unexpectedly, new 
computational properties resulted (15) from the use of nonlinear 
graded-response neurons instead of the two-state neurons of the 
earlier models. The problems that could be posed and solved on 
these neural circuits included signal decision and decoding prob- 
lems, pattern recognition problems, and other optimization prob- 
lems having combinatorial complexity (15-20). 

One lesson learned from the study of these model circuits is that a 
detailed description of synaptic connectivity or a random sampling 
of neural activity is generally insufficient to determine how the 
circuit computes and what it is computing. As an introduction to the 
circuits we review, this analysis problem is illustrated on a simple 
and well-understood model neural circuit. We next define and 
discuss the simple dynamical model system and the underlying 
assumptions and simplifications that relate this model to biological 
neural circuits. A conceptual framework and minimization principle 
applied to the model provide an understanding of how these circuits 
compute, specifically, how they compute solutions to optimization 
problems. The design and architecture of circuits for two specific 
problems are presented, including the formerly enigmatic circuit 
used earlier to illustrate the analysis problem. 
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Understanding Computation in a Simple 
Neural Circuit 

Let us analyze the hypothetical neural circuit shown in Fig. 1 with 
simulation experiments based on the tools and methods of neuro- 
physiology and anatomy. The analysis will show that the usual 
available neurobiological measures and descriptions are insufficient 
to explain how even small circuits of modest complexity compute. 
The seven-neuron circuit in Fig. 1 is designed to compute in a 
specific way that will later be described. From a neurobiological 
viewpoint, the basic anatomy of the circuit contains four principal 
neurons (21), identified in the drawing as Po, PI, PZ, and P3. Each 
neuron has an axon leaving the circuit near the bottom of the figure. 
The computational results of the circuit must be evident in the 
activity of these neurons. The one input pathway, from a neuron 
external to the circuit, is provided by axon Q. Neurons INI,  IN2, 
and IN3 are intrinsic interneurons in the circuit. 

In attempting to understand the circuit's operation, we simulta- 
neously monitor the activity (computer simulated) in each of the 
seven neurons while providing for a controllable level of impulse 
activity in the input axon Q. Results from this experiment on the 
hypothetical circuit for several fixed levels of input activity are 
shown in Fig. 2A. The top trace represents our controlled activity in 
Q. In each time epoch this activity is progressively larger, as 
illustrated by the increasing number of action potentials per unit 
time. Although the activity of IN3 is steadily rising as the activity in 
Q increases, the activities of the other neurons in the circuit are not 
simply related to this input. From these results we know what the 
output patterns of activity on the principal neurons are for specific 

levels of impulse activity on the input axon Q, but we cannot explain 
what computation the circuit is computing. Furthermore, we do not 
know how the structure and organization of the circuit has provided 
these particular patterns of neural activities for the different input 
intensities. 

Study of the synaptic organization of the connections between the 
neurons by electrophysiological or ultrastructural techniques could 
provide the numerical description of synaptic strengths shown in 
Table 1. The results of these experiments would show that each 
individual principal neuron Pi inhibits the other three principal 
neurons (Pj). There is either monosynaptic inhibition from Pi to Pj 
or polysynaptic inhibition by an excitatory synapse from Pi to an 
interneuron (INk), which then forms an inhibitory synapse with Pj 
(for example, the PI-to-P2 pathway in Fig. 1). This synaptic 
organization provides an "effective" inhibitor)? synapse between any 
two principal neurons; an action potential elicited in one principal 
neuron always contributes to inhibition of each of the others. 
Similar experiments measuring the strengths of the synaptic connec- 
tions between the input axon Q and the Pi would show effective 
excitatory connections (Table 1). While the organization between 
principal neurons could be described classically as "lateral inhibi- 
tion," the output patterns of activity in the Pi, shown in Fig. 2A for 
different input intensities, cannot be explained by this qualitative 
description. 

Given the synaptic strengths in Table 1 and an appropriate 
mathematical description of the neurons, we can simulate the model 
neural circuit and produce the output activity patterns for the 
different inputs. Such detailed simulations can also be done for real 
neural circuits if the required parameters are known. In general, an 
ability to correctly predict a complex result that relies solely on 
simulation of the system provides a test of the simulation model, but 
does not provide an understanding of the result. Thus, despite our 
classical analysis of the simple neural circuit in Fig. 1, we still have 
no understanding of why these particular synaptic strengths (Table 
1) provide these particular relations between input and output 
activity. Computation in the circuit shown in Fig. 1 can, however, 
be defined and understood within the conceptual framework pro- 
vided by an analysis of dynamics in the simple neural circuit model 
we now discuss. 

The Model Circuits and Their 
Relation to Biology 

Neurons are continuous, dynamical systems, and neuron models 
must be able to describe smooth, continuous quantities such as 
graded transmitter release and time-averaged pulse intensity. In 
McCulloch-Pitts models, neurons were logical decision elements 
described by a two-valued state variable (on-off) and received 
synaptic input from a small number of other neurons. In general, 
McCulloch-Pitts models do not capture two important aspects of 
biological neurons and circuits: analog processing and high inter- 
connectivity. While avoiding these limitations, we still want to 
model individual neurons simply. In the absence of appropriate 
simplifications, the complexities of the individual neurons will loom 
so large that it will be impossible to see the effects of organized 
synaptic interactions. A simplified model must describe a neuron's 
effective output, input, internal state, and the relation between its 
input and output. 

In the face of the staggering diversity of neuronal properties, the 
goal of compressing their complicated characteristics is especially 
difficult. For the present, let us consider a prototypical biological 
neuron having inputs onto its dendritic arborization from other 
neurons and outputs to other neurons from synapses on its axon. 
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Action potentials initiate near the soma and propagate along the 
axon, activating synapses. Although we could model the detailed 
synaptic, integrative, and spike-initiating biophysics of this neuron, 
following, for example, the ideas of Rall (7), the first simplification 
we make in our description of the neuron is to neglect electrical 
effects attributable to the shape of dendrites and axon. (The axon 
and dendrite space-constants are assumed to be very large.) Our 
model neuron has the capacitances and conductances of the arbori- 
zation added directly to those of the soma. The input currents from 
all synaptic channels are simply additive; more complex interactions 
between input currents are ignored. Membrane potential changes 
are assumed to arrive at the presynaptic side of synapses at the same 
time as they are initated at the soma. The second simplification is to 
deal only with "fast" synaptic events. When a potential fluctuation 
occurs in the presynaptic terminal of a chemical synapse, a change in 
the concentration of neurotransmitter is followed (with a slight 
delay) by a current in the postsynaptic cell. In our model neurons we 
presume this delay is much shorter than the membrane time 
constant of the neuron. 

These two suppositions on time scale mean that when a change in 
potential is initiated at the soma of cell j ,  it introduces an effectively 
instantaneous conductance change in a postsynaptic cell i. The 
amount of the conductance change depends on the nature and 
strength of the synapse from cell j to cell i. 

Biological neurons that produce action potentials do so (in steady 
state) at a rate determined by the net synaptic input current. This 
current acts indirectly by charging the soma and changing the cell 
potential. A characteristic charging or discharging time constant is 
determined by the cell capacitance C and membrane resistance R.  
The input current is "integrated" by the cell R C  time constant to 
determine a value of an effective "input-potential," u. Conceptually, 
this potential u is the cell membrane potential after deletion of the 
action potentials. Action potentials (and postsynaptic responses in 
follower cells) are then generated at a rate dependent on the value of 
u. Dependencies of firing rates on input currents (and hence u) vary 
greatly, but have a generally sigmoid and monotonic form (Fig. 
3A), rising continuously between zero and some maximum value 
(22). The firing rate of cell i can be described by the functionJ;(ui). 
For processing in which individual action potentials are not syn- 
chronized or highly significant, a model that suppresses the details 
of action potentials should be adequate. In such a limiting case, two 
variables describe the state of neuron i: the effective input potential 
ui and the output firing rate f;(ui). The strength of the synaptic 
current into a postsynaptic neuron j due to a presynaptic neuron i is 
proportional to the product of the presynaptic cell's output E(ui)] 

I l  -- -- -- - -- 
Tlrne epoch Input strength, X 

Fig. 2. (A) Results of an experiment in which the activity in each neuron in 
the circuit of Fig. 1 was simultaneously recorded (by simulation) as a 
hnction of the strength of the input stimulus on axon Q. The strength of the 
input stimulus is indicated by the numbers above each time epoch. (B) A 
selective rearrangement of the data in (A) illustrating the analog-binary 
computation being performed by the circuit. The digital word V3V2VIV0 is 
calculated from the records. 

Table 1. Effective synaptic strengths for the circuit in Fig. 1. 

Post- Presynapt~c neuron 
synaptic 
neuron Po PI  P2 P3 Q 

and the strength of the synapse from i to j. In our model, the 
strength of this synapse is represented by the parameter To, so that 
the postsynaptic current is given by Tv J(uj). The net result of our 
description is that action potentials have their effects represented by 
continuous variables, just as the usual equations describing the 
behavior of electrical circuits replace discrete electrons by continu- 
ous charge and current variables. 

Many neurons, both central and peripheral, show a graded 
response and do not normally produce action potentials (23). The 
presynaptic terminals of these graded-response neurons secrete 
neurotransmitters, and hence induce postsynaptic currents, at a rate 
dependent on the presynaptic cell potential. The effective output of 
such cells is also a monotonic sigmoid function of the net synaptic 
input. Thus the model treats both neurons with graded responses 
and those exhibiting action potentials with the same mathematics. 

We can now describe the dynamics of an interacting system of N 
neurons. The following set of coupled nonlinear differential equa- 
tions results from our simplifications and describes how the state 
variables of the neurons (u,; i = 1,. . ., N) will change with time under 
the influence of synaptic currents from other neurons in the circuit. 

These equations might be thought of as a description of "classical" 
neurodynakics (12, 14).  They express the net input current charg- 
ing the input capacitance Ci of neuron i to potential ui as the sum of 
three sources: (i) postsynaptic currents induced in i by presynaptic 
activity in neuron j, (ii) ieakage current due to the finite input 
resistance Ri of neuron i, and (iii) input currents I, from other 
neurons external to the circuit. The time evolution of any hypotheti- 
cal circuit, defined by specific values of Tv, Ii,Ji', Ci, and Ri, can be 
simulated by numerical integration of these equations. 

Some intuitive feeling for how a model neural circuit might 
behave can be provided by considering the electrical circuit shown in 
Fig. 3B, which obeys the same differential equation (Eq. 1). The 
"neurons" consist of amplifiers in conjunction with feedback circuits 
composed of wires, resistors, and capacitors organized to represent 
axo&., dendritic arborization, and synapses connecting the neurons. 
The firing rate function of our model neurons E(ui)]  is replaced in 
the circuit by the output voltage Vi of amplifier i. This output is 
Vi = Fax gi(ui), where the dimensionless function fli(ui) has the 
same sigmoid monotonic shape (Fig. 3A) asJ;(ui) and a maximum 
value of 1. is the electrical circuit equivalent of the maximum 
firing rate of cell i. The input impedance of our model neuron is 
represented in the circuit by an equivalent resistor pj and an input 
capacitor Cj connected in parallel from the amplifier input to 
ground. These components define the time constants of the neurons 
and provide for the integrative analog summation of the synaptic 
input currents from other neurons in the network. To provide for 
both excitatorv and inhibitorv svna~tic connections between neu- 

, , I  

rons while using conventional electrical components, each amplifier 
is given two outputs-a normal (+) output and an inverted (-)  
output of the same magnitude but opposite in sign. A synapse 
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between two neurons is defined by a conductance Tq, which 
connects one of the two outputs of amplifier j to the input of 
amplifier i. This connection is made with a resistor of value Rij = 

l/lTijl. If the synapse is excitatory (Ti > 0), this resistor is connected 
to the normal (+) output of amplifier j. For an inhibitory synapse 
(Ti < 0), it is connected to the inverted ( - )  output of amplifier j .  
Thus, the normal and inverted outputs for each neuron allow for the 
construction of both excitatory and inhibitory connections through 
the use of normal (positive valued) resistors. The circuits include a 
wire providing an externally supplied input current I, for each 
neuron (Fig. 3B). These inputs can be used to set the general level of 
excitability of the network through constant biases, which effectively 
shift the input-output relation along the ui axis, or to provide direct 
parallel inputs to drive specific neurons. As in Eq. 1, the net input 
current to any neuron is the sum of the synaptic currents (flowing 

1 
0 I I 

0 
Input potential, u 

Fig. 3. (A) The sigmoid monotonic input-output relation used for the model 
neurons. (B) The model neural circuit in electrical components. The output 
of any neuron can potentially be connected to the input of any other neuron. 
Black squares at intersections represent resistive connections (with conduc- 
tance T,) between outputs and inputs. Connections between inverted 
outputs (represented by the circles on the amplifiers) and inputs represent 
negative (inhibitory) connections. 

through the set of resistors connecting its input to the outputs of the 
other neurons), externally provided currents, and leakage current. 

In the model represented by Eq. 1 and Fig. 3, the properties of 
individual model neurons have been oversimplified, in comparison 
with biological neurons, to obtain a simple system and set of 
equations. However, essential features that have been retained 
include the idea of a neuron as transducer of input to output, with a 
smooth sigmoid response up to a maximum level of output; the 
integrative behavior of the cell membrane; large numbers of excit- 
atory and inhibitory connections; the reentrant or fedback nature of 
the connections; and the ability to work with both graded-response 
neurons and neurons that produce action potentials. None of these 
features was the ~esult of approximations. Their inclusion in a 
simplified model emphasizes features of the biological system we 
believe important for computation. The model retains the two 
important aspects for computation: dynamics and nonlinearity. 

The model of Eq. 1 and Fig. 3 has immense computing power, 
achieved through organized synaptic interactions between the neu- 
rons. The model neurons lack many complex features that give 
biological neurons, taken individually, greater computational capa- 
bilities. It seems an appropriate model for the study of how the 
cooperative effects of neuronal interactions can achieve computa- 
tional power. 

A New Concept for Understanding the 
Dynamics of Neural Circuitry 

A specific circuit of the general form described by Eq. 1 and Fig. 3 
is defined by the values of the synapses (TG) and input currents (I,). 
Given this architecture, the state of the system of neurons is defined 
by the values of the outputs Vi (or, equivalently, the inputs ui) of 
each neuron. The circuit computes by changing this state with time. 
In a geometric space with a Cartesian axis for each neural output Vi, 
the instantaneous state of the system is represented by a point. A 
given circuit has dynamics that can be pictured as a time history or 
motion in this state space. For a circuit having arbitrarily chosen 
values for the synaptic connections, these motions can be very 
complex, and no simplifying description has been found. A broad 
class of simplified circuits, however, has a unifying principle of 
behavior while remaining capable of powerful computation. These 
circuits are literally or effectively symmetric. 

A symmetric circuit is defined as having synaptic strength and 
sign (excitation or inhibition) of the connection from neuron i to j 
the same as from j to i. The two neurons need not, however, have 
the same input-output relation, threshold, or capacitance. Our 
model circuit (Fig. 3B) is symmetric if, for all i and j, Tij is equal to 
Tji. This symmetry refers only to connections between neurons in 
the circuit. It specifically excludes the input connections (represent- 
ed in Fig. 3B as the input currents I,) and any output connections 
from the circuit. 

Symmetry of the connections results in a powerful theorem about 
the behavior of the system. The only additional conditions necessary 
are that the input-output relation of the model neurons be mono- 
tonic and bounded and that the external inputs Ii (if any) should 
change only slowly over the time of the computation. The theorem 
shows that a mathematical quantity E, which might be thought of as 
the "computational energy," decreases during the change in neural 
state with time described by Eq. 1. Started in any initial state, the 
system will move in a generally "downhill" direction of the E 
function,-reach a state in which E is a local minimum, and stop 
changing with time. The system cannot oscillate. This concept can 
be illustrated graphically by a flow map in a state-space diagram. 
Each line corresponds to a possible time-history of the system, with 
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Fig. 4. (A) Energy-ter- 
rain contour map for the 
flow map shown in (B). 
(B) Typical flow map 
of neural dynamics for 
the circuit of Fig. 3 for 
symmetric connections 
( T o =  Tji). (C) More 
complicated dynamics 
that can occur for unre- 
stricted (Tu),. Limit cy- 
cles are possible. 

arrows showing the direction of motion. The structure imposed on 
the flow map for a circuit with symmetry is illustrated for a two- 
dimensional state space in Fig. 4. With symmetric connections, the 
flow map of the neural dynamics resembles Fig. 4B. Such a flow, in 
which each trajectory goes to stable points and stops, results from 
always going "downhill" on an "energy-terrain," coming to the 
bottom of a local valley, and stopping. The contour map of an E 
function that matches the flow in Fig. 4B is shown in Fig. 4A; it 
shows separated hills and valleys. The valleys are located where the 
trajectories in Fig. 4B stop. For a nonsymmetric circuit, the 
complications illustrated in the flow map in Fig. 4C can occur. This 
flow map has trajectories corresponding to complicated oscillatory 
behaviors. Such trajectories are undoubtedly important in neural 
computations, but as yet we lack the mathematical tools to manipu- 
late and understand them at a computational level. The motion of a 
neural circuit comprising N neurons must be pictured in a space of 
N dimensions rather than the two dimensions of Fig. 4, but the 
qualitative picture of the effects of symmetric synaptic strengths is 
exactly the same. 

The computational energy is a global quantity not felt by an 
individual neuron. The states of individual neurons simply obey the 
neural equations of motion (Eq. 1). The computational energy is 
our way of understanding why the system behaves as it does. A 
similar situation occurs in the concept of entropy in a simple gas. We 
understand that when a nonequilibrium state is set up with all the air 
molecules in one corner of the room, a uniform distribution will 
rapidly result. We explain that fact by the tendency of the entropy of 
isolated systems to increase whenever possible, but the individual 
molecules know nothing of entropy. They simply follow their 
Newtonian equations of motion. 

Symmetric chemical synapses are observed in neural systems (24). 
Nonrectifying electrical synapses are intrinsically symmetric synap- 
ses of positive sign (25). Lateral inhibition in the visual system of 
Linzulus is implemented with symmetric inhibitory synapses (6). An 
asymmetric network can also behave as though it were symmetric. In 
the olfactory bulb, the local circuit of mitral cell to granule cell to 
mitral cell provides an equivalent symmetric inhibitory connection 
between the pair of mitral cells (26). A similar situation occurs in the 
circuit shown in Fig. 1, where a direct equivalence between a neural 
circuit which is manifestly not symmetric and one which is effective- 
ly symmetric can be made if the inhibitory interneurons (IN,, IN2) 
are faster than other neurons. 

The requirement of symmetry for this theorem can also be 
weakened. We have proven stability for a wide class of circuits 
having organized asymmetry between two sets of neurons with 
different time constants (16). (A neurobiological example would be 
the existence, in mammalian systems, of fast inhibitory interneurons 
that could provide effective symmetric inhibitory connections be- 
tween neurons that are otherwise excitatory.) In one potentially 
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useful example (16), stability could be guaranteed even though the 
sign of Ti, was always opposite that of Ti. Also, there is a family of 
transformations by which a broader class of synaptic organizations 
can be made equivalent to symmetric ones (27). From an empirical 
viewpoint, moderate disorganized asymmetry (for example, having 
a random set of connections missing in an otherwise symmetric 
associative memory circuit) has little experimental effect on dynamic 
stability (28). Because the general features of symmetric circuits 
persist in circuits that are only equivalently symmetric, and real 
neural circuits can ofien be so viewed (except for inputs and 
outputs), the behavior of symmetric circuit models should be of 
direct use in trying to understand how neural computation is done 
in biology. 

In general, systems having organized asymmetry can exhibit 
oscillation and chaos (29). In some neural systems like central 
pattern generators (8) ,  coordinated oscillation is the desired compu- 
tation of the circuit. Processing in the olfactory bulb also seems to 
make explicit use of oscillatory patterns (30). In such a case, proper 
combinations of symmetric synapses can enforce chosen phase 
relationships between different oscillators, an effect similar to those 
presented above. 

Hard Problems Naturally Solved by Model 
Neural Circuits 

In thinking about how difficult computational problems can be 
done on such networks, it is useful to recall the simple problem of 
associative memory, which these networks implement in a "natural" 
fashion (10, 13). This naturalness has two aspects. (i) The symmetry 
of the networks is natural because, in simple associations, if A is 
associated with B, B is symmetrically associated with A. (ii) If the 
desired memories can be made the stable states of a network, the 
desired computation (given partial information as input, find the 
memory that most resembles it) can be directly visualized as a 
motio; toward the nearest stable state whose ~os i t ion  is the recalled 
memory. Finally, the way the connection strengths must be chosen 
for a given set of memories can be easily implemented by learning 
rules (13) such as the one proposed by Hebb (31). 

To what extent can more difficult computations-for example, 
those relevant to object recognition or speech perception-be 
carried out naturallv on these model neural circuits? One of the 
characteristics of such computations seems to be a combinatorial 
explosion-the huge number of possible answers that must be 
considered. The desired computation (for example, matching a set 
of words to a sound pattern) can ofien be stated as an optimization. 
Although it is not yet known how to map most biological problems 
onto model circuits, it is now possible to design model circuits to 
solve nonbiological problems having combinatorial complexity. 
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Because well-defined problems have been used, the effectiveness of 
the neural circuit computation can be quantified. We will review 
two circuit examples. 

The idea of most algorithms or procedures for optimization is to 
move in a space of possible configurations representing solutions, 
progress in a direction that tends to decrease the cost function being 
minimized, and hope that the space and method of moving are 
smooth enough that a good solution will ultimately be reached. 
Such ideas lie behind conventional computer optimization algo- 
rithms and the recent work in simulated annealing (32) and Bayesian 
image analysis (33). In our approach (15-13, the optimization 
problem is mapped onto a neural network in such a way that the 
network configurations correspond to possible solutions to the 
problem. An E function appropriate to the problem is then con- 
structed. The form of the E function is chosen so that at configura- 
tions representing possible solutions, E is proportional to the cost 
function of the problem. Since, in general, E is minimized as the 
circuit computes, the dynamics produce a path through the space 
that tends to minimize the energy and therefore the cost function. 
Eventually, a stable-state configuration is reached that corresponds 
to a local minimum in the E function. The solution to the problem is 
then decoded from this configuration. 

It is particularly easy to construct appropriate E functions when 
the sigmoid input-output relation is steep, because in this "high- 
gain" limit, each neuron will be either very near 0 output or very 
near its maximal output when the system is in a low E stable state 
(14). In the high-gain case, the energy function is 

When lower gain is considered, terms containing the functiongi(ui) 
must be included in E (14). The following two examples make use of 
this high-gain limit. 

~ h e s i m ~ l e  seven-neuron circuit described in Fig. 1 was designed 
according to this conceptual framework to be a four-bit analog-to- 
binarv (A-B) converter. Given an analog input to the circuit - - 
represented by the time-averaged impulse activity in the input axon 
Q, the neural circuit is organized to adjust the firing rates in the 
principal neurons so that they can be interpreted as the binary 
number numerically equal to. the time-ave;aged input activity. 
Reorganization of the data in Fig. 2A will illustrate this computa- 
tion. In each time epoch in Fig. 2A, assign the value 0 or 1 to the 
variable Vi representing the output of Pi; if Pi is firing strongly, 
Vi = 1; if it is quiescent, Vi = 0. Represent the activity in axon Q by 
a continuous variable X. The value of the binary word interpreted 
from the ordered list of numbers (V3V2VIVo) is plotted in Fig. 2B 
for each of the different values of input strength X. The data points " 
(asterisks) lie on a staircase function (dotted line) characteristic of an 
A-B converter. (Although not shown, the outputs computed for any 
other i n ~ u t  would alsolie on this curve.) 

- 

Through the consideration of a specific energy finction in the 
high-gain limit and the synaptic strengths and inputs listed in Table 
1, the behavior of the neural circuit can be predicted and under- 
stood. We decide in advance that outputs V3V2VIVo of P3 through 
Po are interpreted as a computed binary word. The problem to be 
solved is stated as an optimization: Given analog input X, which 
binary word (set of outputs) best represents the numerical value of 
X? The solution is provided when the following E is minimized 
(1 6) : 

The second term in E is minimized (and numerically equal to 0) 
when all Vj are either close to 0 or close to 1. Since E is minimized as 

the circuit converges, stable states having the correct "syntax" tend 
to develop. Since the first term in E is a minimum when the 
expression in the parentheses vanishes, this term biases the circuit 
towards the states closest, in the least-squares sense, to the analog 
value ofX. The E in Eq. 3 is like that in Eq. 2, a quadratic in the Vi. 
Rearranging Eq. 3 and comparing it with this general form yields 
values for Ti and Ii for a circuit of the form in Fig. 3B that can be 
deduced within a common scale factor as 

The coefficient o fX  in Ii is the synaptic strength from the input axon 
Q to the principal neurons. These specific values are equal to the 
strengths of the "effective" synapses tabulated in Table 1. Knowl- 
edge-that E is minimized as the circuit computes provides an 
understanding of how this synaptic organization both enforces the 
necessary syntax and biases the network to choose the optimum 
solution. 

Our second example is a neural circuit that computes solutions to 
the traveling salesman problem (TSP) (15). In this frequently 
studied optimization problem (34), a salesman is required to visit in 
some sequence each o f  n cities; the problem is to  determine the 
shortest closed tour in which every city is visited only once. Specific 
problems are defined by the distances (di) between pairs of cities (i, 
1). Assigning letters to the cities in a TSP permits a solution to be 
specified by an ordered list of letters. For example, the list CAFGB is 
interpreted as "visit C, then A, then F ,  then G, then B, and finally 
return to C." For an n-citv TSP. this list can be decoded from the 
outputs of N = n2 neurons if we let a single neuron correspond to 
the hypothesis that one of the n cities is in a particular one of the n 
possible positions in the final tour list. This rule suggests the 
arrangement illustrated in Fig. 5 for displaying the neural output 
states. The output of a neuron (Vi ) is graphically illustrated by 
shading; a filled square represents a neuron which is "on" and firing 
strongly. An empty square represents a neuron that is not firing. The 
output states of the n neurons in each row are interpreted as 
information about the location of a particular city in the tour 
solution. The output states of the n neurons in each column are 
interpreted as information about what cities are to be associated 
with a particular position in the tour. If the neuron from column 5 
in row C is "on," the hypothesis that city C is in position 5 in the 
final tour solution is true. 

Hypothetically, each of the n cities could indicate its position in 
any one of the n possible tour locations. Therefore, 2N possible 
"neural states" could conceivably be represented by these outputs. 
However, only a subset of these actually correspond to valid 
solutions to the TSP (valid tours): a city must be in one, and only 
one, position in a valid tour, and any position must be filled by one 
and only one city. This constraint implies that only output states in 
which only one neuron is "on" in every row and in every column are 
of the co;rect "svntax" to represent "slid solutions to the TSP. A 
TSP circuit that is to operate correctly must have synapses favoring 
this subset of states. Simple lateral inhibition between neurons 
within each row and COIL& will provide this bias. For example, if 
VB,2 (representing city B in position 2) is "on," all other neurons in 
row B and column 2 should be inhibited. This can be provided by 
the inhibitory connections from neuron drawn i n - ~ i ~ .  5 (red 
lines). Similar row and column inhibitory connections are drawn for 
neuron VDSs. A complex "topology" of syntax-enforcing connec- 
tions is generated. We can also think of these connections as 
contributing a term to the E function for the circuit. For example, a 
term +A Vx,i Vy.i in E makes a contribution -A to the synaptic 
strength Tx,i;r,i and represents a mutual lateral inhibition between 
neurons (X,i) and ( Y,i). The term is positive (higher E) when both 
of these neurons are "on," but contributes nothing if only one of the 
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two is "on." The proper combination of similar terms in an E 
function can spec* the synapses that coordinate correct syntax. 

In a syntactically correct state representing a valid solution (tour), 
if neurons VX,i and V Y , ~ + I  are both "on," the salesman travels from 
city X directly to city Y. Therefore, the distance dx, y between these 
two cities is included in the total tour length fbr that solution. A 
term of the fbrm +dx, VX,i VY,i+1 in the E function provides a 
"distance" contribution of rl, to the value of E when these neurons 
are "on." Similar terms, properly summed,, will add to E a value 
equal to the length of the tour. Since the circuit minimizes E, the 
final state will be biased toward those valid solutions representing 
short tours. Such inhibitory connections are drawn in Fig. 5 with 
blue lines for neurons VBB2 and vD,5. In TSP and in the earlier 
example, the rules of syntax are expressed in inhibitory connections. 
It seems easier to define what these systems should not do (by 
inhibitory connections), and to define what they should do by 
default, rather than to define what they should do by writing syntax 
in excitatory connections. 

The inhibitory synapses define the computational connections fbr 
the TSP circuit. With a common sigmoid gain m e ,  R, and C for 
each neuron, the description of the circuit is complete. The gain 
curve is chosen so that with zero input, a neuron has a nonzero but 
modest output. This circuit can rapidly compute good solutions to a 
TSP problem (15). When started from an initial "noise" state 
favoring no particular tour, the network rapidly converges to a 
steady state describing a very short tour. The state of the circuit at 
several time points in a typical convergence is illustrated in Fig. 6. In 
a 30-city problem, there are about ldO possible tours-the combi- 
natorial problem has gotten completely out of hand. But the circuit 
of 900 neurons can find one of the best lo7 solutions in a single 

convergence-a few time constants of the circuit. It selects good 
answers and rejects bad ones by a factor of ld3. 

The continuous response characteristic of the analog neurons in 
the TSP circuit represents partial knowledge or belief. A value for 
Vx, j between 0 and 1 represents the "strength" of the hypothesis 
that city X is in position j of the tour. During an analog conver- 
gence, several conflicting solutions or propositions can be simulta- 
neously considered through the continuous variables. It is as though 
the logical operations of a calculation could be given continuous 
values between "true" and "false" and evolve toward certainty only 
near the end of the calculation. This is evident during the TSP 
convergence process (Fig. 6) and is important for finding good 
solutions to this problem (15). If the gain is greatly increased, the 
output of any given neuron will usually be either 1 or 0, and the 
potential analog character of the network will not be utilized. When 
operated in this mode, the paths found are little better than random. 
The analog nature of the neural response is in this problem essential 
to its computational effectiveness. This use of a continuous variable 
between true and false is similar to the theory of fUzzy sets (35) and 
to the use of evidence voting for the truth of competing proposi- 
tions in Bayesian inference and connectionist modeling in cognitive 
psychology (36). Two-state neurons do not capture this computa- 
tional feature. 

Discussion 
The work reviewed here has shown that a simple model of 

nonlinear neurons organized into networks with effectively symmet- 
ric connections has a "natural" capacity for solving optimization 
pmblems. The general behavior c& be readily adapted particular 
problems by appropriately selecting the synaptic connections. Opti- 

t 

mization problems are ubiquitous where goals are ammpted in the 
)oaition presence of conflicting constraints, and they arise in pmblems of 

mrcevtion (What three-dimensional shape "best" describes a given 

Fig. 5. A stylized picture of the syntax and connections of the TSP neural 
circuit. Each neuron is symbolically indicated by a s y r e .  The neurons are 
arranged in an n by n array. Each city is associated wlth n neurons in a row, 
aad each position in the final tour is associated with n neurons in a column. 
A given neuron (Vx,,) represents the hypothesis that cityX is in position j in 
the solution. The patterns of synaptic connection fw two di&rent neurons 
are indicated. 
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;had& pakern in a two-dimensional ikRe?),  behavioral soice, 
and mot& control (What is the ~p t im~t ra j ec to ry  to move an 
appendage to minimize internal stresses?). Hence circuits consistent 
with this model could e5ciently solve problems important in 
biological infbrmation processing. 

Biologically relevant pmblems in vision have already been formu- 
lated in terms of optimization problems. Edge-detection, stereopsis, 
and motion detection can be described as "ill-posed" problems, and 
solutions can be fbund by minimizing appropriate quadratic func- 
tionals (37). The emphasis in these formulations has been simple 
convex problems with a single minimum in the energy. Networks 
solving these problems can be implemented by linear circuits having 
local connections. The nonlinear circuits described here can imple- 
ment solutions to much more complex problems and have recently 
been used to solve the object-discontinuity problem in early vision 
(18). 

The concept of an energy function and its use in circuit design 
provide an understanding of hmp model neural circuits rapidly 
compute solutions to optimization problems. The state of each 
neuron changes in time in a simple way determined by the state of 
neurons to which it is connected, but the organization of the 
synapses results in collective dynamics that minimize an E function 
relevant to the optimization problem. Knowledge of this E function 
helps us understand the collective dynamics. The two circuit exam- 
ples reviewed here, the A-B converter and TSP circuit, were 
%ward-engineered." Given the optimization problem, a represen- 
tation of hypothetical solutions to the problem as a particular set of 
neural states was constructed. Synaptic connections in the operating 
circuit move the neural state toward these solution states and bias 
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Ci ty  

Posi t ion in path 
(Path=DHIFGEAJCB) 

Fig. 6. T h e  convergence o f  a ten-city analog circuit t o  a tour. The  linear 
dimension o f  each square is proportional t o  the value o f  Vx,i. (A t o  C) 
Intermediate times. (D) T h e  final state. Indices illustrate how the final state 
is decoded into a tour  (solution of the TSP) .  

this motion toward the best solution. The values of these synaptic 
strengths were summarized in the single algebraic statement of the E 
hnction. [The two problems illustrate different ways in which 
"data" modulate the circuit parameters: as input currents in the A-B 
converter or as changes in the connection strengths in the TSP 
circuit (13.1 Forward-engineered examples of model neural circuits 
add to the known repertoire of computational circuits that seem 
neurobiologically plausible. The general problem of neurobiology is 
"reverse engineeringn-to understand the operation of a complex 
biological circuit with unknown design principles and internal 
representations. In general, the set of neural circuits whose function- 
ing is understood provides an information base for hypothesizing 
function in biological neural circuits in the same way that the study 
of understood electrical circuits aids the attempt to understand or 
reverse engineer an unfamiliar electrical circuit diagram. 

When a problem falls naturally onto a neural circuit, its conver- 
gence to a collective analog decision in a few time constants 
represents immense computation for the amount of hardware 
involved. For example, the 30-city TSP can be done on a network of 
900 neurons. When that kind of combinatorial problem occurs in 
perception and pattern recognition, the input to the system will 
occur in parallel and take little time. A biological neural network of 
this structure would converge to an answer in a few neural time 
constants, thus in about 0.1 second. An electronic circuit of the same 
structure would converge in about 1 psec. A comparably good 
solution to this problem, with conventional algorithms used for the 
TSP, can be found in about 0.1 second on a typical microcomputer 
having lo4 times as many devices. The effectiveness of the neural 
system on the basis of computations per device per time constant is 
great in comparison with the usual general-purpose digital machine. 
The ability of the model networks to compute effectively is based on 
large connectivity, analog response, and reciprocal or reentrant 
connections. The computations are qualitatively different from those 
performed by Boolean logic. 

Other specific circuit designs have been studied. Many problems 
in signal processing can be described as the attempt to detect the - - 
presence or absence of a waveform having a known stereotyped 
shape in the presence of other waveforms and noise. (The recogni- 
tion of phonemes in a stream of speech is conceptually similar, but 
fraught with large problems of variability from the stereotype form.) 
We have described the general organization of neural circuits that 
could solve this task (16). Energy functions have been described for 
other combinatorial optimization problems, including graph color- 
ing (17), the Euclidean-match problem (17), and the transposition 
code problem (15). Circuits that relax the restriction on a symmetric 
connection matrix (as biology does) have also been studied. A 
circuit designed to provide solutions to linear programming prob- 
lems (16) functions without oscillation when the characteristic times 
of these elements are properly specified, even though its computing 
elements have antisymmetric connection strengths. The associative 
memory originally discussed (1 0) and used in a model of learning in 
a simple invertebrate (38) can be described as an optimization 
problem (15). The same conceptual framework can seemingly be 
applied to a large number of different problems. 

Because the basic idea of the model neural circuit can be expressed 
as an electrical circuit. there have been efforts to build such 
hardware. Associative memories of 32 neurons (amplifiers) have 
been built in conventional electrical circuit technology (39). A 22- 
neuron circuit has been successfully microfabricated on a single 
silicon chip (40). Shrinking this kind of network to a compact size 
seems possible (41). The most compact and useful form of such a 
device would involve an electrically writable resistance change in a 
two-terminal device, which would function approximately as a 
Hebbian (31) synapse. Examples of such material fabrications exist 
(42). A 32-neuron system has been fabricated that uses optics to 
implement connections (43). Technological questions have so far 
focused chiefly on associative memory. Similar circuits could be used 
to solve problems in signal detection and analysis, such as artificial 
visual systems, in which there tends to be immense data overload 
and where concurrent distributed processing is desired. 

In both biological neural systems and man-made computing 
structures, hierarchy and rhythmic or timed behaviors are impor- 
tant. The addition of rhythms, adaptation, and timing provides a 
mechanism for moving from one aspect of a computation to another 
and for dealing with time-dependent inputs and will lead to new 
computational abilities even in small networks. Hierarchy is neces- 
sary to keep the number of synaptic connections to a reasonable 
level. T o  extend the present ideas from neural circuit to neural 
system, such notions will be essential. 
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Arctic Research in the National Interest 

The Arctic Research and Policy Act of 1984 was designed 
to advance arctic research in the national interest. Some of 
the research fields that require attention are weather and 
climate; national defense; renewable and nonrenewable 
resources; transportation; communications and space- 
disturbance effects; environmental protection; health, 
culture, and socioe~onomics; and in<ernationd cooper: 
ation. A research framework recommended bv the Arctic 
Research Commission includes, in order of piiority, inte- 
grated investigations to understand: (i) the Arctic Ocean 
(including the marginal seas, sea ice, and seabed) and how 
the ocean and atmosphere operate as coupled components 
of the arctic system; (ii) the coupled atmosphere and land 
components and how their interaction governs the terres- 
trial environment; and (iii) the high-latitude upper auno- 
sphere and its extension into the magnetosphere with 
emphasis on predicting and mitigating effects on commu- 
nications and defense systems. A separate recommenda- 
tion is for high priority research to resolve the major 
health, behavioral, and cultural problems related to the 
arctic environment. Recommendations are also made 
concerning support services and management. 
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T HE ARCTIC IS IMPORTANT FOR MANY REASONS-DEFENSE, 
economic, political, and scientific (14). The Arctic Research 
and Policy Act of 1984 has now put some of these interests 

into sharper focus. Its stated purposes are "to establish national 
policy, priorities, and goals and to provide a Federal program plan 
for basic and applied scientific research with respect to the Arctic, 
including natural resources and materials, physical, biological and 
health sciences, and social and behavioral sciences" [5, Section 
102(b)(l)]. The act established two cooperating groups to carry out 
its intent: (i) an advisory Arctic Research Commission consisting of 
five presidential appointees and the director of the National Science 
Foundation, who serves as an ex officio, nonvoting member, and (ii) 
an executive Interagency Arctic Research Policy Committee, con- 
sisting of a representative from ten named federal agencies and 
possibly others, which is chaired by the National Science Founda- 
tion representative. 

Passage of the act reflected an increasing awareness in Alaska, in 
Washington, and among scientists and others that U.S. arctic 
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