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A Cusp Singularity in Surfaces That Mmmm . .  . 
an 

Anisotropic Surface Energy 

A mathematical proof shows that a surface with a cusp-shaped singularity can arise 
from minimizing an anisotropic surface free energy for a portion of a crystal surface. 
Such cusps have been seen on crystal surfaces but usually have been interpreted as 
being the result of defects or nonequilibrium crystal growth. Our result predicts that 
they can occur as equilibrium or near-equilibrium phenomena. It also enriches the 
mathematical theory of minimal surfaces. 

T HE MATHEMATICAL MODELING OF 

shapes that minimize total crystal 
surface free energy has a long his- 

tory. Initially, only isotropic fluids (as repre- 
sented by soap films, for example) were 
considered (1). This led to the mathematical 
subject of minimal surfaces, which is cur- 
rently very active (2). But from Gibbs (3) 
onward, it has been recognized that the 
surface free energy per unit area of the 
surface of a crystal of fixed orientation is a 
function of the unit normal directions of the 
surface (4). The anisotropy arises from the 
fact that the atomic structure of the surface 
can be very different in different unit normal 
directions. 

Unlike liquid drops, crystals can have 
edges and comers as part of their equilibri- 
um shapes. In our investigation of such 
singularities (5) and their evolution, we 
encountered a problem that suggested that a 
cusp-shaped singularity could occur in an 
energy-minimizing surface. The present re- 
port is the mathematical proof that it is so, 
together with some experimental evidence. 

With the orientation of the solid phase or 
phases fixed in space, and with fixed tem- 
perature, pressure, and chemical potentials, 
the surface free energy per unit area, y, is a 
function that maps unit vectors n to positive 
numbers. The normals n are chosen to point 

Fig. 1. A cylindrical W. Any y that satisfies the 
conditions in expressions 2 through 4 will have 
this W as its WulE shape. The back half of the 
polar plot of one such y is drawn around W. 

from the crystal to the other phase. The 
nature of both phases determines y. The 
other phase can be vapor, liquid, or another 
crystal, perhaps of the same material but 
with another orientation. It is convenient to 
describe y by means of its Wulff shape (also 
called its equilibrium crystal shape) 

W = {x E R ~ :  x . n 4 y(n) 
for each unit vector n} (1) 

That is, W is the set composed of all the 
vectors x in 3-space for which x . n y(n). 
W is the shape of least surface energy for the 
crystal of fixed volume entirely embedded in 
the other phase (6-9). 

The surface free energy function y that we 
will use for the examples and proofs below is 
any function whose Wulff shape is a vertical 
right circular cylinder (Fig. 1). Normalizing 
y if necessary, we can and do assume that 

for each horizontal unit vector n = (nl,n2,0) 
and 

for each of the other unit vectors 
n = (n1, n2, n3). 

Desmptiurt of a cwp-shaped s in~ula r i~ .  
Consider a surface S, as in Fig. 2, which 
consists of a vertical cliff face with a horizon- 
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tal shelf half way up on the left that peters 
out in the middle. On the right, the cliff is a 
vertical straight wall; on the left, the top part 
curves back and the bottom Dart curves 
forward, with the walls remaining vertical 
except for the shelf. S thus has a cusp in the 
curve separating the vertical walls from the 
horizontal shelf. 

A variational problem with a cusp. In the 
following, we consider a special type of 
problem that reveals the reason that cusps 
occur in minimizing surfaces. We show that, 
in the class of surfaces that have Dart of their 
boundaw fixed (as described below) and 
part codstrained 'only to lie in the iair of 
parallel planes z = 1 and z = -1, there is a 
unique surface that minimizes the integral of 
y; this surface has a cusp-shaped singularity 
in it. Figure 2 illustrates that surface for one 
such partially b e d  and partially free bound- 
ary. We will first prove this result with a 
number of assumptions and a particular 
fixed Dart of the boundarv. Then we will 
solve it in a more general case with the same 
assumptions, and finally we will use geomet- 
ric measure theory to show that our assump- 
tions are justified. 

Let K be any number greater than lly,. In 
the initial problem, the fixed part of the 
boundary consists of a horizontal line at 
x = 0, z = 0 that runs from y = -K to 
y = K, together with three vertical line seg- 
ments, one from the point (O,K,O) to the 
point (O,K,l), one from (0,-K,O) to 
(0,-K,- 1), and one from (K,O,- 1) to 
(K,0,1). We will show that the free part of 
the boundary in each plane is a of a 
circle together with line segments, as shown 
in Fig. 2. 

We assume that there are functions 
fi(x) 3 0 Lfi(x) such that the minimizing 
surface S is composed of a horizontal part 
H = {(x,c,y,O): fiw < y <fi(x)> and two 
vertical parts S+ = {(x,y,z): 0 =S z < 1 and 
either O < x < K ,  y = f i ( x )  or x = O ,  
fi(0) < y < K )  and S- = {(x,y,z) : - 1 < z 
S 0 and either 0 < x < K, y = fi(x) or 
x = 0, h(0)  > y > -K) .  At the minimum, a 
small deformation of f i  around anv x should 

a .  

result in equal and opposite changes in the 
area of S+ compared to y, times the area of 
H. Since the radius of curvature R 1  of the 

Fig. 2. The solution to the partially 
free boundary problem with h = 0 
described in the text, shown in an 
isometric view. The fixed parts of 
b e  boundary are indicated as if 
they were rods. The free parts lie in 
the upper and lower planes. 

graph offi at x is the limit, as such deforma- 
tions go to zero, of the change in area 
(under the graph of fi compared to its 
deformation) divided by the change in arc 
length, we conclude that R 1  must be equal 
to lly, whereverfi(x) > 0 andx # 0. Simi- 
larly, R2  must equal lly, wherever 
fi(x) < 0, and the graphs offi and fi must 
meet the x- and y-axes smoothly. (The iden- 
tical solution is -obtained through the stan- 
dard calculus of variations; one can also 
recognize the two-dimensional capillarity 
problem lurking here, which also gives cir- 
cular arcs.) 

A related family of problems has a similar 
partially fixed boundary, except that the 
height h of the horizontal lineis not zero. 
l hi same argument then yields that the 
radius of curvature R1 of the top part at the 
shelf should be constantly (1 - h)Iy, andR2 
should be constantly (1 + h)/y,, provided 
that the problem is set up so that the 
portions df the circles stay ;way from the 
end points of the horizontal line (a conve- 
nient way to achieve this is to put the 
vertical line segment connecting the two 
planes at x = K ( l  - h2)'I2, y = Kh rather 
than at x = K, y = 0 as before). A similar 
argument shows that, where the top part of 
S and the bottom part coincide, the radius of 
curvature must Le infinite A d  thus the 
coincidence curve must be a straight line. 
Both parts must again attach to th; bound- 
ary line at x = 0, z = h with a continuous 
tangent plane and to each other with a 
common tangent plane, which requires (see 
Fig. 3) that the slope tan cw of the common 
tangent line in +e plane z = h be defined by 
R l  cot[(~r/2 - cw)/2] = R2 cot[(~r/2 + cw)/2] 
so that tan cw = hl(1 - h2)lI2. 

To complete thk proof,'it remains only to 
verify our various assumptions. The most 
general context in which to do so is geomet- 
ric measure theory. Briefly, a solution in at 
least the varifold (infinitesimally corrugated) 
sense exists simply by taking a limit of a 
subsequence of a minimizing sequence [see 
( lo)]  (such limits exist since the minimizing 
sequence can be made to stay within a 
bounded radius of the origin, and it natural- 
ly has bounded area). The support S of the 
limit varifold is a "(y,6)-restricted set" and 

can thus be strongly approximated by con- 
tinuously differentiable two-dimensional 
surfaces (10). By inequality 4 above, the 
surface free energy of S is at least y, times 
the area of the orthogonal projection of S 
onto a horizontal plane, plus the integral, 
fromz = -1 t o z =  1 ,of thelengthofSat  
height z. Thus energy is not decreased by 
sloping. One is therefore best off by having 
S consist of a part of a horizontal plane (at 
height h, since the horizontal part of the 
fixed boundary is there) together with verti- 
cal parts, each horizontal slice of which has 
one of the two possible minimum lengths, 
depending on whether it is above or below 
that horizontal plane. To find S, we must 
thus find two one-dimensional rectifiable 
curves C1 and C2 in the plane z = h, with 
the boundary of C l  equal to the points 
(K(1 - h2)'I2,I(h) and (O,K), and the 
boundary of C2 equal to the points 
(K(1 - h2) li2,I(h) and (0,-K), such that 
(1 - h) . length(C1) + (1 + h) . length (C2) 
+ y, . (area of the region between C1 and 
C2) is minimized. Finally, since C1 and 
CZ are rectifiable, they are each a collection 
of closed loops together with a simple curve 
connecting their boundary points; since 
they minimize the above expre&ion, they are 
in fact each a simple curve. One now ana- 
lyzes radii of curvature as before to conclude 
that C1 and C2 are the curves found previ- 
ously. 

Fig. 3. The solution to the partially free boundary 
problem with h = 112, shown from above. The 
vertical fixed parts of the boundary are shown as 
small circles. 
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imal corrugations, or hill-and-valley struc- 

Fued bounduries and sufm with cusps. 
The prescribed boundary problem is a useful 
way of focusing attention on one part of a 
larger physical surface. It also can be realized 
in many different experimental schemes, 
even with solid surfaces. To construct math- 
ematically examples of the cusp in such 
completely fixed boundary problems we fix 
smooth curves CI and C2 in the planes z = 1 
and z = -1, respectively, such that their 
projections onto the plane z = 0 have a 
common line segment on the right; we 
adjoin a vertical line segment joining the end 
points of C1 and C2 on the right and a 
horizontal line segment (at height h) on the 
left, with its ends bent up and down to meet 
the left end points of the curves. The radii of 
curvature of CI can be any values greater 
than or equal to (1 - h)/2yv; they need not 
be equal, as long as the curve bends in only 
one direction. Similarly, those of C2 can be 
any values at least (1 + h)/2yv in the oppo- 
site direction. The surface S with a horizon- 
tal ledge terminating in a cusp in a surface 
that is otherwise vemcal will again be the 
unique m i n i i g  surface (1 1). The proof 
can also be extended to show that minimiz- 
ing surfaces with cusps exist whenever W 
is any cylinder. not necessarilv circular or , , 
right or having any particular symmetry 
(12). 

Expmmmental d c e  fbr the cusp. Such 
cusps abound on crystal surfaces. They can 
be shown not to be due to screw disloca- 
tions emerging to the surface or to other 
bulk defects, and they occur persistently in 
crystal surfaces that have had long annealing 
times. For example, the surface of the sili- 
con-iron crystal of Fig. 4a is well equilibrat- 

.. Fig. 4. (a) The surtace o t  a steel, ongnal -  
1y smooth and ncarly flat but then an- 
nealed in an atmosphere that changes the 
surface free c n e r p  f mction. Scveral 
cusps are visible (arrows). [Courtesy of 
John Walter, General Elcctric Research 
and Development Center, Schcncctady, 
NY] (b) The apparent Urulff shape of 
thig material, as deduced from the surface 
in (a) and the cubic symmetry. 

ed bv an anneal of 8 hours at 1250°C in a 
controlled atmosphere of argon [as de- 
scribed in (13)l. This surface is essentially 
flat, but with many shelves [(loo) facets] 
and short sloping walls separating them. 
Several cusps are visible, where a shelf peters 
out in the middle of a wall. Using the overall 
cubic svmmew of the matera and the 
rounded squari outlines of the figure, we 
deduce that the Wulff shape for the surface 
energy of the surface in ~ i ~ .  4a is a slightly 
distorted sphere with six caps sliced off, as in 
Fig. 4b [such W u E  shapes have been calcu- 
lated theoretically (14)l. The surface is clear- 
ly not at an overall equilibrium: many fea- 
tures, including the cusps, violate the barrier 
constructs (5) in the large. Because diffusion 
over distances of the si& of these violations 
is required to remove these nonequilibrium 
features, they remain for long times. But the 
surface can be at essential eauilibrium with 
respect to local atomic rearrangements in 
small enough regions (of radius less than the 
height difference between shelves). And 
ev& though the cusps are over a large scale a 
kinetic phenomenon in this case, in other 
experiments they need not be: surfaces with 
cusps can be absolutely surface energy-mini- 
mizing (as shown above) and hence cusps 
can be an equilibrium phenomenon. 

Generalization: We conjecture that mini- 
mizing surfaces with cusishaped singulari- 
ties can exist whenever y is such that its 
Wulff shape has a flat facet with a curved 
sharp edge. When W has a sharp curved 
planar edge but no flat facets, a plausible 
argument can be made that the cusp cannot 
exist in a surface having only the normals of 
W. Varifold surfaces (surfaces with infinites- 

tures) seem to arise instead if one tries to 
force a cusp to occur, provided that smct 
inequality holds in the formula analogous to 
Eq. 1. Presumably edge energies will also 
need to be included in the formulation of 
the problem to predict what would be seen 
in actual materials with that type of surface 
energy function. 

A phenomenon related to this cusp has 
been seen in soap films with a partially flee 
boundary (15). Here a wire emerges from 
the top of a sheet of glass, spirals around one 
of its edges, and reattaches on the bottom 
side so that the projection of the wire on the 
plane of the glass crosses itself. If the wire is 
positioned correctly, the curve where the 
soap film contacts the upper surface of the 
glass and the curve where it contacts the 
lower surface meet in a cusp at the edge of 
the glass. Since in this case there is zero 
energy associated with the surface along the 
glass between the contact curves, we can 
convert this problem to an anisotropic sur- 
face energy problem with a completely fixed 
boundary by assigning zero energy to the 
downward-pointing normal, constant ener- 
gy to normals in the upper hemisphere, 
adding a line segment to connect the bound- 
ary ends, and removing the glass. W is now 
the upper half ball, and we expect the same 
surface as the soap film plus the horizontal 
ledge terminating in a cusp to be minimiz- 
ing. 

We have demonstrated mathematically 
that the cusp can be part of an energy- 
minimizing surface of a crystal whose sur- 
face energy function y is such that its Wulff 
shape is a cylinder. The cusp differs from the 
various possible first-order singularities 
(ones where there is no tangent plane) that 
we have cataloged (5) in that there is a 
tangent plane to the surface at the point of 
the cusp. Much work still needs to be done 
to determine what happens for other surface 
energy functions. 

The frequent observation of cusps in real 
crystal surfaces needs to be reinterpreted in 
view of the knowledge that such features can 
be part of equilibrium surface shapes, and 
therefore are not necessarily a result of de- 
fects or growth history. 
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The Generation of Insulin-Like Growth Factor-l- 
Sensitive Cells by Growth Hormone Action 

Insulin-like growth factor-1 (IGF-l), a mitogenic polypeptide, is usually considered 
the sole effector by means of which growth hormone increases tissue mass. However, 
growth hormone, but not IGF-1, directly promotes the differentiation of cultured 
preadipocytes to adipocytes. Adipocytes newly differentiated from precursor cells in 
response to growth hormone were shown to be much more sensitive to the mitogenic 
effect of IGP-1 than the precursor cells. The result of IGF-1 action is therefore a 
selective multiplication of young differentiated cells (clonal expansion). This supports 
the concept of a dual effector system in which the preferred target cells of IGF-1 action 
are created by the direct action of growth hormone. 

G ROWTH HORMONE SPECIFICALLY 

promotes the dfferentiation of 
cloned lines of preadipose 3T3 cells 

into adipose cells (1). This is the result of a 
direct action of the hormone on the cells; 
IGF-1 (insulin-like growth factor-1 or so- 
matomedin C), which has been regarded as 
an obligatory intermediate effector of the 
hormone in the promotion of growth ( 2 4 ) ,  
does not promote this differentiation (5, 6). 
To account for the direct and the IGF- 
mediated effects of growth hormone in ani- 
mals, we proposed a dual effector theory (7) 
based on the concept that growth of tissues 
commonly occurs in two stages: (i) differen- 
tiated cells are formed from their precursors 
and (ii) the number of young differentiated 
cells is increased through limited multiplica- 
tion (clonal expansion). The dual effector 
theory states that both stages are promoted 
by growth hormone: the first, directly by 
the hormone, and the second, indirectly, 
through its intermediate effector IGF-1. Al- 
though these two effects of the hormone 
cannot be easily distinguished in animal 
tissues, they can be distinguished in cell 
cultures. We show that cells with marked 

sensitivity to IGF-1 are produced by the 
prior action of growth hormone. 

Preadipose 3T3-F442A cells were grown 
in 35-mm dishes containing the Dulbecco- 
Vogt modification of Eagle's medium sup- 
plemented with 5% cat serum and 0.5% calf 
serum. For experiments, cells grown to con- 
fluence in this medium were fed with modi- 
fied conversion medium (6) containing 
1.5% cat serum and 1.0% calf serum but 
lacking insulin to enable the cells to respond 
to IGF-1. The concentration of serum was 
the lowest compatible with good multiplica- 
tion and adipose differentiation; the effects 
produced by added growth hormone and 
IGF-1 are increments over a relatively low 
background, some of which may be due to 
the presence of both proteins in the serum 
supplement. 

The effect on adipose conversion pro- 
duced by the addition of the two proteins is 
shown in Fig. 1. As the measure of differen- 
tiation, we used the activity of glycerophos- 
phate dehydrogenase, a sensitive marker of 
the adipose phenotype (8-10). In the ab- 
sence of added growth hormone, the differ- 
entiation of preadipose 3T3 cells was com- 

pletely unresponsive to IGF-1, up to a con- 
centration of 300 ngiml. The cells did not 
develop glycerophosphate dehydrogenase, 
and although IGF-1 exerted a mitogenic 
action detectable by ['4C]thymidine incor- 
poration (see below), it had no detectable 
effect on the total cell protein content per 
dish. No adipose cells'were formed ($45 
ID).  

Human growth hormone promoted sub- 
stantial differentiation even in  the absence of 
added IGF-1, but when IGF-1 was added, 
the specific activity of cellular glycerophos- 
phate dehydrogenase increased up to 4.5- 
fold (Fig. 1A). IGF-1 also substantially in- 
creased the protein content of the cultures in 
which the differentiation had been promot- 
ed by growth hormone (Fig. 1C). As a 
result, the total enzyme activity per culture 
undergoing adipose conversion increased up 
to tenfold after IGF- 1 was added (Fig. 1B). 

The combined effect of the hormone and 
IGF-1 could be the result of either more 
advanced differentiation within each adipose 
cell or an increase in the number of adihose 
cells. The proportions of adipose and non- 
adipose cells were therefore scored by count- 
ingcells containing or lacking fat droplets. 
This measurement is complicated by the fact 
that the addition of IGF-1 to growth hor- 
mone-treated cells increases the amount of 
lipid per fat cell. Using the dye Nile red, 
which is very specific and sensitive for lipid 
( l l ) ,  to stain the living cells, we could easily 
identify fat cells containing small amounts of 
lipid. Cells exposed to IGF-1 alone did not 
acquire lipid droplets, but in growth hor- 
mone-treated cultures the addition of IGF- 
1 increased the proportion of adipose cells 
about 3.5-fold (Fig. 1D). 
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