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Brownian Motion and Nonequilibrium 
Statistical Mechanics 

This article is a personal reflection of the branch of 
nonequilibrium statistical mechanics called the linear re- 
sponse theory that has as its heart the fluctuation-dissipa- 
tion thereom, which states that irreversible processes in 
nonequilibrium are necessarily related to thermal fluctua- 
tions in equilibrium. Its origin lies in the Einstein relation 
for the diffusion constant and the mobility of a Brownian 
particle. The short history of the fluctuation-dissipation 
theorem is described. Then the linear response theory is 
briefly summarized and the meaning of stochastization is 
considered. The Langevin equation approach and its 
extensions are reviewed. 

M UCH OF MY WORK IS CONCERNED WITH THE NONEQUI- 

libriym theory of statistical mechanics that aims to estab- 
lish a theoretical framework to treat a macroscopic system 

in nonequilibrium dynamic states from a microscopic standpoint. In 
contrast to equilibrium statistical mechanics, which is the micro- 
scopic foundation of thermodynamics, nonequilibrium statistical 
mechanics is far from complete. The concept of nonequilibrium is 
perhaps too broad to be unified by a few principles. In spite of this 
there has been great progress in our understanding of this field in 
the last few decades. 

The nonequilibrium aspect of statistical mechanics is not new, but 
rather the origin of statistical mecbanics more than 100 years ago. In 
1872, Ludwig Boltzmann published the Boltzmaw equation for 

gaseous systems (1). This equation determines the evolution of the 
distribution function of gaseous molecules. For equilibrium states it 
derives the Maxwell-Boltzmann distribution of molecular velocities. 
For nonequilibrium states, where mass and heat flows are present, it 
gives the macroscopic laws with the kinetic coefficients (for example, 
the viscosity coefficient or the heat conductivity) in terms of the 
intermolecular forces governing collisions between molecules. If the 
hnctionfir, v, t) drdv is the number of molecules to be found at 
time t in the elementary volume drdv with the spatial coordinate r 
and the velocity v, the equation is expressed in the form 

where the first two terms on the right are the drift terms represent- 
ing the change off by the free motion of each molecule, r = v, and v 
= W m .  K is the force acting on a molecule and m is the molecular 
mass. The last term r(n is the collision term representing the change 
off  by collisions between molecules. Boltzmann wrote this equation 
by intuition, making the Stoss-Zahl Ansatz assumption for collisions 
taking place in a random fashion. This may be justified in the limit of 
a dilute gas and in the scale of time and space much larger than the 
mean free time and mean free path. Derivation of the Boltzmann 
equation and its extensions to denser systems remain outstanding 
problems even today. 

The Boltzmann equations are commonly used not only for gases 
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but also, with necessary modifications, for electrons and phonons in 
solids. This approach in nonequilibrium statistical mechanics is 
called the kinetic method. It is useful in many problems, but only 
within its limitation, which is that the particles must be in nearly free 
motiori, with mutual collisions or scattering occurring only occa- 
sionally. Because of this limitation, the simple kinetic method 
cannot be applied to denser 'systems--say, liquids or amorphous 
solids. Considerable work has been done to extend the kinetic 
method to dense systems of interacting particles (2). Although such 
extensions are important, they are usually complicated and unsuit- 
able as a general basis for studying nonequilibrium physical process- 
es. 

The   id ear Respodse Theory 
A different approach to nonequilibrium statistical mechanics is 

generally called the linear resionse theory (3). In this approach, one 
is limited to nonequilibrium states near equilibrium. Ffom the 
analysis of such states, a gentral framework is constructed. 

In the presence of an electric field, a conductor carries, an electrit 
current in proportion to the field strength. If there is a temperature 
gradient in a system, heat flow is produced in proportion to the 
gradient. Such linear phenomena are common and fundamental in 
physics. The physical constants appearing here are called kinetic 
coefficients, susceptibilities, or, more generally, adinittance. They 
are usually functions of the frequency w and the wave nuinber k, 
which characterize the spatial and temporal nonuniformity of the 
phenomena. Can stpistical mechanics give us a genei.al method by 
which we calculate the kinetic coefficients from a basic knowledge of 
the microscopic structure and the dynamics of the system of interest? 
Again, the traditional kinetic method is not quite satisfactory for this 
purpose. 

The linear response theory answers this question, giving an 
expression for an admittance in terms bf the correlation function of 
fluctuations of physical quantities relevant to the problem under 
consideration. A good example is the conductivity formula, often 
called the Kubo formula, 

where u is the conductivity at the frequency w of the applied electric 
field and the bracketed terms inside the integral constitute the 
correlation function of the electric current, which fluctuates sponta- 
neously in thermal equilibrium without any external driving forces 
and is regarded as a stationary stochastic process. V is the volume of 
the conductor under consideration, kB is the Boltzmann constant, 
and T is absolute temperature. [See (3a) for the definition of the 
bracket.] Theoretical methods have been developed to calculate such 
an expression by quantum mechanics. Thus, this approach has 
proved to be powerful in solving a number of problems in the 
physics of condensed matter, for example, electrical properties of 
amorphous semiconductors and the conduction properties of two- 
dimensional systems, including the topical problem of the quantized 
Hall effect. 

Einstein's Theory of Brownian Motion 
This approach differs from Boltzmann's and, in fact, its origin is 

attributed to Einstein. In 1905 Einstein wrote three papers, one on 
special relativity (4) ,  one on the photoelectric effect (5), and the 
third on Brownian motion (6). The last is perhaps the least well 
known but is as important as the others. Einstein showed that the 

diffusion constant D and the mobility of Browhian particles, y, are 
related to each other in terms of the equation 

where T is the absolute temperature of the fluid in which Brownian 
particles are immersed. Einstein came to t h ~ s  conclusion while trying 
to prove the atomic theory (It is hard to realize that atomism was 
not yet established 80 years ago.) Einstein reasoned that if heat is 
really irregular motion of atoms, the thermal motion of fluid 
molecules must be transmitted to a particle floating in the fluid. If 
the particle is large enough, he thought, its motion should be 
observed directly. Einstein did riot know at first that such motion 
had already been observed by the botanist Robert Brown in 1827 
when he was worlung with small particles originating from pollen 
floating on water (7) A quantitative test of Eq. 3 was crucial, and 
Einstein himself checked it with existing data on sugar molecules in 
water. Soon after, Jean Baptiste Perrin successfully observed Brown- 
ian motion and confirmed Emstein's theory This finally convinced 
even the strongest opponents of the truth of atomism. 

The outcome of the Einstein theory was not only the confirma- 
tion of atomism. Brownian motion turfled out to be an ideal model. 
From Einstein's theory, mathematical theories of stochastic process- 
es have emerged. Numerous applicatioris have been developed m 
physics, chemistry, biology, and almost every other &sciplme of 
science. In fact the linear response theory is, in a sense, the most 
natural extension of the Einstein theory of Brownian motion The 
heart of the linear response theory is the so-called fluctuation- 
dissipation theorem (FD theorem). 

A Brownian particle is observed to be in incessant zigzag motion. 
This causes diffusion, which can be observed for a solution of such 
particles. The diffusion constant D is defined by the equation 

D = lim ( ~ x ( t ) ~ ) / 2 t  
r--t r (4) 

where Ax(t) = x(t) - x(0) is the displacement of a Brownian 
particle along the x-axis in a time interval t, and the pointed bracket 
designates the statistical average. The displacement obeys a Gaussian 
distribution with the variance equal to 2Dt. This means that 

D = e2127 = (u') T = kBT rim (5 )  
where e is the mean free path, r is the mean free time, and u is the 
velocity. The form of Eq. 5 is due to the equipartition law 
m (y2) = kBT, where m is the mass of a Brownian particle. If the 
particles are in a force field such as gravity, the zigzag motion is 
somewhat ordered in the direction of the force I<, and a steady 
motion is induced in this direction. If the average drift velocity is ud, 
the average acceleration is u ~ / T ,  which must be equal to Kim. 
Therefore the mobility y is equal to rim. Substitution of y for rim in 
Eq. 5 gives the Einstein relation (Eq. 3). This derivation differs from 
the original one, but it is instruct&. Diffusion is a direct conse- 
quence of fluctuations of the velocity of the Brownian particle. The 
mobility characterizes the response of the particle to a driving force 
and to the process of dissipation in which the potential energy of the 
driving force is turned into heat. Thus, fluctuation and dissipation 
are two aspects of a single phenomenon and thus are necessarily 
related to each other. This is the general concept of the FD theorem, 
of which the Einstein relation (Eq. 3) was the first example; 
Eqs. 3 and 4 give, with the use of Ax(t) = /b u(t')dtl, the relation 

- _L 

in which the mobility is represented by the integrated correlation of 
the velocity of the Brownian particle. This is almost equivalent to 
Eq. 1, since the conductivity u is equal to e2ny if the density of 
charge carriers is n and their charge is e. 



The PD Theorem 

In 1927, Nyquist developed a theorem that an electric resistor 
produces a spontaneously fluctuating voltage difference between its 
terminals (8) .  This is called thermal or Nyquist noise. Although it is 
weak, it can be heard by ear if properly amplified. The power of this 
noise voltage is on average equal to the impedance multiplied by 
~ B T ,  T being the temperature of the resistor. Nyquist derived this 
theorem by a thermodynamic consideration of detailed balance. 

In 193 1, Onsager proved the celebrated theorem of reciprocity by 
proposing the FD theorem (9). Consider, for example, a block of 
solid in contact with a heat bath. At equilibrium, the temperature is 
almost uniform in space, but thermal motion of atoms necessarily 
causes fluctuations in temperature distribution and associated heat 
currents. This is a sort of Brownian motion. Onsager assumed that 
the average decay of such fluctuations follows the macroscopic law 
of heat conduction. This assumption led him to an expression of the 
heat conductivity, in terms of a correlation function of energy flow, 
similar to Eq. 1. The dynamics of fluctuation is essentially micro- 
scopic, however, and has time-reversal symmetry. Onsager proved 
the reciprocity of the heat conductivity tensor of an anisotropic 
substance. The same reasoning can be used to prove the reciprocity 
in a set of kinetic coefficients. Onsager's reciprocity was used later as 
the basis of nonequilibrium thermodynamics as it was developed in 
the late 1940's by Prigogine and others (10). 

In the early 19503, interest in the FD theorem arose afresh in 
different parts of the world almost independently. In the United 
States, Callen and Welton (11) made a quantum-mechanical formu- 
lation and, in Japan, Takahashi (12) made a classical formulation 
following the Gibbs formalism. Green (13) considered a generalized 
theory of Brownian motion of macrovariables and derived Fokker- 
Planck equations for their evolution. In doing so, he showed that 
the kinetic coefficients are expressed as integrated correlations of 
relevant physical quantities. Such expressions are sometimes referred 
to as the Green-Kubo formulas. I came across the problem at about 
the same time, but a full account of my work was not published until 
1957 (14). Perhaps my derivation of the theorem was the most 
transparent and elucidated many points that had not been realized. 
In any event, that remains one of my most frequently cited papers. 

I had been interested in the theory of Brownian motion as a 
statistical problem since I was a physics student. But I approached 
this problem from a different angle through my theoretical work on 
semiconductors and nuclear magnetic resonance (NMR). Thus, my 
first motivation was not abstract. During World War I1 I worked on 
some problems in semiconductors, and I came back to them after the 
war. Electrons trapped by impurities are ionized thermally by 
absorbing many phonons, a phenomenon now called nonradiative 
transitions. I formulated a theory by expressing the quantum- 
mechanical transition probability in terms of a correlation function 
of a perturbative quantity, in this case a nonadiabatic term arising 
from the break of the Born-Oppenheimer approximation (15). I 
used this method later to formulate a unified theory of radiative and 
nonradiative transitions in condensed matter (16). This Kubo- 
Toyozawa theory has been applied to many problems, such as 
electrochemical processes. 

The International Conference on Theoretical Physics in Kyoto in 
1953 marked the return of Japanese science to the international 
science community. It may even be called Japan's first appearance, 
because before the war Japanese scientists, with a few exceptions, 
remained almost unrecognized by the West. Fortunately I was able 
to present a paper together with Tomita on a general theory of 
NMR absorption ( 1 3 ,  which was again an application of the 
correlation function formulation, namely the FD theorem. This 
work has since been known as the Kubo and Tomita theory. The full 

paper was published 1 year later (18). In the appendix I gave a 
simple derivation of the basic formula, which was further elaborated 
in the 1957 paper (14). Nuclear magnetic resonance absorption 
spectra are generally considered the power spectra of fluctuating 
nuclear magnetic moments, a sort of Brownian motion. Our theory 
was simply a perturbative treatment of dipolar interactions, which 
are modulated by atomic motion or exchange interactions, and was 
an extension of the work of Bloembergen, Purcell, and Pound (1 9). 

A Brief Summary of the Linear Response 
Theory 

My 1957 paper (14) may be summarized as follows. Suppose a 
system in thermal equilibrium is exposed to an external force F(t) .  
The effect of the force on the system is represented by an additional 
term H' = -AF(t) of the Hamiltonian, where A is the quantity 
conjugate to the force. We observe a physical quantity B of the 
system. If F is a short pulse of unit strength exerted on the system 
at t = 0, the response observed as the induced change of B at a later 
time t is called the response function +BA(~) .  It is given by 

where the notation (X, Y) means the Poisson bracket. X(t) = X@,, 
g,) denotes the temporal evolution of a dynamic quantity X as the 
system changes its dynamic states following the law of microscopic 
dynamics, either classical or quantum-mechanical, in the absence of 
the external force. In quantum mechanics the Poisson bracket is 
equal to a commutator, namely, (X, Y) = [X, Y]/ih, where h is the 
Planck constant divided by 2Il and i is the imaginary unit. 

If the force F(t) is in action continuously from the infinite past to 
the present, the effect is represented by 

as the linear response. 
If the system is near equilibrium at temperature T, the response 

function (Eq. 7) can be transformed to a correlation function of the 
form 

where A is the time derivative ofA.  For example, if we observe the 
velocity of a Brownian particle under the action of a force, we set 
B = p, A = x, and A = x = p. Then Eq. 9 gives Eq. 6. Equation 9 
is a correlation function with the usual meaning in the classical cases, 
but it contains some necessary complications in the quanta1 cases. 
A general admittance at the finite frequency w is given in the form 

x(w) = Q e - f w r  +,(t)dt (10) 

This is a complex function. Either its real or its imaginary part 
corresponds to the dissipative response, for example, the resonance 
absorption. It is then shown to be the power spectrum offluctuation 
of a proper physical quantity. This is the FD theorem. Note, 
however, that Eq. 10 contains the nondissipative part also expressed 
in terms of correlation functions. In this sense a better name for the 
theorem would be the fluctuation-response theorem. The Heisen- 
berg-Kramers dispersion formula, Onsager's reciprocity, and some 
other basic laws follow from this theorem. 

The linear response theory gave only the expressions for the 
response function and the admittance. It is difficult to calculate such 
an expression for a many-body system in which a great number of 
particles are interacting with each other. It is important, however, 
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that the linear response theory give the exact expression to start 
with. In some cases, one cannot really write any Boltzmann 
equation. One example is electronic conduction in a strong magnetic 
field (20). The calculation of response functions for many-body 
systems has been greatly facilitated by developments of Green's 
function method, which has become the basic method of modern 
quantum statistical mechanics (21). It was perhaps not a mere 
coincidence that this method was so rapidly developed just after the 
appearance of the linear response theory. 

Coarse-Graining and Stochastization 
As the name indicates, statistical mechanics uses some probabilis- 

tic assumptions. Obviously, the probabilistic elements come in with 
some sort of coarse-graining (that is, when observations are made 
cruder). Microscopically, a physical system consists of a large 
number of particles, say 10' molecules in a drop of water. In a 
macroscopic observation, one is interested only in a small number of 
physical variables that are called, for brevity, the gross variables. SO 
information is reduced enormously, which necessarily requires a 
probabilistic description. It is extremely difficult, however, to 
determine the a priori probabilities from the first principle. In 
equilibrium statistical mechanics, the fundamental postulate is the 
principle of equal weight, which means that every microscopic state 
has equal a priori probability in equilibrium. Boltzmann introduced 
the ergode hypothesis to make this plausible. Efforts have been 
made to support this hypothesis, but it still remains an outstanding 
problem, even though the validity of the principle of equal weight 
and of equilibrium statistical mechanics are not in doubt. 

In nonequilibrium cases, the probabilistic description must be 
stochastic, that is, it must describe the temporal evolution of the 
probability for the gross variables that adequately define the coarse- 
grained states of the system under observation. Switching from 
microscopic dynamics to a stochastic description may be called 
stochastization. The Boltzmann equation is the oldest example of 
stochastization. The gross variables there are the distribution func- 
tionflr, v, t ) .  For a Brownian motion, the gross variables are the 
space coordinates and the velocities of a Brownian particle. If the 
velocities are not observed, the gross variables are coarse-grained to 
the space coordinates. In general, there are different successive stages 
of coarse-graining. For a gas, the hydrodynamic equations, which 
can be derived from the Boltzmann equation, are the crudest 
description. 

Mathematical theories of stochastic processes have been devel- 
oped greatly in this century. Much has been learned about Markov- 
ian and Gaussian processes. An ideal Brownian motion is a good 
example of the Gaussian-Markovian process. In a Markovian pro- 
cess, the evolution of the probability in the next instant is deter- 
mined by its state at present. This is satisfactory from a physicist's 
point of view. It is, so to say, second best if a deterministic 
description is not possible. A Boltzmann equation describes a 
Markovian evolution. 

It is a general rule of stochastization that merely reducing the 
variables is not enough to obtain a simple and clear description such 
as a Markovian description. One must simultaneously make the 
scales of time and space cruder. For example, a description of 
Brownian motion as diffusion is possible only for a time scale larger 
than the mean free time (7) and a spatial scale larger than the mean 
free path (C).  However, physics is not always limited to that 
crudeness; when it is not, one can no longer enjoy the elegance of 
Markovian theory. In these circumstances, one uses the linear 
response theory approach in which the stochastization, if it is ever 
made, is performed at a later stage. If the system is simple enough, 

stochastization is unnecessary, but equations of the linear response 
theory still work. 

Equation 7 was derived with the use of a simple perturbation 
expansion. In this respect, the linear response theory was once 
criticized because the phase-space trajectories of a dynamic system 
are generally unstable against perturbation (22). My view is that this 
instability instead favors the stability of distribution functions, 
working as the cause of mixing. I used perturbative calculations for a 
family of smooth distribution functions in the phase space or the 
space of density matrices, not for each of the phase-space tra- 
jectories. Rigorous verification of this assertion, however, is very 
difficult. 

Langevin Equations and Their Generalizations 
One standard method for treating Brownian motion is the use of 

Langevin equations. For example, the equation of motion for a 
Brownian particle can be written as 

where my is the friction constant, and R represents a random force. 
F = -myu + R is the force coming from the molecules in the 
surrounding fluid. This is divided into a systematic friction part and 
a random part. The FD theorem, in the form of the Nyquist 
theorem, shows that the friction constant is essentially the integrated 
correlation of the random force, namely 

(12) 

For an ideal Brownian motion, R ( t )  is assumed to be a white 
Gaussian noise, that is, its correlation time is infinitely short. This is 
consistent with the assumed form of friction, which is that the force 
acts on the particle without delay; however, this idealization may 
not be adequate for describing realistic physics. For example, 
electrical resistance usually depends on frequency. T o  include such 
cases the Langevin equation has to be generalized to 

m&(t) = -m y(t - t l )  u(t t)dtl  + R ( t )  + K ( t )  (13) 

namely, to a retarded friction (3a). The FD theorem then shows that 
the kernel of retardation is essentiallv the correlation function of the 
random force R ( t ) ;  in such cases R is a colored (nonwhite) noise. 
Mori showed that a microscopic equation of motion can be cast into 
a form of Eq. 13 (23). 

A Langevin equation is a stochastic equation, which describes a 
stochastic process generated by an underlying stochastic process. By 
Eq. 12 the random force R ( t )  drives the process u( t ) ,  and the 
equation k ( t )  = u(t )  generates the process x( t ) .  In the procedure of 
successive coarse-graining, it is sometimes useful to take this point 
of view. In general, the stochastic equation can be nonlinear. Such is 
the case for the Brownian motion of the resultant spin of a spin 
system that is modeled by a random local field. After this issue was 
treated by Anderson and Weiss (24), I showed that the problem is 
generally formulated in a solvable way if the driving process is 
Markovian (25). Since the driving process is merely assumed as a 
model, this approach is necessarily phenomenological, but it is 
useful for obtaining some insight into the physics of a complex 
process. Interesting applications were made to relaxation and reso- 
nance phenomena of spins in zero or low external fields (26), to 
second order optical processes, and to other problems (27). 

Much more remains to be discussed and to be done on the 
generalization of the concept of Brownian motion and nonequilibri- 
um statistical mechanics. For example, interest in the Brownian 

18 JULY 1986 ARTICLES 3 3 3  



motion of quantum systems which are sometimes called dissipative 
quantum systems seems to have revived in recent years in connec- 
tion with supercurrents in superconductors, al&ough a large 
amount of work on this problem has been done. 

I did not intend here to give a comprehensive review of the whole 
subject, but have tried to describe how I understand the problem 
and how I have worked on this subject. In this sense this essay is a 
personal reflection. 
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Evolution of Meson Science in Japan 

Forty years after Yukawa predicted the existence of me- 
sons, experimental research activities with the use of 
mesons were started in Japan. Particles of the "second 
generation," which have nothing to do with the structure 
of ordinary materials, such as muons, K mesons, and 
other exotic particles have been exploited as unique 
probes to study new constituents of matter. 

A BOUT 50 YEARS AGO YUKAWA PREDICTED THE EXISTENCE 

of a new particle mediating the nuclear force (1 ) . Nowadays, 
this particle, called the 71. meson (or pion), is produced 

abundantly by means of high-energy accelerators. Long before pions 
were identified, another particle had been discovered unexpectedly 
in cosmic rays. That particle was called the p. meson and is now 
called the muon (p.' and p. - ) ,  which is believed to have the same 
properties as the electron except for mass (207 times heavier). 
Muons and muon neutrinos (v,, v,) are abundantly produced from 
the decay of charged pions: 71.' -+ p.' + v,, IT- -+ (*- + v,. 

Because of the maximum violation of parity in the weak inter- 
action, the muon from the pion decay is nearly 100% polarized 
in the pion rest frame. Furthermore, the muon decays with a 2.2- 
psec lifetime by weak interaction as p. ' + e ' ' V, + v,, 
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p.- + e- + v, + V,, where v, and F, are electron neutrinos, and 
the positron (e') or electron (e-) thus produced is very asymrnetri- 
cal with respect to the muon spin. This basic property permitted the 
study of the behavior of muon spin in matter, and this aspect of 
study has been growing under the name of (*SR (muon-spin 
rotation, relaxation, and resonance) (2). Positive muons behave like 
"light protons" and probe internal fields at interstitial sites of 
crystals, where they are located. They hop from one site to another, 
and their diffusive motion shows strong quantum effects because of 
the small mass of the muons (3, 4). Negative muons are used to 
create atoms of pseudonuclear charge (2 - 1)e and to probe 
electron spin densities outside the nuclear region (5). 

Because of the unique masses and interactions of pions and 
muons, they constitute a rich arena of exotic objects for scientists. 
This study is called meson science. Around 1975 so-called meson 
factories with high-intensity proton accelerators were launched at 
Los Alamos (LAMPF), Vancouver (TRIUMF), and Zurich (SIN), 
and a number of interdisciplinary research programs were initiated 
to study not only particle and nuclear physics but also atomic and 
solid-state physics, chemistry, and biomedical applications. 

Birth of a Pulsed-Meson Facility in Japan 
Although, theoretically, mesons were discovered in Japan, this 

country used to be very much behind other nations in the develop- 
ment of medium- and high-energy physics. In 1975, however, with 
the birth of the National Laboratory for High Energy Physics (so- 
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