
The Direct Methods of X-ray Crystallography 

The electron density function p(r) in a crystal determines 
its diffraction pattern, that is, both the magnitudes and 
phases of its x-ray diffraction maxima, and conversely. If, 
however, as is always the case, only magnitudes are 
available from the digraction experiment, then the densi- 
ty function p(r) cannot be recovered. If one invokes prior 
structural knowledge, usually that the crystal is composed 
of discrete atoms of known atomic numbers, then the 
observed magnitudes are, in general, sufficient to deter- 
mine the positions of the atoms, that is, the crystal 
structure. 

T HE INTENSITIES OF A SUFFICIENT NUMBER OF X-RAY DIF- 

fraction maxima determine the structure of a crystal. The 
available intensities usually exceed the number of parameters 

needed to describe the structure. From these intensities a set of 
numbers lEHl can be derived, one corresponding to each intensity. 
However, the elucidation of the crystal structure also requires a 
knowledge of the complex numbers EH = lEHl exp (i+H), the nor- 
malized structure factors, of which only the magnitudes lEHl can be 
determined from experiment. Thus, a "phase" +H, unobtainable 
from the diffraction experiment, must be assigned to each IEHI, and 
the problem of determining the phases when only the magnitudes 
lEHl are known is called "the phase problem." Owing to the known 
atomicity of crystal structures and the redundancy of observed 
magnitudes lEHI, the phase problem is solvable in principle. 

The Phase Problem 
Just as the plane may be tiled by congruent parallelograms (Fig. 

l ) ,  so three-dimensional space may be tiled by congruent parallelepi- 
peds, the vertices of which constitute a lattice. If one imagines atoms 
to be identically distributed in these parallelepipeds, the resulting 
electron density distribution p(r) may be regarded as the mathemati- 
cal description of a crystal structure. Clearly, p(r) is a three- 
dimensional periodic function of the position vector r and may 
therefore be represented by the three-dimensional Fourier series: 

the vector H range over all the integers. The Fourier coefficient FH, 
said to be the structure factor corresponding to the reciprocal lattice 
vector H, may then be calculated in the usual way: 

FH = j y  p(r) exp (2nrH.  r)dV (2) 

where the integration is carried out over the unit cell V. Clearly, each 
FH is a complex number that may be written in polar form 

FH = IFHI exp ( i + ~ )  (3) 

where +H is the phase of the structure factor FH. 
When a beam of monochromatic x-rays is incident on a crystal, 

the radiation is scattered in discrete directions determined by the 
crystal lattice and labeled by the reciprocal lattice vectors H .  Both 
the amplitude and phase of each scattered ray, or reflection, depend 
on the crystal structure. The amplitude, or  intensity, of a reflection 
leads in a straightfonvard way to the magnitude lFHl of the complex 
structure factor FH. However, the phases +H, which are also needed 
if one is to determine p(r) from Eq. 1, are lost in the diffraction 
experiment. If one uses the known values of the magnitudes lFHl but 
arbitrary values for the phases +H in Eq. 1, then density functions 
p(r) consistent with the observed values of the diffraction intensities 
are obtained. Thus, diffraction intensities alone do not determine a 
unique density function p(r). Even if the known nonnegativity of 
p(r) is assumed, thus greatly restricting the values ofthe phases (1, 
2), the observed diffraction intensities are, in general, still not 
sufficient to determine p(r) uniquely. It follows that the phase 
problem, to determine the values of the phases +H of the structure 
factors FH when only the magnitudes lFHl are given, is, in principle, 
unsolvable when formulated in these terms. It was this argument 
that led the crystallographic community, prior to 1950, to believe 
also that crystal structures could not, even in principle, be deter- 
mined from the diffraction intensities alone. However, by invoking 
the prior structural knowledge that crystals consist of discrete atoms, 
one readily refutes this argument, as shown below. 

If one replaces the real crystal, with continuous electron density 
p(r), by an idealized one, the unit cell of which consists of N 
discrete, nonvibrating point atoms, then the structure factor FH is 
replaced by the normalized structure factor EH and Eqs. 3, 2, and 1 
are replaced by 

1 
p(r) = 7 1 FH exp ( -2nW - r)  (1) EH = lEHl exp (i+H) 

H 
(4) 

where V is the volume of the fundamental parallelepiped, the so- l - '  

EH = -i72 C Zj exp (2nrH - rj) 
called unit cell of the crystal (Fig. 2), and the three components of u2 ]=I 

(5) 
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Fig. 1. Tiling the plane with congruent parallelograms. 

respectively, where Zj is the atomic number and rj is the position 
vector of the atom labeled j, and 

N 

u n = C z j , n = 1 , 2 , 3  , . . .  
j= 1 

(7) 

In practice, the magnitudes EHI of the normalized structure 
factors EH are obtainable (at least approximately) from the observed 
magnitudes IFHI, while the phases +H, as defined by Eqs. 4 and 5, 
cannot be determined experimentally. Since one now requires only 
the 3N components of the N position vectors rj rather than the 
much more complicated electron density function p(r), it turns out 
that, in general, the known magnitudes are more than sufficient. 
This is most readily seen if we equate the magnitudes of both sides 
of Eq. 5, thus eliminating the unknown phases +H, in order to 
obtain 

N 

l E ~ l  = l l ~ : ' ~  1 1 Zj exp (27~fiH . rj) I 
j = 1  

(8) 

a system of equations in which the only unknowns are the 3N 
components of the position vectors rj. Since the number of Eq. 8, 
equal to the number of reciprocal lattice vectors H for which the 
magnitudes IEH are observed, usually exceeds the number of 
unknowns, 3N, by far, the system in Eq. 8 is redundant. Thus the 
phase problem is, in principle, solvable when reformulated in terms 
of fixed point atoms, as reference to Eq. 5 shows. 

The system of Eq. 5 implies the existence of relationships among 
the normalized structure factors EH since the (relatively few) 
unknown position vectors rj may, at least in principle, be eliminated. 
By the term "direct methods" is meant that class of methods that 
exploits relationships among the normalized structure factors in 
order to go directly from the observed magnitudes IE to the needed 
phases +. 

The Structure Invariants 
Equation 6 implies that the normalized structure factors EH 

determine the crystal structure. However, Eq. 5 does not imply that, 
conversely, the crystal structure determines the values of the normal- 
ized structure factors EH since the position vectors rj depend not 
only on the structure but on the choice of origin as well. It turns out, 
nevertheless, that the magnitudes lEHl of the normalized structure 
factors are in fact uniquely determined by the crystal structure and 
are independent of the choice of origin, but that the values of the 
phases +H depend also on the choice of origin. Although the values 
of the individual phases depend on the structure and the choice of 
origin, there exist certain linear combinations of the phases, the so- 
called structure invariants, whose values are determined by the 
structure alone and are independent of the choice of origin. 

If the origin of coordinates is shifted to a new point having 
position vector ro with respect to  the old origin, then, from the 

Fig. 2. A three-di- 
mensional periodic 
h c t i o n  of position 
defines a crystal 
S ~ T U C N ~ ~ .  

definition (Eq. 5) of EH, it follows readily that the phase +H of the 
normalized structure factor EH with respect to the old origin is 
replaced by the new phase +fI with respect to the new origin given 
by 

+fI = +H - 2 7 ~ H  - ro (9) 

Equation 9 implies that the linear combination of three phases 

is a structure invariant (triplet) provided that 

the linear combination of four phases 

is a structure invariant (quartet) provided that 

and so on. 
Since the values of the individual phases depend not only on the 

structure but on the choice of origin, it follows that magnitudes El 
alone cannot determine unique values of the individual phases. It is 
clear that magnitudes IE alone determine only the values of the 
structure invariants (and not even uniquely at that, because of the 
enantiomorph problem, as clarified below) and only then, after 
suitable specification of the origin (and enantiomorph when neces- 
sary), may the individual phases be determined. 

The theory of the structure invariants leads directly to recipes for 
origin specification called for by the techniques of direct methods. 
For example, when no crystallographic element of symmetry is 
present (space group P l ) ,  the rule states simply that the values of 
any three phases 

+h,klel, +h2k,e2, 4h3k3e3  

where the determinant 

are to be specified arbitrarily, thus fixing the origin uniquely. 

The Fundamental Principle of Direct Methods 
It is known that the values of a sufficiently extensive set of cosine 

invariants (the cosines of the structure invariants) lead unambig- 
uously to the values of the individual phases (3) .  Magnitudes IE are 

11 JULY 1986 ARTICLES 179 



capable of yielding estimates of the cosine invariants only or, 
equivalently, the magnitudes of the structure invariants; the signs of 
the structure invariants are ambiguous because the two enantiomor- 
phous structures (related to each other by reflection through a 
point) that are permitted by the observed magnitudes El corre- 
spond to two values of each structure invariant differing only in sign. 
However, once the enantiomorph has been selected by specifying 
arbitrarily the sign of a particular enantiomorph-sensitive structure 
invariant (that is, one different from 0 or T), then the magnitudes 
El determine both signs and magnitudes of the structure invariants 
consistent with the chosen enantiomorph. Thus, for fixed enantio- 
morph, the observed magnitudes IE determine unique values for the 
structure invariants; the latter, in turn, as certain well-defined linear 
combinations of the phases, lead to unique values of the individual 
phases. In short, the structure invariants serve to link the observed 
magnitudes El with the desired phases 4 (the fundamental principle 
of direct methods). It is this property of the structure invariants that 
accounts for their importance and justifies the stress placed on them 
here. 

The Neighborhood Principle 
It has long been known that, for fixed enantiomorph, the value of 

any structure invariant + is, in general, uniquely determined by the 
magnitudes El of the normalized structure factors. Recently it has 
become clear that, for fixed enantiomorph, there corresponds to + 
one or more small sets of magnitudes IE, the neighborhoods of +, 
on which, in favorable cases, the value of + most sensitively depends; 
that is to say that, in favorable cases, + is primarily determined by 
the values of El in any of its neighborhoods and is relatively 
independent of the values of the great bulk of remaining magni- 
tudes. The conditional probability distribution of +, assuming as 
known the magnitudes IE in any of its neighborhoods, yields an 
estimate for + that is particularly good in the favorable case in which 
the variance of the distribution happens to be small (4, 5) (the 
neighborhood principle). 

The first neighborhood of the triplet +3 (Eq. 10) consists of the 
three magnitudes 

The first neighborhood of the quartet +4 (Eq. 12) consists of the 
four magnitudes 

The second neighborhood of the quartet consists of the four 
magnitudes (magnitude set 15) plus the three additional magnitudes 

that is, seven magnitudes IE in all (5). 
The neighborhoods of all the structure invariants are now known. 

The Solution Strategy 
One starts (6) with the system of Eq. 5. By equating real and 

imaginary parts of Eq. 5, one obtains two equations for each 
reciprocal lattice vector H .  The magnitudes EHI and the atomic 
numbers Z, are presumed to be known. The unknowns are the 
atomic position vectors r, and the phases C$H. Owing to the 
redundancy of the system (Eq. 5), one naturally invokes probabilis- 
tic techniques to eliminate the unknown position vectors rj, and in 
this way to obtain relationships among the unknown phases C$H, 

dependent on the known magnitudes IE, having probabilistic 
validity. 

Choose a finite number of reciprocal lattice vectors H ,  K, . . . in 
such a way that the linear combination of phases 

is a structure invariant whose value we wish to estimate. Choose 
satellite reciprocal lattice vectors H', K', . . . in such a way that the 
collection of magnitudes 

constitutes a neighborhood of +. The atomic position vectors rj are 
assumed to be the primitive random variables that are uniformly and 
independently distributed. Then the magnitudes EHI, IEKI, . . .; 
IEH,I, IEK,I, . . .; and phases +H, C$K, . . .; 4~8, 4 ~ 8 ,  . . . of the 
complex, normalized structure factors EH, EK, . . .; EH,, EK', . . ., as 
functions (Eq. 5) of the position vectors rj, are themselves random 
variables, and their joint probability distribution P may be obtained 
by techniques that are now standard. From the distribution P one 
derives the conditional joint probability distribution 

of the phases +H, +K, . . ., given the magnitudes EHI, IEKl, . . .; 
lEH,I, EK4, . . ., by lixing the known magnitudes, integrating with 
respect to the unknown phases QH,, QK,, . . . from 0 to 27r, and 
multiplying by a suitable normalizing parameter. Distribution 19 in 
turn then leads directly to the conditional probability distribution 

of the structure invariant +, if we assume as known the magnitudes 
18 constituting a neighborhood of +. Finally, distribution 20 yields 
an estimate for + (for example, the mode) that is particularly good in 
the favorable case that the variance of distribution 20 happens to be 
small. 

Estimating the Triplet 
Let the three reciprocal lattice vectors H, K, and L satisfy Eq. 11. 

Refer to magnitude set 14 for the first neighborhood of the triplet 
+3 and to the previous paragraph for the probabilistic background. 

Suppose that R1, R2, and R3 are three specified nonnegative 
numbers. Denote by 

the conditional probability distribution of the triplet $3, given the 
three magnitudes in its first neighborhood: 

Then, carrying out the program described earlier, one finds (7) 

1 
PlI3 = P(WlR1, R2, R3) = - exp (A cosW) K (22) 

where 
2 ~ 3  

A = 2 RlR2R3 P3) 

K is a normalizing constant not needed for the present purpose, and 
a, is defined by Eq. 7. Since A > 0, Pin has a unique maximum at 
W = 0, and it is clear that the larger the value ofA, the smaller the 
variance ofthe distribution (see Fig. 3, whereA = 2.316 and Fig. 4, 
where A = 0.73 1). Hence in the favorable case that A is large, say, 
for example, A > 3, the distribution leads to a reliable estimate of 
the structure invariant $3, zero in this case: 

+3 = 0 i fA is large (24) 
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Furthermore, the larger the value ofA, the more likely the probabi- 
listic statement (Eq. 24). It is remarkable how useful this relation- 
ship has proven to be in the applications (8); and yet Eq. 24 is 
severely limited because it is capable of yielding only the zero 
estimate for $3, and only those estimates are reliable for whichA is 
large, the favorable cases. Note that the previously specified num- 
bers R1, R2, R3, identified with observed magnitudes IEl by Eq. 21, 
as well as the atomic numbers Zj, presumed to be known, appear via 
Eq. 23  as parameters of the distribution (Eq. 22). 

A distribution closely related to Eq. 22 leads directly to the so- 
called tangent formula (9), which is universally used by direct 
methods practitioners: 

tan +h = 
(IEKEh-K1sin(4K + 4h-K))K 
(IEKEL-KIcos(~K + 4h-K))K 

in which h is a fixed reciprocal lattice vector, the averages are taken 
over the same set of reciprocal lattice vectors K, usually restricted to 
those vectors K for which lEKl and IEL-~I are both large, and the 
sign of sin c $ ~  is the same as the sign of the numerator on the right- 
hand side (the sign of cos 4h is the same as the sign of the 
denominator on the right-hand side). The tangent formula is usually 
used to refine and extend a basis set of phases, presumed to be 
known. Because it uses the zero estimate of the triplet $3, together 
with a measure (A) of variance, to link observed magnitudes IEl with 
desired phases 4 ,  the tangent formula serves as the simplest illustra- 
tion of the fundamental principle of direct methods. 

Closely related to the tangent formula is Sayre's equation ( lo) ,  
recently shown (11,12) to be useful in the refinement and extrapola- 
tion of a low-resolution phase set to higher resolution for macro- 
molecules. 

Estimating the Quartet 
Two conditional probability distributions are described, one 

assuming as known the four magnitudes El in the first neighbor- 
hood of the quartet, the second assuming as known the seven 
magnitudes El in its second neighborhood. 

Suppose that H, K, L, and M are four reciprocal lattice vectors 
that satisfy Eq. 13. Refer to magnitude set 15 for the first 
neighborhood of the quartet $4 (Eq. 12). Suppose that R1, R2, R3, 
and R4 are four specified nonnegative numbers. Denote by 

the conditional probability distribution of the quartet $4, given the 
four magnitudes in its first neighborhood: 

Then (4, 5, 13) 
1 

PIl4 = P(TIR1, R2, R3, R4) - K exp (B cos T) (27) 
where 

K is a normalizing parameter not relevant here, and o, is defined by 
Eq. 7. Thus PIl4 is identical with PIl3, but B replaces A .  Hence 
similar remarks apply to PIl4. In particular, Eq. 27  always has a 
unique maximum at V = 0 so that the most probable value of $4, 

given the four magnitudes (Eq. 26) in its first neighborhood, is 
zero; the larger the value of B, the more likely that $4 = 0. Since B 
values, of order 1/N, tend to be less thanA values, of order 1/*, at 
least for large values ofN, the estimate (zero) of $4 is in general less 

Dogroes 

Fig. 3. The distribution Eq. 22, for A = 2.316. 

reliable than the estimate (zero) of $3. Hence the goal of obtaining a 
reliable nonzero estimate for a structure invariant is not realized by 
Eq. 27. The decisive step in this direction is made next. 

Let us use the same notation as in the previous paragraph but 
refer now to magnitude sets 15 and 16 for the second neighborhood 
of the quartet $4. Suppose that R1, R2, R3, R4, RI2,  R23, and R31, are 
seven nonnegative numbers. Denote by 

Pin = P(TIRI, R2, R3, R4; R12, R23, R ~ I )  (29) 

the conditional probability distribution of the quartet $4, given the 
seven magnitudes in its second neighborhood: 

The explicit form for Pl17 has been found (4,5, 13) but is too long to 
be given explicitly here. Instead, Figs. 5 through 7 show the 
distribution (Eq. 29) (solid line) for typical values of the seven 
parameters (Eqs. 30 and 31). For comparison, the distribution (Eq. 
27) (broken line) is also shown. Since the magnitudes IEl have been 

~ . , . , , , , , ,  

-180 -160 -140 -120 -10o -80 -60 -40 -20 20 40 60 80 100 12U 140 160 180 
'P 

Degrees 

Fig. 4. The distribution Eq. 22, for A = 0.731. 
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Degrees 

Fig. 5. The distributions Eq. 29 (-) and Eq. 27 (------) for the values of 
the seven parameters (Eqs. 30 and 31) shown. The mode of Eq. 29 is 0, the 
mode of Eq. 27 is always 0. 

I , /.' 1 , , , , ", ' . , , , , ___.--- -----____ 
-180 -160-140-120 -1CO -80 -60 -40 -20 20 40 60 80 100 120 140 160 180 

'4' 
Degrees 

Fig. 6 .  The distributions Eq. 29 (-) and Eq. 27 (------) for the values of 
the seven parameters (Eqs. 30 and 31) shown. The mode of Eq. 29 is 105", 
the mode of Eq. 27 is always 0. 

-180 -160 -140 -120 -100 -80 -60 -40 -20 20 40 60 80 100 120 140 160 180 

Degrees 

Fig. 7. The distributions Eq. 29 (-) and Eq. 27 (------) for the values of 
the seven parameters (Eqs. 30 and 31) shown. The mode of Eq. 29 is 180°, 
the mode of Eq. 27 is always 0. 

obtained from a real structure with N = 29, comparison with the 
true value of the quartet is also possible. As already emphasized, the 
distribution (Eq. 27) always has a unique maximum at q = 0. The 
distribution (Eq. 29), on the other hand, may have a maximum at 
q = 0, or T, or any value between these extremes, as shown by Figs. 
5 through 7. Roughly speaking, the maximum of Eq. 29 occurs at 0 
or T according as the three parameters RI2, R23, R31 are all large or 
all small, respectively. These figures also clearly show the improve- 
ment that may result when, in addition to the four magnitudes (Eq. 
30), the three magnitudes (Eq. 31) are also assumed to be known. 
Not unexpectedly, when more information is available, that is, seven 
magnitudes IEl rather than only four, the potential for determining 
more reliable estimates of the structure invariants is increased. 
Finally, in the special case that 

R12 = R23 R31 = 0 (32) 

the distribution (Eq. 29) reduces simply to 

1 
PI/, = exp (-2B1cos9) (33) 

where 

and L is a normalizing parameter not relevant here, which has a 
unique maximum at q = T (Fig. 7 ) .  

The Effect of Crystallographic Symmetry 
When crystallographic elements of symmetry are present, the 

origin may not be chosen arbitrarily if the simplification permitted 
by the space group symmetries is to be realized. For example, if a 
crystal has a center of symmetry, it is natural to place the origin at 
such a center while, if a twofold axis but no other symmetry element 
is present, the origin would normally be situated on this symmetry 
axis. In such cases the permissible origins are greatly restricted and it 
is therefore plausible to assume that many linear combinations of the 
phases will remain unchanged in value when the origin is shifted 
only in the restricted ways allowed by the space group symmetries. 
One is thus led to the notion of the structure semi-invariant, the 
linear combinations of the phases whose values are independent of 
the choice of permissible origin. Explicitly then, the structure semi- 
invariants are those linear combinations of the phases whose values 
are uniquely determined by the crystal structure alone, no matter 
what the choice of permissible origin. 

The structure semi-invariants have been tabulated for all the space 
groups (6, 14-17). For example, if a center of symmetry is present 
(space group P i ) ,  then a single phase +H is a structure semi- 
invariant if and only if the three components of H are even integers; 
the linear combination of two phases, +H + +K, is a structure semi- 
invariant if and only if the three components of H + K are even 
integers, and so on. 

By embedding a structure semi-invariant T and its symmetry- 
related variants in suitable structure invariants Q, one obtains the 
extensions (18, 19) Q of the semi-invariant T [also called representa- 
tions (20)l. Owing to the space groupdependent relations among 
the phases, the value of T is simply related to the values of its 
extensions. In this way the probabilistic theory of the structure semi- 
invariants is reduced to that of the structure invariants, which is well 
developed. In particular, the neighborhoods of the structure semi- 
invariant T are defined in terms of the neighborhoods of its 
extensions. 
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Concluding Remarks 

The estimate (zero) of the triplet 4~~ (Eq. 24) and the related 
tangent formula (Eq. 25) are the cornerstones of most computer 
programs (21, 22) used for the direct solution of crystal structures. 
However, estimates of the quartets, in particular (Eq. 33), used to 
identify those quartets whose values are close to T (the so-called 
negati& because their cosines are negative), as well as of the 
higher order structure invariants and semi-invariants, often play an 
important (sometimes indispensable) role (23-25), particularly for 
complex structures when diffraction data may be limited in number 
and quality (26-36). 

Major emphasis has been placed on the neighborhood principle 
and the important role played by the structure invariants. The 
conditional brobabilitv distribution of a structure invariant T, given 
the magni&des IE i i  any of its neighborhoods, yields a riiable 
estimate for T in the favorable case that the variance of the 
distribution h a ~ ~ e n s  to be small. Since the structure invariants are 
the essential lin'kbetween magnitudes El and phases +, probabilistic 
methods play the central role in the solution of the phase problem. 
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AAAS-Philip Hauge Abelson Prize 
To Be Awarded to a Public Servant or Scientist 

The AAAS-Philip Hauge Abelson Prize of $2500, which was Chicago. Each nomination must be seconded by at least two 
established by the AAAS Board of Directors in 1985, is awarded other AAAS members. 
annually either to: Nominations should be typed and should include the follow- 

(a) a public servant, in recognition of sustained exceptional ing information: nominee's name, institutional affiliation and 
contributions to advancing science, or title, address, and biographical resume; statement of justification 

(b) a scientist whose career has been distinguished both for for nomination; and names, identification, and signatures of the 
scientific achievement and for other notable services to the three or more sponsors. Nominations should be submitted to the 
scientific community. AAAS Executive Office, 1333 H Street, NW, Washington, DC 

AAAS members are invited to submit nominations now for the 20005, for receipt on or before 25 August 1986. 
1986 prize, to be awarded at the 1987 Annual Meeting in The winner will be selected by a seven-member panel appoint- 

ed by the Board. 
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