
Semiclassical Methods in Chemical Physics 

Semiclassical theory finds use in chemical physics both as 
a computational method and as a conceptual framework 
for interpreting quantum features in experiments and in 
numerical quantum calculations. The semiclassical de- 
scription of one-dimensional dynamical systems is essen- 
tially a solved problem for eigenvalue and scattering 
situations and for general topologies of potential func- 
tions (simple potential wells, multiple wells, multiple 
barriers, and so forth). Considerable progress has also 
been made in generalizing semiclassical theory to multidi- 
mensional dynamical systems (such as inelastic and reac- 
tive scattering of atoms and molecules and vibrational 
energy levels of polyatomic molecules), and here, too, it 
provides a useful picture of quantum features (interfer- 
ence in product state distribution, generalized tunneling 
phenomena, and others) in these more complex systems. 

S EMICLASSICAL APPROXIMATIONS TO QUANTUM MECHANICS 

have become widespread in chemical and molecular physics 
over the last two decades and have even found significant use 

in nuclear and elementary particle physics (1-6). As this is the 100th 
year since the birth of Niels Bohr, the father of the Old Quantum 
Theory, it is timely to survey some of these more modern develop- 
ments. A recent conference (1) honoring Bohr's centenary has been 
devoted entirely to semiclassical methods. 

The reason classical and semiclassical descriptions of chemical 
phenomena are so useful is that atoms and molecules are relatively 
heavy particles; this means that typically many quantum states are 
strongly coupled, so that Bohr's Correspondence Principle becomes 
relevant. (Simply stated, the principle is that classical mechanics 
emerges from quantum mechanics in the limit of large quantum 
numbers.) The usefulness of semiclassical methods is twofold. 

1) Semiclassical theory plays an interpretive role; that is, it 
provides an understanding of the nature of quantum effects in 
chemical phenomena, such as interference effects in product state 
distributions and tunneling corrections to rate constants for chemi- 
cal reactions. This interpretive role is important whether one 
observes quantum effects in actual experiments or in numerical 
quantum mechanical calculations. The glory effect (an interference 
feature in the energy-dependence of total cross sections), for 
example, was first seen (7, 8) in completely quantum mechanical 
scattering calculations, but was not understood until its semiclassical 
origin was realized. 

2) Semiclassical approaches are often useful for carrying out 
practical calculations, also because of the Correspondence Principle. 
If many quantum states are strongly coupled, then purely quantum 
mechanical calculations (basis set expansions, matrix diagonaliza- 
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tions, and so forth) may be impractical, while classical and semiclas- 
sical methods become more accurate. The effort in solving the 
Schrodinger equation increases with the number of strongly coupled 
quantum states, while the effort in solving the classical equation of 
motion, on which semiclassical theories are built, grows only with 
the number of strongly coupled degrees of freedom. 

Semiclassical methods are actually now so widespread in chemical 
physics that it is not possible to cover all such approaches in this 
short presentation. For example, I will not discuss older semiclassical 
approaches, now often called classical path models, in which classical 
motion is assumed for the translational degrees offreedom, and then 
a time-dependent Schrodinger equation is used to describe the 
internal degrees of freedom. Such approaches have been particularly 
useful in nuclear physics (9) (coulomb excitation) and have found 
some use in molecular collisions (10, l l )  and scattering of atoms and 
molecules from surfaces (12). Also not discussed explicitly are 
methods that attach a Gaussian wave packet (coherent state) to 
classical trajectories (6, 13), although some of the examples dis- 
cussed below can be treated in a parallel fashion by such methods. 

Eigenvalues 
One-dimensional systems. The most startling quantum effect is that 

the energy of bound systems can be only certain discrete values; the 
crowning achievement of the Old Quantum Theory (14) was the 
Bohr-Sornmerfeld quantization rule 

which applies to simple potential wells (Fig. 1). (In Eq. 1, p is the 
reduced mass for the one-dimensional motion and n is the vibration- 
al quantum number.) With proper inclusion for rotation, this now- 
called Wentzel-Kramers-Brillouin (WKB) quantum condition accu- 
rately describes the vibrational and rotational energy levels of 
diatomic molecules. Furthermore, it can be inverted to determine 
the potential energy function V in terms of experimentally deter- 
mined energy levels; it is by this Rydberg-Klein-Rees method (15) 
that accurate potential energy functions for diatomic molecules are 
determined. 

In semiclassical theory each new topology presents a new problem 
to be solved. Thus Eq. 1 applies to simple potential wells but not to 
a potential with several wells separated by potential barriers (Fig. 2). 
For one-dimensional systems, though, the semiclassical quantum 
condition has been derived for essentially all cases, that is, an 
arbitrary number of wells and barriers. For a system with A4 
identical wells and barriers (an M-fold hindered rotor), for example, 
the quantum condition (16) is 

k = 1, . . ., M for each n = 0, 1, 2, . . . 
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I 
Fig. 2. Potential energy for a hin- 

Fig. 1. Typical one-dimensional po- dered rotor as a function of the 
tential well; xl and xq denote the rotation angle a; al, a2, and a3 
classical turning points for energy E. denote classical turning points for E.  

where + and 0 are phase integrals across the well and through the 
barrier, respectively (Fig. 2): 

where I is the moment of inertia of the rotor. [A small phase shift 
correction (17) to + and to 8 has been neglected here.] Equation 2 
takes into account tunneling through the barriers and is uniformly 
valid for energy below (0 > 0) or above (8 < 0) the top of the 
barrier. For weak tunneling, that is, e2' >> 1, Eq. 2 leads to the 
following well-known splitting pattern for the nth M-fold multiplet 

where the vibrational frequency fiw, is given by 

and where EL') is the center of the nth multiplet, which is determined 
by the single-well quantum condition 

+(E(')) = (n + 1 1 2 ) ~  (6) 

Equations 2 to 5 apply also in the continuum limit, M-+ 0, 
kiM = K, and give rise to energy bands E,(K) as K varies from 0 to 1. 

Multidimensional systems. Since semiclassical eigenvalues work so 
well for essentially all one-dimensional systems, it would be useful to 
generalize them to nonseparable systems of more than 1 degree of 
freedom, for example, vibrational states of polyatomic molecules. 
This is relevant because of the many new experimental techniques 
being developed for investigating highly excited vibrational states 
(18) for which the traditional normal mode analysis is inadequate. 

For simple multidimensional systems, that is, those that are 
topologically a simple potential well in all dimensions, the Old 
Quantum Theory (14) provided the ready generalization of Eq. 1: 
one expresses the classical Hamiltonian in terms of the good action 
variables {Ik} of the system and then requires that they be equal to 
half-integer (for vibrational motion) multiples of h 

Equation 1 is this condition for the one-dimensional case. The 
difficult step in this procedure is not Eq. 7, but rather the task of 
expressing the classical Hamiltonian in terms of the good action 
variables. To do so requires one to solve the Hamilton-Jacobi 
equation for the multidimensional, nonseparable system, which is 

not possible in general without resorting to numerical methods. In 
the days of the Old Quantum Theory (14) perturbative methods 
were used to carry out the calculation approximately (14), and the 
results obtained are actually quite accurate in comparison with the 
analogous quantum permrbative values (1 9-21 ). Although the 
failure of the Old Quantum Theory to deal with multidimensional 
systems has been cited as a clue that some more complete theory was 
necessary, this failure is less that of the Old Quantum Theory itself 
than of our inability to solve the classical equations of motion for 
multidimensional systems (without resorting to numerical calcula- 
tions). 

More recently, methods have been developed for expressing the 
Hamiltonian in terms of its good action variables by integrating the 
classical equations of motion numerically. Marcus and co-workers 
(2, 22) did this by using Poincari surfaces of section, and subse- 
quently a number of other methods have been developed (23-34), 
some of which seem practical for systems with more than 3 degrees 
of freedom. This is an active area of research. 

Less well settled is semiclassical quantization for multidimension- 
al systems with more complicated topologies, for example, a two- 
dimensional double-well potential (Fig. 3). The problem is that 
good action variables do not exist glob&, although they may exist 
locally. In this case, for example, one expects three sets of locally 
good action variables, one in each of the two potential wells and one 
in the barrier region. For a one-dimensional double well, the three 
locally good actions are the phase integrals across each of the wells, 
$1 and $2, and the phase integral through the barrier, 0, in terms of 
which the quantization condition is (35, 36) 

Intuition suggests that there should exist an analogous uniform 
quantization formula for the multidimensional case, one that makes 
use of the locally good actions. This idea has been implemented (37) 
even though it is not on solid theoretical ground. 

Even less well understood is how to effect semiclassical quantiza- 
tion if good action variables do not exist at all, that is, if thi classical 
motion is chaotic (25). This question has received considerable 
attention, and although there is not universal agreement, in such 
cases semiclassical quantization may not exist in the sense of 
providing individual energy levels. Statistical characteristics of the 
energy levels, however, which are perhaps the quantities of actual 
physical interest in such situations, can be described semiclassically 
( 3 8 4 1  ) . 

Scattering 
Scattering experiments had not become common in physics and 

chemistry before the Old Quantum Theory was laid to rest, so the 
theory was not developed extensively for such applications. (Ruther- 
ford-that is, coulomt-scattering is well described by classical 
mechanics.) With the advent of crossed molecular beam methods 
(42) by chemists in the late 1950's it became possible to study 
chemical reactions and energy transfer collisions at the microscopic 
single-collision level, which stimulated enormous activity among 
physical chemists in developing scattering theory for such applica- 
tions. Because semiclassical approximations are so natural for atomic 
and molecular systems, such methods have developed rapidly. 

Elastic scattering. Because of conservation of angular momentum, 
the elastic scattering of two structureless particles-for example, two 
rare gas atoms within the Born-Oppenheimer approximation- 
reduces to a one-dimensional dynamical problem for the radial 
motion. The WKB approximation can thus be applied; Ford and 
Wheeler (43) showed how interference and tunneling effects in 
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Fig. 3. Contour plot of a two-dimensional double-well potential energy 
surface. 

elastic scattering are described semiclassically. Essentially, one com- 
putes the scattering amplitude for scattering at angle 0 semiclassical- 
ly, from the classical trajectory that actually scatters at 0; if more than 
one classical trajectory scatters at 0, one adds the semiclassical 
contribution for each such trajectory. Thus the scattering amplitude 
is ~ i v e n  bv 

where 0(b)  is the classical scattering angle for impact parameter b. 
The sum in Eq. 9 is over all roots of the equation 

that is, over all classical trajectories that arrive at angles +0 or -0; @ 
is an action integral along the trajectory. Typically there are three 
terms in Eq. 10. 

This description and its extensions allow one to understand 
rainbows (and supernumerary rainbows) in angular distributions, 
glories in the energy dependence of total cross sections, and 
tunneling resonances in the scattering (44, 45). Later extensions 
show how diffraction oscillations from repulsive potentials arise 
within this picture (46) and how the picture can be applied to 
complex potentials (47) (particularly in nuclear scattering) that 
account for loss of flux to inelastic channels. Essentially all features 
of elastic scattering can be described within this semiclassical 
framework, usually quantitatively. The theory can do such a com- 
plete job because the dynamical problem is a one-dimensional one, 
and, as noted for the eigenvalue problem, it is possible to deal with 
essentially all topologies of one-dimensional systems. 

Inelastic and reactive scatterind. The semiclassical picture of elastic 
scattering can be generalized to deal with inelastic and reactive 
scattering, that is, multidimensional dynamical systems (48-50), 
where classical trajectories must be computed numerically. The basic 
semiclassical results can be obtained from the stationary phase 
approximation to a Feynman path integral representation of the 
propagator (51, 52) 

where H is the Hamiltonian of the system, F is the number of 
degrees of freedom, and the sum is over all classical trajectories 
connecting position XI at time t l  and x2 at t2; p are the momentum 
variables conjugate to x and 4 is the action integral along the 
classical trajectory 

Fig. 4. The final vibrational quan- 
tum number (more precisely, the 
vibrational action variable) that re- 3 3 

sults from a classical trajectory for an ,: 
He + H2 collision with a given total 
energy E, as a hc t ion  of the initial 
vibrational angle variable &. The 
intersection of the curve with the o 0.2 0.4 0.6 0.8 1.0 

dashed line indicates the graphical q , / 2 a  

solution of Eq. 15 for n2 = 2. 

The pre-exponential factor is the square root of the classical 
probability of the xl -+ x2 transition associated with the specific 
classical trajectory. Within this primitive semiclassical model, all 
quantum effects arise because the two-time boundary conditions (XI, 
x2) do not in general determine a single classical trajectory [in 
contrast to initial conditions (XI, p l ) ,  which do]. 

The above semiclassical expressions actually apply for any classical 
coordinates and momenta, and to describe inelastic scattering one 
chooses the initial and final variables to be the good action variables 
n (that is, the classical counterpart of the quantum numbers) for the 
internal degrees of freedom of the colliding molecules. Since the S- 
matrix of quantum scattering theory is directly related to the infinite 
time limit of the propagator, one is able to write a corresponding 
semiclassical approximation for it. 

For a generic inelastic scattering problem, vibrational excitation, 
or de-excitation of a diatomic molecule by collision with an atom 
(53h 

The semiclassical approximation for the S-matrix (the transition 
amplitude) has the same structure as the amplitude for elastic 
scattering in Eq. 9 

Here n2(ql) is the final value of the vibrational action variable that 
results from a classical trajectory with the initial angle variable ql 
(and initial action variable nl, an integer). The sum in Eq. 14 is over 
all roots of the equation 

n2(ql) = n2 (an integer) (15) 

that is, over all trajectories for which the action variable is the integer 
nl before collision and the integer n2 after collision. The pre- 
exponential factor in Eq. 14 is the square root of the classical 

Fig. 5. Vibrational 
transition probabilities 
for He + H2(nl) -+ 
He + H2(n2) as a 
function of the final vi- 
brational quantum 
number n2. The points 
connected by the solid 
lines are the results of 
the semiclassical (and 
quantum mechanical) 
theory, whereas the 
dashed lines connect 
those of the completely 
classical theory, which 
omits interference and 
tunneling. 
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probability of the nl -, n2 transition, and @ is a classical action 
integral. 

Figure 4 shows the quantum number from n2(ql) for a simple 
model of a He + H z  collision (48). Since it is periodic, 
n2(q1 + 27~)  = n2(ql), there must be an even number of roots to Eq. 
15. For the simplest topology seen in Fig. 4 there are two roots, so 
that the transition probability has a simple interference structure 

where Pk (k  = 1,2)  are the classical transition probabilities associat- 
ed with the two trajectories which contributed to the nl -, n2 
transition. Figure 5 shows typical semiclassical results compared to 
the classical transition probabilities. 

The situation is precisely analogous to the Ford and Wheeler 
picture of elastic scattering (43): for fixed nl, P,,,,, of Fig. 5 is the 
discretized distribution of final vibrational quantum numbers, anal- 
ogous to the differential cross section o(0), which is the distribution 
of final scattering angles. The quantum number function n2(ql) is 
the analog of the classical deflection function O(b) of elastic 
scattering. The interference structure, rainbow effects, and other 
quantum effects seen in the differential cross sections of elastic 
scattering thus also exist in the distribution of final quantum states 
after an inelastic collision. Such effects are prominent in rotationally 
inelastic scattering (54), and their semiclassical analysis (55) has 
been important for determining the anisotropic interaction poten- 
tials that cause the inelasticity. 

This classical S-matrix model has been applied to a wide variety of 
dynamical phenomena: vibrational and rotational inelastic scattering 

Fig. 6. Example of the tunneling trajectory for the collinear reaction 
H + H2(nl = 0) + H2(n2 = 0) + H at energies below the classical thresh- 
old for reaction. Two potential energy contours are indicated as boldface 
lines, and the minimum energy reaction path by a dashed line. The dotted 
curve is the trajectory for an initial translational energy of 0.20 eV (very close 
to threshold), and the dash-dot curve for an initial translational energy of 
0.02 eV (far below threshold). R, and r, are the translational and vibrational 
coordmates, respectively, for the H + Hz system. 

Fig. 7. Sketch of the upside-down -v (x)  

potential function for a potential 
well and the classical trajectory in x 

pure imaginary time T that satisfies 
the boundan/ conditions xiO) = 
x(np) = x , .  

(48, 56-59), reactive scattering (60-65), diffraction of He atoms 
from crystal surfaces (66, 6 3 ,  collisional broadening of molecular 
spectral lines (68), collision-induced dissociation (69), Senftleben- 
Beenakker effects (70), photodissociation (71), collisional depolar- 
ization and rotational relaxation in open-shell diatomic molecules 
(72), and coulomb excitation of rotational states of nuclei (73, 74). 
One can also show that discrete symmetries of a dynamical system 
lead to symmetries in the quantum number functions, and the 
resulting .interference effects give the quantum selection rules (for 
example, even A j  transitions for rotational excitation of homonucle- 
ar diatomic molecules) (49). This makes the approach useful for 
describing weak selection rules that result when these symmetries are 
slightly broken (75). 

One can also extend the theory to describe classically forbidden 
processes, a kind of generalized tunneling. In Fig. 4, for example, 
one sees that no trajectories (at the given energy) lead to final 
vibrational states n2 = 5 or greater, whereas in this case final states 
up to n2 = 9 are energetically open channels. The semiclassical 
resolution of the situation is that there are complex roots to Eq. 15 
for n2 > 5, and thus complex-valued classical trajectories that satisfy 
the correct initial and final boundary conditions. (The classical 
trajectory for ordinary one-dimensional barrier tunneling has com- 
plex values; it has imaginary momentum in the classically forbidden 
region.) Appropriate analytic continuation gives the transition 
probability for such transitions as 

where cP is the complex-valued classical action integral along the 
tunneling trajectory. The structure of Eq. 17, namely, the exponen- 
tial of an imaginary action in units of h, also shows the tunneling 
character of these classically forbidden processes. 

Tunneling is particularly important near the threshold for chemi- 
cal reactions, and this analytically continued version of the classical 
S-matrix model is able to describe it (60). One significant feature 
seen in such calculations is how tunneling trajectories "cut the 
corner" from reactant to product valleys (Fig. 6) .  Approximate, 
sim~le-to-use analvtic models based on this feature have been useful 
in describing tunneling corrections for a variety of chemical reac- 
tions (76, 77). 

The classical S-matrix description is relatively simple to apply and 
accurate, even for several degrees offreedom, as long as the topology 
of the quantum number functions is simple. It is more difficult to 
a ~ d v  and less accurate when the auantum number functions 
I I  i 

become more structured. [This is also true in elastic scattering if the 
deflection function O(b) becomes too structured, that is, has 
multiple maximums and minimums.] The situation is analogous to 
the &ltidimensional eigenvalue problem described above, where 
the essential difficulty arises when the potential energy surface is not 
a simple well in all dimensions. The advances made in the develop- 
ment of higher order, multidimensional uniform semiclassical for- 
mulas (78-80) to deal with these more complex topologies have 
been difficult undertakings since each new topology requires a new 
uniformization formula. The extreme limit, which is analogous to 
chaotic dynamics for the eigenvalue problem, occurs when the 
collision partners form a long-lived collision complex. Here the 
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h Fig. 8. A perspective view of the upside-down potential energy 
surface for the H + Hz -+ H, + H reaction. The circle shows 
the position of the saddle point, and the two solid lines are the 
periodic orbits (the "instantons") for m o  values of the total 
energy E. Notice that the periodic orbit cuts the corner of the 
potential surface, that is, falls inside the saddle point. 

quantum number function becomes an almost random function of 
its initial conditions (60), and one expects no uniformization to be 
able to deal with it. In such situations one usually resorts to 
statistical descriptions of the collision complex, which are also 
analogous to the use of statistical measures of spectra with chaotic 
dynamics. 

Statistical Mechanics and Thermal Rate 
Constants 

The semiclassical approximation to the propagator, Eq. 11, can be 
easily converted into one for the Boltzmann operator e-pH by the 
usual replacement t- -ifif% The situation is simple because the 
time t is pure imaginary (not complex, as for the classically for- 
bidden processes of the previous section), and in terms of the real 
variable 7 = i x t, the classical equations of motion become (special- 
izing to Cartesian coordinates) 

They look the same as in real time with the sign of the potential 
changed. One thus considers classical trajectories on the upside- 
down potential surface. 

For the equilibrium density in a one-dimensional potential well, 
for example, the semiclassical expression is (81) 

where P(T) = -z$(T) = ~ ' ( 7 )  is a real momentum-like variable. 
The trajectory x(7) along which the quantities in Eq. 19  are 
evaluated is one that evolves in real time in the potential - V(x), 
such that x(0) = xl  and x(fiP) = xl  (Fig. 7). For any value of fip 
from 0 to one can find such a trajectory. 

Partition functions can be computed by integrating Eq. 19  over 
xl, and the results often describe the quantum effects (82) better 
than the usual Wigner-Kirkwood quantum-correction expression 
(83). The latter also implicitly makes a short imaginary time (fip) 
expansion, whereas the semiclassical approximation, Eqs. 18 and 19, 
is explicitly infinite order in fip. 

A result that can be obtained from the semiclassical approxima- 
tion to the Boltzmann operator is an expression for the thermally 

averaged rate constant for reaction through the saddle point of a 
potential energy surface (84). The rate is given by the Boltzmann 
average of the cumulative reaction probability N(E) (qualitatively, 
the number of quantum states that react) 

where the semiclassical approximation for N(E) is 

with 

Here @(E) is the action integral along the periodic orbit that rocks 
back and forth through the saddle-point region on the upside-down 
potential energy surface (Fig. 8), and wk are stability frequencies 
characterizing this unstable periodic orbit. 

This periodic orbit on the upside-down potential is essentially the 
"instanton" that has received much attention in elementary particle 
physics (85). This same kind of periodic orbit analysis in real time 
also leads to an approximation for semiclassical eigenvalues of 
multidimensional systems (86-88). 

Electronically Nonadiabatic Processes 
Preceding discussions have ignored dynamical aspects of the 

electronic degrees of freedom of the molecular system; the electrons 
have determined, by the Born-Oppenheimer approximation, only 
the potential energy function for the nuclear dynamics. In many 
situations, though, transitions between different Born-Oppenhei- 
mer potential energy surfaces is facile, so that a realistic classical or 
semiclassical simulation requires that these features be dealt with. 
Nonadiabatic processes are particularly relevant to collisions of 
open-shell atoms and molecular radicals, species that play important 
roles in atmospheric chemistry and in combustion. 

Localized nonadiabaticity due to isolated crossings (or intersec- 
tions) of Born-Oppenheimer potential curves (or surfaces) is well 
described by the Landau-Zener-Stuckelberg model (89). Here the 
nuclear degrees of freedom follow classical motion on the adiabatic 
potential curves with the probability of localized transitions (hops) 
from one curve to another when they cross (or come close to each 
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where (n, q)  are classical action-angle variables describing the 
collective electronic degrees of freedom. Adding in nuclear kinetic 
energy gives the complete classical Hamiltonian, 

P2 
H(p,  X, n, q )  = g + Hel(n, q; x) (25) 

for the electronic and nuclear degrees of freedom. Classical trajecto- 
ries for the complete system can then be computed to describe the 
electronically nonadiabatic dynamics exactly (within this model). 
Semiclassical versions of the approach, which incorporate interfer- 
ence and tunneling, can be constructed by the methods described 
above (96). 

Applications of these approaches have been made to a number of 
processes: collisional quenching of F*(~P, ,~)  by H +  and Xe (98), to 
electronic-rotational energy transfer in F* - H z  collisions (99), to 
electronic-vibrational energy transfer in Br* - H 2  collisions (loo), 
to electronically nonadiabatic reactive scattering ( H  + LiF -+ 
H F  + Li, Li*) (101), to charge transfer in collisions 
(Na + I + Na' + I-) (102), to geminate recombination of1 atoms 
(involving ten electronic potential curves) in solution (103), to 
vibronic effects in electronic spectra (104), to the effects of electron 
hole-pair excitations of surface electronic states on the dynamics of 
adsorbates (105), and to Jahn-Teller interactions near a conical 
intersection (106). Most of these have involved only a few electronic 
states, yet this classical model has worked reasonably well. Its 
greatest potential usehlness, though, is for systems that involve 
dynamics in a vibronic soup, for example, for clusters of metal 
atoms. 

Fig. 9. All the potential energy curves that arise for the valence states (3P,  'D, 
IS) of two oxygen atoms, from the calculations in (94). 

Concluding Remarks 
other). For atom-atom collisions, this description can be made fully 
semiclassical in the Ford and Wheeler sense (52, 90) to describe the 
many kinds of quantum interference features that are seen. The 
Tully-Preston surface-hopping model (91) is the classical version of 
the theorv extended to molecular collisions. the essential feature here 
being that the classical mechanics must be determined nurnericallv. 

u 

A semiclassical version, in the sense discussed above, has also been 
developed (92, 93). 

1f many Born-Oppenheimer potential energy surfaces are strongly 
coupled, that is, undergo many crossings or avoided crossing with 
each other, the surface-hopping models begin to lose their validity. 
To show that this can occur, even with only two relatively light 
atoms, Fig. 9 shows all the diatomic potential curves that arise from 
the three valence states ( 3 ~ ,  'D, IS) of two oxygen atoms (94). The 
lowest few potential curves are well isolated, so that the adiabatic 
description of the dynamics in these states is appropriate, but for 
collisions of an o(~P)  atom with an o('D) atom, for example, one 
sees almost a continuum of curve crossings. For more than a two- 
atom svstem, the picture worsens and few svmmetries would restrict , A 

transitions among the various potential energy surfaces. 
When many states are strongly coupled, however, the spirit of 

Bohr's Correspondence Principle suggests the usefulness of classical 
mechanics. Such considerations have led to the development of 
models in which the many electronic states are replaced by one (or a 
few) classical degrees of freedom, the classical Hamiltonian for 
which is construc&d to correspond to the manifold electronic states 
(95-97). Specifically, an electronic Hamiltonian matrix H,,,,(x) that 
depends on the nuclear coordinates x (in the Born-Oppenheimer 
sense) can be replaced by a classical electronic ~ a m i l t o n &  function 
(Hell 

In this overview I have attempted to show the pervasiveness of the 
semiclassical point of view in chemical and molecular physics. 
Semiclassical methods are an essential element in the tool kit of 
theorists trying to interpret, model, and simulate chemical and 
molecular phenomena. 

One expects semiclassical theory to grow in importance as 
experimental methods improve to provide an even more detailed, 
state-resolved description of chemical dynamics. It is at the most 
state-specific level that quantum interference and tunneling features 
become most apparent. Semiclassical theory will also play an 
increasingly important role in interpreting the results of large, 
completely quantum mechanical calculations that are becoming 
increasingly feasible as a result of enhanced computer power. We are 
reaching the stage that is common in statistical mechanics, where 
theory is needed to understand the results of large numerical 
calculations. Semiclassical theory will be useful in this role. 
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