The identical clinical picture and heterozygote carrier frequency found among these two populations, one defined by geography, the other by ethnicity, has led to the suggestion that the two groups bear identical molecular lesions, perhaps arising through marriage of an Ashkenazi Jew into the French Canadian group (5). Our results showing a generally intact α -chain gene in Ashkenazi patients but a deletion in the α chain gene of the French Canadian patients of 5 to 8 kb at the 5' end, demonstrate that in the cell lines studied this is not the case. However, generalizations about this finding cannot be made until larger numbers of patients and carriers from each group are

analyzed at the DNA level to assess the homogeneity of the mutations in these two populations.

REFERENCES AND NOTES

- 1. J. S. O'Brien, in *The Metabolic Basis of Inherited Disease*, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. H. Goldstein, M. S. Brown, Eds. McGraw-Hill, New York, 1983), p. 945
- K. Sandhoff and E. Conzelmann, *Neuropediatrics* 15 (suppl.), 85 (1984).
- 3 4
- (suppl.), 63 (1964).
 E. Beutler, Am. J. Hum. Genet. 31, 95 (1979).
 H. J. Kytzia, U. Hinricks, I. Maire, K. Suzuki, K. Sandhoff, EMBO J. 2, 1201 (1983).
 E. Anderman, C. R. Scriver, L. S. Wolfe, L. Dansky,
- Andermann, Prog. Clin. Biol. Res. 18, 161 (1977) P. Hechtman, K. Khoo, C. Issacs, Clin. Genet. 24,
- 206 (1983). R. Myerowitz and R. L. Proia, Proc. Natl. Acad. Sci. 7.
- U.S.Á. 81, 5394 (1984).

- R. Myerowitz, unpublished data.
 R. Myerowitz, R. Piekarz, E. F. Neufeld, T. B. Shows, K. Suzuki, *Proc. Natl. Acad. Sci. U.S.A.* 82, 7830 (1985).
- R. L. Proia, personal communication.
 R. L. Proia, personal communication.
 T. Maniatis, E. F. Fritsch, J. Sambrook, *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982).
 G. I. Bell, J. H. Karam, W. J. Rutter, *Proc. Natl. Acad. Sci. U.S.A.* 78, 5759 (1981).
 A. P. Eciphere and B. Vogelstein, *Angl. Richam.*
- A. P. Feinberg and B. Vogelstein, Anal. Biochem. 132, 6 (1983).
- G. Dretzen, M. Ballard, P. Sassone-Corsi, P. Chambon, *ibid*, **112**, 295 (1981).
 P. Chomczynski and P. K. Quasba, *Biochem. Biophys. Res. Commun.* **122**, 340 (1984).
- We thank R. L. Proia for providing genomic probes, A. R. Robbins for careful reading of this manu-script, F. Dubinsky for typing this manuscript, and the Howard Hughes Medical Institute for a medical mediate scheducing on D. D. U. student scholarship to N.D.H.

8 January 1986; accepted 3 April 1986

An Apical-Membrane Chloride Channel in Human **Tracheal Epithelium**

MICHAEL J. WELSH

The mechanism of chloride transport by airway epithelia has been of substantial interest because airway and sweat gland-duct epithelia are chloride-impermeable in cystic fibrosis. The decreased chloride permeability prevents normal secretion by the airway epithelium, thereby interfering with mucociliary clearance and contributing to the morbidity and mortality of the disease. Because chloride secretion depends on and is regulated by chloride conductance in the apical cell membrane, the patch-clamp technique was used to directly examine single-channel currents in primary cultures of human tracheal epithelium. The cells contained an anion-selective channel that was not strongly voltage-gated or regulated by calcium in cell-free patches. The channel was also blocked by analogs of carboxylic acid that decrease apical chloride conductance in intact epithelia. When attached to the cell, the channel was activated by isoproterenol, although the channel was also observed to open spontaneously. However, in some cases, the channel was only observed after the patch was excised from the cell. These results suggest that this channel is responsible for the apical chloride conductance in airway epithelia.

HLORIDE SECRETION BY AIRWAY epithelia and other epithelia is a two-step process. Chloride enters the cell across the basolateral membrane by means of an electrically neutral, Na⁺-coupled cotransport step; the coupling to Na⁺ energizes intracellular accumulation of Clabove electrochemical equilibrium. Chloride then leaves the cell passively, moving down a favorable electrochemical gradient by means of an electrically conductive apical exit step (1). Apical Cl^- conductance is a primary regulatory step that controls the rate of transepithelial Cl⁻ secretion and the response to neurohumoral mediators. Although most agents that stimulate secretion increase intracellular levels of cyclic AMP and cytosolic Ca²⁺ concentrations, the identity of the second messenger that directly regulates the apical Cl⁻ permeability is uncertain.

In cell-attached and excised patches of

membrane, I observed unitary current steps with the patch-clamp technique (2, 3). Figure 1 shows the current-voltage (I-V) relation of a Cl⁻ channel in an excised, insideout cell-free patch bathed with symmetrical 145 mM NaCl solutions. The I-V relation rectified strongly; conductance increased with outward currents. The slope conductance measured at 0 mV with symmetrical 145 mM Cl solutions was 25 ± 2 picosiemens (pS) (mean \pm SEM, n = 37 patches). No consistent differences were observed for channels obtained from different tracheas. Figure 1 also shows that unilateral changes in the Cl⁻ concentration shifted the reversal potential in the direction expected for a Cl⁻ channel. The selectivity of the channel for Cl⁻ over cations and the sulfate and gluconate anions is a property similar to that of the apical Cl^- conductance (1).

Isoproterenol stimulates Cl⁻ secretion by increasing the apical Cl⁻ conductance in

intact and cultured epithelia (1, 4). Figure 2 shows that isoproterenol also activated previously quiescent channels in a cell-attached patch. In six patches that appeared to contain only a single channel (5), the probability (P) of finding the channel open before addition of isoproterenol was zero. However, at a mean time of 59 ± 13 seconds after the addition of isoproterenol, the value of Pwas at a peak of 0.46 ± 0.16 . In five other multichannel patches in which isoproterenol increased activity, the value of P in three patches was zero during the 56 ± 14 seconds of observation before addition of isoproterenol (Fig. 2). In the other two patches, there was a brief burst of activity of one channel before the addition of isoproterenol, followed by the opening of several channels after isoproterenol addition. Although Fig. 2 shows a dramatic activation of the Cl⁻ channel by isoproterenol, this was not always observed. From 40 patches in which the Cl⁻ channel was observed, the channel was activated by isoproterenol in 28% and opened spontaneously in the cellattached mode of untreated cells in 30%. However, in 42% of the patches, the channel was observed to open only after excision of the patch from the cell.

Agents that stimulate secretion increase the intracellular Ca^{2+} concentration (6, 7) and produce small changes (5 to 15 mV) in apical membrane voltage (1). However, I found no consistent effect of internal Ca²⁺ on channel activity in excised, inside-out, cell-free patches (Fig. 3). In five excised patches that contained either one or two channels, the value of P was 0.73 ± 0.06 with $1 \text{ m}M \text{ Ca}^{2+}$ bathing the internal surface of the patch and 0.78 ± 0.07 when the

Laboratory of Epithelial Transport and Pulmonary Division, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242.

internal concentration of Ca^{2+} was less than 1 nM (measured at +50 mV). This apparent lack of Ca^{2+} regulation contrasts with the regulation of the basolateral K^+ conductance by Ca^{2+} (6). Figure 3 also shows that changes in membrane voltage had little consistent effect on channel activity. With large changes in voltage, the value of *P* increased in some cases, decreased in others, but was usually unchanged. In nine excised patches that contained a single channel, *P* was 0.76 ± 0.6 at +50 mV and 0.69 ± 0.10 at -50 mV, which indicated that the channel

Fig. 1. Representative single-channel currentvoltage (I-V) relations obtained in excised, insideout patches. Closed circles represent the I-V relation obtained in symmetrical NaCl solutions (pipette solution, 145 mM NaCl and 1 mM Ca² bath solution, 145 mM NaCl and 0.1 mM Ca^{2+}). Open circles show the I-V relation when the internal Cl⁻ concentration was decreased to 49 mM in exchange for SO_4^{2-} (expected reversal potential for a Cl⁻-selective channel of -27.6mV). Squares show I-V relation when the internal NaCl concentration was increased to 250 mM (expected reversal potential, +13.8 mV). Stars show I-V relation when external (pipette) NaCl concentration was decreased to 70 mM (expected reversal potential, +18.5 mV; n = 3). (Lines were fit by eye.) The ratio of Cl⁻ to Na⁺ permeabilities, $P(Cl^-/Na^+)$, from the Goldman-Hodgkin-Katz equation, in four experiments in which there was a NaCl gradient across the patch, yielded a value of 6.7 ± 1.0 (mean \pm SEM). In other experiments, Na₂SO₄ or sodium gluconate was substituted for one-half to two-thirds of the NaCl in the internal solution; the apical membrane of tracheal epithelium is impermeable to SO_4^{2-} and gluconate. If one assumes that these two anions do not permeate the channel, then I calculate values for $P(Cl^{-}/Na^{+})$ of 7.6 ± 1.2 (n = 3) during SO₄²⁻ substitutions and of 6.9 (n = 2) during gluconate substitutions. Moreover, when external Cl⁻ was replaced by gluconate, outward currents were never observed. The inability of gluconate to carry current and the agreement between values of $P(Cl^{-}/Na^{+})$ calculated from NaCl gradients and partial replacement of Cl⁻ by SO₄²⁻ or gluconate indicate that this channel is impermeable to SO_4^{2-} and gluconate. In contrast to anion replacement, substitution of Na^+ by K^+ or Cs^+ in either external or internal solution had no effect on reversal potential. Although the values of reversal potential (and there-fore $P(Cl^-/Na^+)$ are not highly accurate because of the small amplitudes and current rectification, the data indicate that this is an anion channel.

was not strongly voltage-gated. The observation that neither Ca^{2+} nor voltage is the main regulator of the Cl^- conductance is consistent with recent studies on cultured and intact epithelia (7, 8).

Another way to show that a specific channel is responsible for a physiologic property is to examine the effect of blockers. Although no highly specific blockers have been reported, high concentrations of anthracene-9-carboxylic acid (9-AC) and diphenylamine-2-carboxylate (DPC) inhibit the apical Cl^{-} conductance (9). Figure 4 shows that 9-AC applied to the internal bathing solution decreased single-channel conductance in a dose-dependent and reversible manner; DPC had a similar effect. In three patches, 4 mM 9-AC decreased single-channel current measured at +60 mV to $70 \pm 6\%$ of control values. In comparison, 6 mM 9-AC inhibited Cl⁻ secretion by 50% in intact tracheal epithelium (9). In four patches, 1 mM DPC decreased singlechannel current measured at +60 mV to $59 \pm 10\%$ of control values. In comparison, 0.7 mM DPC decreased Cl⁻ secretion by 50% in intact tracheal epithelium. The data do not allow me to address the specific kinetics or mechanism by which these agents affect the channel. For example, 9-AC and DPC might produce a rapid, "flickering" block that is beyond the frequency response of our recording system. However, these agents have similar effects on Cl⁻ secretion in the intact epithelium and on the Clchannel: their effect on the channel is reversible, they have a similar rank-order of potency, and inhibitory concentrations are similar for the intact epithelium and the isolated channel. These findings suggest that the channel is responsible for the apical Clconductance.

These results demonstrate a new type of Cl⁻ channel that is different from Cl⁻ channels described in other preparations. In other epithelia, an anion channel has been described in A-6 and Madin-Darby Canine Kidney renal epithelial cell lines, in cultured rabbit urinary bladder cells, and in cultured pulmonary alveolar type II cells (10). However, those large channels (approximately 400 pS) were voltage-gated, poorly selective for anions over cations, and inhibited by stilbene derivatives, properties not consistent with the Cl⁻ conductive properties of tracheal epithelium. The conductive properties and regulation of the tracheal Cl⁻ channel also differ from those reported for Clchannels in a variety of nonepithelial excitable cells (11). This Cl⁻ channel may be similar to Cl⁻ channels reported for two other chloride-secreting epithelia. In canine tracheal epithelial cells, swollen in high K⁺ solutions, a 26-pS channel and a 150-pS channel were seen (12); the 26-pS channel may be similar to that reported here. In perfused tubules from shark rectal gland (13), the apical membrane contained a 20to 50-pS channel that was blocked by internal DPC.

The Cl⁻ channel in tracheal epithelium is regulated by an intracellular second messenger because isoproterenol activated Cl⁻ channels in the cell-attached configuration in which the drug is not accessible to the external side of the channel. However, the

Fig. 2. Effect of isoproterenol on Cl⁻ channel activity in a cell-attached patch. Tracing is a continuous record. Isoproterenol was squirted at the time indicated (noise artifacts) into the chamber at a final concentration of 5 μ M. The holding potential was +50 mV (membrane depolarized). Pipette solution was the same as the bath, 145 mM Cl⁻. Upward deflections represent outward current. Dashed lines indicate the current levels when all channels are closed. There are at least three channels in the patch.

Fig. 3. Effect of internal Ca²⁺ concentration and membrane voltage on channel activity. Representative tracings from one channel at Ca2+ concentrations of 1 mM and less than 1 nM (nominal Ca²⁺ and 5 mM EGTA) are shown at different membrane voltages. Pipette and bath solutions contained 145 mM NaCl. Pipette solution contained 1 mM Ca2+. Similar observations were made in most experiments; I routinely used solutions with Ca^{2+} concentrations of less than 1 nM (Fig. 4). Dashed lines indicate current levels when no channels are open. The results indicate that there was not a major Ca^{2+} -activation or voltagegating of the channel, although the methods would prevent observation of subtle changes in kinetics.

Fig. 4. Effect of anthracene-9-carboxylic acid (9-AC) on single-channel current-voltage relation. I-V relations were obtained when the internal surface was bathed with the 9-AC concentrations indicated. Pipette (external) solution was 145 $m\mathcal{M}$ NaCl and 1 $m\mathcal{M}$ CaCl₂. Bath (internal) solution contained 145 mM NaCl and 5 mM EGTA. There was no effect of the vehicle, dimethyl sulfoxide, which was added alone. The currents at +75 mV under the conditions indicated are shown at left; dashed lines indicate zero current levels. Stars indicate I-V relation with 2 mM 9-AC. This patch contained at least two channels. In studies on intact epithelia (9) these agents were added to the solution bathing the external surface of the cells, while in the present studies the agents were added to the internal surface of the membrane. However, given the lipid solubility of these agents, it is possible that they readily cross the lipid membrane.

identity of the regulator is unclear; neither cytosolic Ca²⁺ nor membrane voltage appears to be the primary or sole regulator under these conditions. The observation that in over one-third of the cases the channel did not open until after the patch was excised, even in cells that had been treated with isoproterenol, raises the possibility that the channel may be tonically inhibited by some intracellular substance. Removal of the channel from the cell may remove the inhibition

These findings may prove to be of value in understanding the abnormalities of ion transport in cystic fibrosis. Both the sweat gland duct epithelium and airway epithelia are Cl^- -impermeable (14), and, at least in airway epithelia, this results from a decreased or absent apical membrane Cl⁻ conductance (15). Whether the defect results from faulty regulation of the channel, or an abnormality of the channel itself, remains to be seen.

REFERENCES AND NOTES

- M. J. Welsh, P. L. Smith, R. A. Frizzell, J. Membr. Biol. 70, 227 (1982); S. R. Shorofsky, M. Field, H. A. Fozzard, ibid. 72, 105 (1983); M. J. Welsh, J. Clin. Invest. 71, 1392 (1983); S. R. Shorofsky, M. Field, H. A. Fozzard, J. Membr. Biol. 81, 1 (1984).
- Tracheas were obtained at the time of autopsy (<18 hours after death). The epithelium was removed, and the cells were isolated and grown in culture by 2. methods described for human and canine trachea The culture media was a 50:50 mixture of (4). The culture incluse was a solution and Ham's nutrient F-12 medium containing 5% fetal calf serum, insulin (5 μ g/ml), penicillin (100 unit/ml), and streptomycin (100 μ g/ml). Cells were plated on 35-mm petri dishes at a seeding density of 5 × 10³ to 2×10^4 cells per square centing tendry of 0 × 10 used 1 hour to 5 days after plating. O. P. Hamill, A. Marty, E. Neher, B. Sakmann, F. J.
- Sigworth, Pflügers Arch. 391, 85 (1981). Currents from the patch-clamp amplifier (Dagan model 8900, Minneapolis, MN) were low-pass filtered (500 to 750 Hz) by an eight-pole Bessel filter, viewed on an oscilloscope, and recorded on a strip chart recorder (Gould model 220, Cleveland, OH). The 90% rise time for a 2-cm deflection on the recorder was 3.5 time for a 2-cm deflection on the recorder was 3.5 msec. (Results were analyzed by hand.) Typical seal resistance was 5 to 50 gigohms. During seal formation and when recording in the cell-attached mode, bath solution contained Na⁺ (140 mM), K⁺ (5 mM), Ca²⁺ (1.2 mM), Mg²⁺ (1.2 mM), and Cl⁻ (145 mM). All bath and pipette solutions contained Hepes (10 mM) buffered to pH 7.2, except the standard bath solution, which was buffered to pH 7.4. Experiments were performed at room temperature. 7.4. Experiments were performed at room tempera-

ture (21° to 23°C). Voltages are reported in reference to the external surface of the membrane, and outward (+) current refers to the flow of cations from internal to external surface of the patch, or anion flow in the opposite direction. Results were obtained from cells cultured from seven tracheas. Chloride channels were found in 2 to 10% of successfully maintained seals. There were no consist-ent differences in properties of Cl⁻ channels ob-tained from different tracheas. I routinely patched isolated cells or cells at the edge of a cluster of cells because seals were easier to obtain. However, Clchannels were also observed in cells from the center of a confluent area. This finding contrasts with the previous observation that K⁺ channels, which are located on the basolateral membrane, are rarely found in confluent patches of cells (6), and it supports the conclusion that these channels are localized on the apical membrane. 4. D. L. Coleman, I. K. Tuet, J. H. Widdicombe, Am.

- J. Drysiol. 246, C355 (1984); M. J. Welsh, J. Membr. Biol. 88, 149 (1985).
 A patch was assumed to contain a single channel if
- only one current level was observed. This does not constitute proof, but, given the values of probability and the duration of measurement, it is a reasonable
- assumption. 6. M. J. Welsh and J. D. McCann, *Proc. Natl. Acad. Sci.* U.S.A. **82**, 8823 (1985).
- 8
- U.S.A. 82, 8823 (1985). M. J. Welsh, in preparation. *J. Membr. Biol.* 84, 25 (1985). *J. Membr. Biol.* 84, 25 (1985). *pliigers Arch.* 405, suppl. 1, S95 (1985). D. J. Nelson, J. M. Tang, L. G. Palmer, *J. Membr. Biol.* 80, 81 (1984); H. A. Kolb, C. D. A. Brown, H. Murer, *Pflügers Arch.* 403, 262 (1985); J. W. Hanrahan, W. P. Alles, S. A. Lewis, *Biophys. J.* 45, 300a (1984); G. T. Schneider, D. I. Cook, P. W. Gage, J. A. Young, *Pflügers Arch.* 404, 354 (1985). 10. Gage, (1985)
- (1985).
 A. L. Blatz and K. L. Magleby, *Biophys. J.* 43, 237
 (1983); M. M. White and C. Miller, *J. Biol. Chem.* 254, 10161 (1979); M. Columbini, *Nature (London)* 279, 645 (1979).
- R. Shoemaker, R. Frizzell, T. M. Dwyer, J. M. Farley, Fed. Proc. Fed. Am. Soc. Exp. Biol. 44, 647 (1985).

- (1983).
 R. Greger, E. Schlatter, H. Gögelein, *Pflügers Arch.* 403, 446 (1985).
 P. M. Quinton, *Nature (London)* 301, 421 (1983);
 M. R. Knowles et al., *Science* 221, 1067 (1983).
 J. H. Widdicombe, M. J. Welsh, W. E. Finkbeiner, *Proc. Natl. Acad. Sci. U.S.A.* 82, 6167 (1985).
 J. thork R. Kern, T. B. uppert and V. Kumbholz for 15. 16.
- I thank P. Karp, T. Ruppert, and V. Krumbholz for technical assistance, J. McCann for helpful discussions, and F. Hampson for help in obtaining the tracheas. Supported by grants from the National Heart, Lung, and Blood Institute (HL-29851), the American Heart Association, and the Cystic Fibrosis Foundation

7 January 1986; accepted 25 March 1986