
Tenuous Structures from Disorderlv 
Growth Processes 

Colloidal aggregation and other random growth process- 
es produce structures that behave differently from ordi- 
nary bulk matter. Much of this behavior can be described 
in terms of the invariance of the aggregates under changes 
of spatial length scale: they appear to be fractals. There 
are two types of basic mechanisms for producing fractal 
aggregates. Those in which aggregation proceeds cluster 
by cluster can be understood qualitatively in terms of a 
solvable schematic model. The diffusion-limited aggrega- 
tion or deposition of individual particles to make a large 
cluster is not as well understood. It is closely related to 
several irreversible processes in other areas of physics, 
such as two-fluid displacement in porous materials and 
the dielectric breakdown of insulators. More generally, 
disorderly growth mechanisms provide structures having 
unique properties, many of which can be understood by 
using simple statistical principles. 

A N ELECTRON MICROGRAPH OF A TYPICAL COLLOIDAL AG- 

gregate is shown in Fig. 1 (1). Such an aggregate is made in 
aqueous solution from a dilute mist of individual gold 

particles about 100 A in diameter. The gold particles are initially 
formed with a net electric charge; their mutual repulsion keeps them 
dispersed in the water. However, if the reagent pyridine is added, it 
neutralizes this charge, and the particles are then attracted to one 
another by van der Waals forces. Since the spheres are many atoms 
in size, this attraction energy is much larger than an average thermal 
energy; thus, the particles stick almost irreversibly on contact. 
Because particles in solution undergo random (Brownian) motion, a 
period occurs during which the neutralized gold particles collide at 
random and stick to make small clusters. These clusters also collide 
(with single particles or with other clusters) to make larger ones. 
After minutes or hours, the particles have flocculated to form large, 
wispy, treelike aggregates such as the one shown in two-dimensional 
projection in Fig. 1. 

Aggregates like this occur widely in nature and in technology. An 
example is soot (carbon black), which is formed as a by-product of 
combustion and is found in diesel exhausts (2). Aggregated carbon 
black, when incorporated into a rubber matrix, forms a tough elastic 
compound that is used to make tires (3). Similar aggregates made of 
silica particles are used as fluid additives (4); a small percentage (by 
weight) of such material added to a liquid such as paint can thicken 
it and help to control its rate of flow. The flocculation of colloids, 
which leads to precipitation of low-density, finely divided solids, 
provides an important means of chemical separation (for example, of 
mineral ores) and purification (for example, of drinking water) ( 5 ) .  
In nature, the properties of tenuous aggregated materials may 

determine the mechanical properties of a snow pack or the efficiency 
of a blood clot. 

Another disorderly growth process is shown in Fig. 2. This 
fingering pattern is produced when a highly viscous fluid (such as 
oil) is displaced from a porous material (such as sandstone) as a less 
viscous fluid (such as water) is pumped in (6-9). The water tends to 
flow along threadlike fingers through the oil instead of displacing it 
in a pistonlike fashion. This tendency poses a major obstacle to 
attempts to push oil out of the ground by displacing it with water. 
One way of understanding viscous fingering is in terms of an 
equivalent aggregation process. Further examples are the closely 
related patterns that arise from dendritic solidification and electro- 
deposition (10-13), such as the mossy deposits that form on the 
terminals of a car battery, and from the dielectric breakdown of an 
insulator in a high electric field (14). 

The structure of random aggregates has fascinated researchers for 
many years (15-18). It is now believed that the apparently formless 
complexity in Figs. 1 and 2 embodies a subtle type of regularity, 
called dilation symmetry, or spatial scale invariance (19-22). 

Properties of Scale-Invariant Structures 
A scale-invariant structure, or fractal (23), is an object whose 

statistical properties are unchanged under a dilation, or change of 
spatial length scale. In other words, two pieces of a fractal, one of 
size e and the other of a smaller size e', are statistically equivalent 
over some wide range of intermediate lengths, as long as the smaller 
piece is enlarged by a factor elel. 

The distribution of gaps, or  white areas, on the micrograph of 
Fig. 1 suggests that the cluster is a fractal. There is a hierarchy of 
smaller and smaller gaps extending down from the scale of the entire 
cluster to the scale of a single particle. Between these two extremes, 
there is no typical length scale for gaps, nor for any other feature of 
the cluster geometry. The absence of a characteristic length indicates 
dilation symmetry. 

One finds quantitative evidence for this symmetry by drawing a 
sphere of radius R around an arbitrary point on the cluster and 
counting the number of particles, N(R), lying within that sphere. 
On average 

where D is about 1.7 (1). The same value of D appears under a 
variety of experimental conditions and for radii R ranging from 
about the size of a particle to about that of the whole cluster. The 
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simple power-law behavior is the only form allowed by dilation 
symmetry. The parameter D varies from one type of fractal to 
&other; it is cdled the fractal dimension.  his-term arises bv 
extension from the familiar examples of one-, two-, and three- 
dimensional materials (straight lines, smooth surfaces, and uniform 
solid objects), which are described by Eq. 1 with D equal to 1, 2, 
and 3, respectively. From Eq. 1 one sees that the average densitv of 
particles, p - N(R)/R~, within a fractal of size R varies as R'-~, 
where d is the number of dimensions of the physical space that 
contains the fractal (d = 3 or 2). Evidently, D is no greater than d, 
othenvise p would increase indefinitely as R increases. For fractals of 
D < d, as in Fig. 1, the average density becomes arbitrarily small as 
R increases. ~ & c e  these fractals are.inherentlv tenuous: svarselv 

, L  2 

connected objects, that span large regions of empty space. 
It is often helpful to imagine a fractal object embedded in a space 

of more than three dimensions (d > 3). (Just as three-dimensional 
space can be thought of as a stack of two-dimensional spaces-that 
is, planes-a four-dimensional space can be imagined as a stack of 
three-dimensional spaces, and so on.) Some aggregation processes 
become very simple to understand when they occur in an imagined 
space of many dimensions. 

A well-studied example of a fractal is the random-walk trajectory 
of a diffusing particle.-~t is well known that for such a walk of l? 
steps, the average distance traveled varies as R - LV1l2. Thus, by 
comparison with Eq. 1, we see that D = 2 for this structure. 
Random walks in higher space dimensions also have D = 2. Many 
other well-studied  example^ of fractals arise in equilibrium statistical 
mechanics (24-27). A distinguishing feature of the aggregates 
discussed in this article is that they are formed by irreversible 
processes and consequently are not in equilibrium. Nonetheless, 
evidence from theoretical work (28,29), computer simulations (30- 
33), and experiments (1, 7-9, 11-14, 34-37) shows that these 
aggregates are fractals, with values of D between 1.5 and 2.5. 

Another important simplification in the description of aggregates 
is that they appear to be treelike, that is, they have essentially no 
large loops (28-37). (This is not obvious from the projected view in 
Fig. 1.) Suppose we measure the length L(r) of the (single) 
connecting path along the aggregate between two points on it at 
spatial separation r. We expect to find, on average 

Again, this simple power-law dependence is the only form consist- 
ent with dilation symmetry. For the random walk mentioned above, 
6 = 2. The exponent 6 complements D by providing information 
about the geometry of a treelike fractal aggregate: the larger 6 is, the 
more tortuous the pathway between any two points. From 6 one can 
predict how transport processes, such as electrical conduction or the 
diffusion of a particle, are modified when constrained to take place 
on the structure (38-42). Another unusual property of a fractal 
aggregate, which also depends on 6, is its elastic behavior (43, 44). 
As the size of an aggregate increases, it becomes less and less rigid, 
ultimately attaining a floppy state in which the branches are 
completely flexible beyond a certain length (44-46). 

Fractal aggregates m o d 5  external phenomena in the surrounding 
space in a characteristic way. A conducting fractal modifies the 
electric field around it; an adsorbing fractal modifies the local 
concentration of a diffusing species; and a fractal immersed in fluid 
modifies the surrounding flow. The basic laws governing these 
external orocesses can be exvressed solelv in terms of the fractal 
dimension D. As an example, we consider the interaction of a fractal 
aggregate with a ray of light. We imagine a tiny light source 
somewhere in the middle of the fractal and ask what is the 
probability that it will be visible from a given point outside. This is 
simply unity minus the probability that the light ray from the source 

Fig. 1. An aggregate of 100-A gold particles formed irreversibly in colloidal 
suspension. [Courtesy of M. Y. Lin and D. A. Weitz, Exxon Research and 
Engineering Co.] 

to our eye intersects the aggregate. A similar problem concerns the 
escape of a diffusing particle, or random walker, from an absorbing 
cluster. If the particle is released from the interior of the cluster, its 
probability of escape is unity minus the probability of intersection 
between the cluster and an infinitely long random walk. 

Questions concerning these intersection probabilities are readily 
answered in terms of the fractal dimension. Let us define the mean 
number of intersections M I 2  (R) between two fractals 1 and 2, each 
of which has a radius ofR and each of which is placed independently 
of the other in the same region of space. Then it can be shown (23) 
that 

M~~ - RDI ID,-d (3) 

If the power of R is negative, the probability of intersection 
decreases indefinitely as the size R of the fractals increases. (This is 
possible because a very large fractal consists almost entirely of empty 
space.) Thus, in three dimensions, a light ray (D2 = 1) almost 
always emerges from a sufficiently large aggregate, provided this 
aggregate has a fractal dimension of D l  < 2. In this case the two 
structures are "mutually transparent." 

On the other hand, a random walker (D2 = 2) will escape from a 
very large fractal (in three dimensions) only if the large fractal has a 
dimension D l  less than unity; this is impossible for a connected 
aggregate. Thus a random walk trajectory and an aggregate are 
"mutually opaque" in three dimensions. Similarly, a diffusing parti- 
cle approaching an absorbing fractal o fD > d - 2 from the exterior 
is almost always absorbed; the concentration of a solution of such 
particles is strongly depleted in the interior of the region spanned by 
the fractal. This result is surprisingly powerful when stated in more 
mathematical terms. In the space around an absorbing fractal of size 
R, the local concentration u(r) obeys the steady-state diffusion 
(Laplace) equation 

The boundary conditions are u = 0 on the fractal itself, and u = u,, 
a constant, at infinity. Since u is strongly depleted in the interior 
region, the external field is similar to that of a perfectly absorbing 
sphere with a radius of about R. 

Similar principles apply to the description of the hydrodynamic 
interactions of a fractal. In this case, the velocity v(r) of a fluid 

SCIENCE, VOL. 232 



Fig. 2. Viscous fingerin pattern 
formed when air displaccs?iquid ep- 
oxy in a two-dimensional porous 
medium (a monolayer of packed 
glass spheres sandwiched between 
glass plates). [From (9 ) ,  courtesy of 
the American Physical Society] 

moving at a low flow rate (low Reynolds number) in the vicinity of a 
suspended aggregate obeys a law that is like Eq. 4 and that has 
similar boundary conditions. The fractal absorbs the momentum of 
the fluid and strongly depletes the flow throughout the interior. The 
exterior velocity profile is like the flow around a hard sphere with a 
radius of about R. Thus the fractal diffuses, sechments, and increases 
the overall viscosity of a fluid as though the fractal were a hard 
sphere. 

The concept of opacity may be used to treat the thermodynamics 
of a solution of aggregates. [A suitable solution can be made by 
stopping the gold aggregation process described in (1) in mid- 
course.] Two fractals are opaque to each other when they have 
D > dl2 (as seen from Eq. 3 with Dl  and D2  equal to D). In this 
case, the osmotic pressure of a dilute solution of these aggregates in 
contact with a semipermeable membrane is comparable to what it 
would be if these were solid spheres of radius R. This result arises 
because configurations in which mutually opaque fractals interpene- 
trate significantly are rare. 

Thus, to a considerable extent, a fractal aggregate interacts with 
external fields as though it were a solid object. This applies even 
though the average density within a large fractal of D < d may be 
arbitrarily small. (Of course, such a fractal cannot behave like a solid 
object in every respect. For example, by increasing the concentra- 
tion, a solution of mutually opaque aggregates can be forced to 
interpenetrate strongly, unlike a real solution of hard spheres.) 

Aggregation Cluster by Cluster 
At any stage during the colloidal aggregation process that leads to 

the cluster of Fig. 1, a typical collision is between two clusters of 
comparable size. The aggregation occurs "cluster by cluster." The 
final structure of the aggregates depends on the microscopic phe- 
nomeha that control an individual aggregation event between two 
clusters. One possibility is that the rate-limiting step in the process is 
the diffusive a ~ ~ r o a c h  of the two clusters before collision. This 

I I 

condition will hold for colloidal systems in which the aggregates 
move predominantly by Brownian motion and stick immediately 
and irreversibly to one another on first contact. Another possibility 
is that the clusters approach one another along straight-lhe (ballis- 
tic) trajectories, but still stick with certainty on contact. This 
mechanism occurs for aggregation in a vacuum or in colloidal 
systems under strong sedimentation. A third possibility is that the 
rate-limiting step is not the diffusive or ballistic approach of the 
clusters, but a local reaction governing the sticking event itself. In 
this reaction-limited regime, wheri two clusters collide, there is only 
a small probability that they will stick together. 

In all three of the above cases, a more detailed analysis of the 
aggregation kinetics confirms that at each stage in the process the 
typical collision is between two clusters of roughly comparable size 
(47-53). A simple, solvable model embodying this idea is the 

Fig. 3. Schematic of a hierarchical 
aggregation process. (Note the over- 
lap of particles in the final cluster, 
which is permitted in the ghost 
model. ) 

"hierarchical ghost" model of Ball (28). In this model, pairs of single 
particles are linked to form dimers oriented in all directions. A pair 
of these dimers is selected at random and a particle of each is linked 
at random. In this way an ensemble of four-particle clusters is made. 
Then arbitrary pairs of these clusters are linked to make an ensemble 
of eight-particle clusters, and so forth (Fig. 3). This prescription 
preserves the treelike connectivity seen in real aggregates. One 
important interaction is omitted, however; at every stage, the 
constituent particles of a cluster are allowed to overlap in space. If 
these particks are solid, this is unrealistic. We discusslater the role 
of this neglected "excluded volume" effect. 

The fractal dimension relating the mass of an aggregate to its 
radius is easy to calculate in this model (28). We define g~ as the 
average number of bonds along the connecting pathway between 
two particles on an N-particle cluster. From this gN we can find the 
corresponding average g2, for a 2N-particle cluster made from two 
N-particle clusters, A and B. For two particles chosen at random on 
the 2N-cluster there is a 25% chance that they both belong to the A 
cluster and a 25% chance that they both belong to the B cluster; in 
either case, the average distance is gN. A 50% chance remains that 
one of the chosen particles belongs to A and the other to B. Clearly, 
the junction paint between the two subclusters is itself a randomly 
chosen point on cluster A and cluster B. Hence the average number 
of bonds from each chosen particle to this point is g ~ .  Therefore, in 
this third case the average number of bonds between the two 
particles is 2gN. Takm the three cases together, one finds 9 2 ~  = 312 F gN. Thus gN - 2Vlog( i2f'10g(2). Since all sequences of bonds are 
random walks (8 = 2), the average radius R of a cl~ster  of N 
particles obeys R - gN1I2. Hence N - lIDg, where D, = 210g(2)1 
log(312) = 3.4 (28). 

The main flaw in the hierarchical ghost model is neglect of the 
excluded volume effect. To account for this, we may modify the 
model as follows. The two subclusters are linked as before, but the 
combined cluster is then examined for pairs of overlappirg particles. 
If there are any of these pairs, the cluster is discarded. This version of 
the model (54) describes the reaction-limited aggregation of equal- 
mass clusters. The importance of the excluded volume effect can be 
understood by again applying the concept of opacity described after 
Eq. 3. The excluded volume interaction of two clusters of fractal 
dimension D is statistically important only if they are mutually 
opaque, that is, if D > d12. If, instead, the clusters are mutually 
transparent (D < dl2), then, even if constrained to touch at a point, 
they are unlikely to have a significant number of overlapping 
particles. This means that the neglect of the excluded volume effect is 
justifiable, and the ghost model is essentially correct, for space 
dimensions d > 20, = 6.8, but not for d < 20,. 

Other variants of the hierarchical model describe growth of 
diffusing (55) or of ballistically moving (18, 56) clusters (in each 
case with immediate sticking on contact). In the diffusive version, 
the two clusters are chosen, placed at a large distance, and allowed to 
diffuse until they touch (55). They are then swck permanently 



Fig. 4. Results for the 
3,5 - fractal dimension D of 

cluster-cluster aggregates, 
as given by computer 3.0 - 
simulation on hierarchi- 
cal models: rcaction-lim- 
ited (0), ballistic (A),  

, 2'5 - 
and diffusive (V) (54- 
56, 59). In each case the 2.0 - 
solid symbol is the exact 
result in high space di- 
mensions (28). Squares .5 

- 

denote nonhierarchical 
computer simulations in I .O 
the reaction-limited re- o 2 4 6 8 1 0  

gime (58). Nonhierar- d 

chical results for the bal- 
listic (57) and difhsive (31, 32, 57) cases, in two and three dimensions, lie 
very close to  the corresponding hierarchical values. Experimental data for 
diffusing and reaction-limited clusters in three dimensions are denoted by x 
and +, respectively (1, 34). 

together by a rigid bond. Equivalently, one may choose one particle 
on each subcluster and link these to form the aggregate, as in the 
ghost model. But then one of the subclusters is detached and made 
to execute a random walk to infinity. If the two subclusters intersect 
at any time during this walk, the combined cluster is discarded. The 
opacity argument now applies to one subcluster and the path swept 
out by the other. This path is an object constkcted by replacing 
every site of that subcluster by a random walk; such an object has a 
fractal dimension equal to that of the subcluster plus two. For this 
process then, the ghost approximation is justified for 
d > 20, + 2 = 8.8. The corresponding criterion in the bakstic case 
is d > 20, + 1 = 7.8 (28). 

In two and three dimensions-far from the high space dimensions 
in which the ghost model is valid-we expect the excluded volume 
effect to play a major role. When two N-site clusters are joined 
together, the resulting 2N-cluster will almost surely be discarded 
unless the junction point is near the periphery of both subclusters. 
Hence the size R of the combined cluster is on average larger than in 
the ghost model. Doubling the mass thus increases the size by a 
larger factor than before; accordingly, D is smaller than D,. The 
reduction in D is most marked for the diffusion-limjted case: two 
clusters approaching one another with random-walk trajectories are 
likely to make their first contact at a point that is very near an 
exposed tip on each of the clusters. If the approach is ballistic, it is 
more likely that partial interpenetration will occur before sticking. 
For reaction-limited aggregation this is even more likely, and the 
reduction in D should be the least for this case. Also, since b e  
excluded volume effect is small for high space dimensions, the fractal 
dimension D of an aggregate made by any given mechanism should 
increase with the space dimension d in which it was made. These 
trends are confirmed by computer simulations and experiments 
(Fig. 4). Values of D lie between 1.4 and 1.6 in two dimensians, 
and between 1.6 and 2.2 in three. 

A defect of the hierarchical models so far discussed is the 
assumption that colliding clusters have exactly equal mass. In reality, 
the reacting masses are taken from a certain statistical distribution, 
which can be calculated in detail by studying the kinetic equations 
governing the aggregation process (47-53). This effect can be 
accounted for in a ghost model (29); it is found to increase the 
fractal dimension of the clusters somewhat (from 3.4 to about 3.7). 
For lower space dimension one also expects an increase iri D, since, 
even when the excluded volume effect is strong, a small cluster can 
penetrate into the gaps in a bigger cluster before a sticking event 
occurs. However, the difference in D seems to be a measurable one 
only in the reaction-limited case (57-59). 

Another effect omitted throughout the above discussion is the 
annealing of the aggregate during its formation. As aggregation 
proceeds, the clusters eventually become so large that they start to 
flex significantly as a result of random thermal motion. At this time 
the arms of any given cluster are likely to come into contact; when 
they do so, they will stick. After a longer time, the resulting 
aggregates should be treelike at short distances, but should form a 
relatively well-connected weblike network, with increased D, at 
larger distances. A second annealing mechanism is the local rear- 
rangement of material at short length scales. This can cause a slow 
evolution of the cluster toward a state of lowest free energy. (If the 
particles attract one another, this is a compact clump with D = d.) 
These annealing effects may be important in many real aggregates. 

Aggregation Particle by Particle 
We now discuss clusters that are formed by the aggregation of 

particles one at a time. These processes can be classified according to 
how an incoming particle moves to join the cluster. The case where 
it does not move, but simply materializes at a random unoccupied 
site adjacent to the existing cluster. is known as the Eden mbdel " 
(60). The resulting structure has a rather uniform density, with a 
fractal dimension D = d, characteristic of a space-filling object (32, 
61 ) .  The same is true for ballistically moving particles (1 8, 62, 63). 

If, on the other hand, each particle executes a random walk to join 
the aggregate, a tenuous fractal structure of D < d results (Fig. 5) 
(32, 33). This diffusion-limited aggregation model (DLA) has been 
extensively studied by computer simulation. Values of the fractal 
dimension are D = 1 7 and D = 2.5 in two and three dimensions, 
respectively. The DLA model is the more interesting because of its 
relation to several random growth phenomena in nature. All these 
growth mechanisms are controlled by Laplacian fields. 

In DLA, the probability of growth at a given perimeter site next 
to the cluster ii the probabili& that a random walker, starting at 
some point far from the cluster, visits this site before visiting any 
other perimeter site. The probability u(r) that the incoming particle 
is at point ?obeys the steady-state diffusion equation (Eq. 4), where 
u is some constant at infinity and is zero on the perimeter sites. The 
probability of adsorption onto a given perimeter site is proportional 
to the field u adjacent to that site. The relative rates of growth are 
thus controlled by a Laplacian field. The same equation is obeyed in 
two-fluid flow in a poroys medium (6), when a low-viscosity fluid is 
pumped into a region occupied by high-viscosity fluid. The Lapla- 
cian field is the pressure; its gradient (times a mobility coefficient) is 
the local flow velocity. The fluid-fluid interface displays a viscous 
fingering instability (64). When the difference in viscosities is very 
large, 'such flow can lead to a tenuous fractal interface with scaling 
properties similar to those of DLA (compare Fig. 2 with Fig. 5) (7- 

9) .  
Diksion-limited solidification 1s another phenomenon of the 

same type (10, 65). Here the d iks ing  field may be heat or a 
chemical species; the local growth rate is proportional to the flux of 
this field. Experiments show that this process can also lead to a 
tenuous structure with fractal behavior consistent with two- or 
three-dimensional DLA (11, 12). Finally, the electrical breakdown 
of an insulating medium is controlled by the (Laplacian) electrostat- 
ic potential (14, 32). The connection with the DLA model is here 
less direct, however, since the growth rate need not depend linearly 
on the gradient of the field. Despite this, the patterns formed in 
breakdown bear a striking qualitativc resemblance to DLA (14). 

Although DLA clusters share certain morphological features with 
those arising in cluster-by-cluster aggregation (such as the absence 
of loops), there are nonetheless several important differences. For 
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Fig. 5 .  Computer-generated picture 
of a DLA cluster grown in two 
dimensions. [From (32),  courtesy of 
the American Physical Society] 

example, the length L(r) of a connecting path seems to be propor- 
tional to the geometric distance r (that is, 8 = 1) in all space 
dimensions (66). A systematic theoretical understanding of this and 
other features of the DLA structure is lacking. One reason for this 
lack of understahding is that a simple description of DLA in high- 
dimensional space has not been discovered. Rather, it has been 
shown (63, 67) that in all space dimensions d, the fractal dimension 
obeys D r d - 1. This behavior contrasts with cluster-by-cluster 
aggregation in which D attains a finite limiting value in high space 
dimensions. 

Despite these difficulties, it is possible to get some qualitative feel 
for the highly ramified structure of a DLA cluster from a more 
detailed consideration of the growth process. First, each part of the 
fractal is opaque to the difising field, so if some branch of the 
cluster grows slightly ahead of its neighbors, that branch tends to 
catch all the incoming particles and causes the neighboring limbs to 
fall farther behind. This instability leads to fingerlike growth, in 
which most of the incoming particles land near the outermost tips of 
the cluster (68). A second ingredient in the DLA growth pattern is 
the presence of microscopic noise or randomness. In the case of 
aggregation or deposition, the noise is inherent in the discrete 
randomness of the incoming particles. In the case of viscous 
fingering or dielectric breakdowh, the noise arises because of 
disorder in the underlying porous material or insulator. The noise 
causes branching at the tips of the growing structure. The newly 
formed branches compete for incoming particles as outlined above; 
thus there is always a dynamic balance between branching events at 
the local level and the gradual eclipse of most branches in the 
competition for the incoming particles. 

These balancing effects can be varied in several interesting ways to 
produce structures related to ordinary DLA. First, one can intro- 
duce a "surface tension," which inhibits fingering and tends to damp 
out fluctuations in the density of incoming particles. This process is 
equivalent to allowing some particles to ree~apo~ate from the cluster 
after deposition and diffuse to a new site (69). It thus may be 
thought of as ~ annealing effect. Second, the large-scale shape of 
DLA clusters is unexpectedly sensitive to various forms of anisotro- 
py. For example, clusters grown on a square lattice develop an 
overall crosslike shape that becomes more and more pronounced as 
the size increases (70-73). DLA also appears to be unstable with 
respect to anisotropy in the microscopic laws governing the sticking 
of particles to the cluster (72). 

Conclusions 
In this article we have given an overview of recent advances in the 

understanding of fractal aggregates. Inevitably, much important 
work has not been discussed. For example, in the field of cluster-by- 
cluster aggregation, progress has been made toward developing a 

detailed understanding of aggregation lunetics, which has led to 
predictions of the cluster size distribution and its dvnamical evolu- 
tion under various conditions 148-53). We have not discussed work 
on colloidal aggregation at high concentrations or the related 
phenomenon of kinetic gelation (19-22). While progress continues 
in these areas, it seems that the basic ideas underlying cluster-by- 
cluster aggregation are qualitatively understood. 

In contrast, our understanding of particle-by-particle aggregation 
is comparatively incomplete. Although progress has been made with 
the Eden model (74-76) and in the ballistic case (63, 7 3 ,  results 
have been unsatisfactory in the case of DLA (and related processes) 
where growth is controlled bv diffusing particles or fields. Here we 
lack even a schematic model to show ;hi, this type of growth leads 
to a scale-invariant structure. Furthermore, DLA shows surprising 
anisotropy effects and sensitivity to noise that have not yet been 
explained. The solutions to these puzzles may hold the key to 
uiderstanding a wide class of natural phenomena that produce the 
distinctive ramified patterns of DLA. Further progress in the 
understanding of DLA map also elucidate other irreversible process- 
es involving the interaction of large numbers of particles. 
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Mechanisms of Memory 

Recent studies of animals with complex nervous systems, 
including humans and other primates, have improved our 
understanding of how the brain accomplishes learning 
and memory. Major themes of recent work include the 
locus of memory storage, the taxonomy of memory, the 
distinction between declarative and procedural knowl- 
edge, and the question of how memory changes with 
time, that is, the concepts of forgetting and consolidation. 
An important recent advance is the development of an 
animal model of human amnesia in the monkey. The 
animal model, together with aewly available neuropath- 
ological information from a well-studied human patient, 
has permitted the identification of brain structures and 
connections involved in memory functions. 

M OST SPECIES ARE ABLE TO ADAPT IN THE FACE OF EVENTS 

that occur during an individual lifetime. Experiences 
modify the nervous system, and as a result animals can 

learn afid remember. One powefil strategy for understanding 
memory has been to study the molecular and cellular biology of 
plasticity in individual neurons and their synapses, where the 
changes that represent stored memory must ultimately be recorded 
(1). Indeed, behavioral experience directly modifies neuronal and 
synaptic morphology (2). Of course, the problem of memory 
involves not only the important issue of how synapses change, but 
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also questions about the organization of memory in the brain. 
Where is memory stored? Is there one lund of memory or are there 
many? What brain processes or systems are involved in memory and 
what jobs do they do? In recent years, studles of complex vertebrate 
nervous systems, including studies in humans and other primates, 
have begun to answer these questions. 

Memory Storage: Distributed or Localized? 
The collection of neural changes representing memory is com- 

monly known as the engram (3) ,  and a major focus of contemporary 
work has been to identify and locate engrams m the brain. The brain 
is organized so that separate regions of neocortex s~multaneously 
carry out computations on specific features or dimensions of the 
external world (for example, visual patterns, location, and move- 
ment). The view of memory that has emerged recently, although it 
still must be regarded as hypothesis, is that information storage is 
tied to the specific processing areas that are engaged durmg learning 
(4, 5 ) .  Memory is stored as changes in the same neural systems that 
ordinarily participate in perception, analysis, and processing of the 
information to be learned. For example, in the visual system, the 
inferotemporal cortex (area TE) is the last in a sequence of visual 
pattern-analyzing mechanisms that begins m the striate cortex (6). 
Cortical area TE has been proposed to be not only a higher order 
visual processing region, but also a repository of the visual memories 
that result from this processing (4). 

The idea that information storage is localized in specific areas of 
the cortex differs from the well-known conclusion of Lashley's 
classic work (7) that memory is widely and equivalently distributed 
throughout large brain regions. In his most famous study, Lashley 
showed that, when rats relearned a maze problem after a cortical 
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