
Pattern Recognition Used to Investigate 
Multivariate Data in Analvtical Chemistrv 

Pattern recognition and allied multivariate methods pro- 
vide an approach to the interpretation of the multivariate 
data often encountered in analytical chemistry. Widely 
used methods include mapping and display, discriminant 
development, clustering, and modeling. Each has been 
applied to a variety of chemical problems, and examples 
are given. The results of two recent studies are shown, a 
classification of subjects as normal 01. cystic fibrosis 
heterozygotes and simulation of chemical shifts of car- 
bon-13 nuclear magnetic resonance spectra by linear 
model eqtlations. 

R EVOLUTIONARY CHANGES HAVE TAKEN PLACE IN ANALYTI- 

cal chemistnl over the past 20  years. With sophisticated 
instrumentation-commonly under computer control- 

chemists can routinely gather great quantities of data that character- 
ize the systems being investigated (1 ). Armtd with these capabilities, 
analytical chemists have attacked ever more coniplex problems, for 
example, environmental monitoring and biolcgical analyses. T o  
analyze the data generated during such complex experiments, multi- 
variate data analysis techniques must be used. Multivariate methods 
used by analytical chemists include pattern recognition, classifica- 
tion, discriminant analysis, clustering, modeling, and others. 

Pattern recognition methods have been applied t o  a wide variety 
of chemical problems over the past 15 years, and a number of books 
(2-4) and reviews (5-7) have appeared. The biannual Reviews issue 
of Analytical Chemistry includes a review on  chemometrics with a 
section on pattern recognition (8 ) .  

The general objective of pattern recognition 5 tudies is t o  predict 
an obscure property of an object (its origin or the class to  which it 
belongs) on  the basis of a set of indirect measurements. T o  be 
suitable, a data set defining a problem must fulfill the follou~ing 
conditions. The data set must be well designed. that is, it must be 
homogeneous and must not be dominated by extraneous effects. For 
example, experimental variations must be conti~olled or othemise 
accounted for, and experimental artifacts must t ~ e  minimized. Each 
class of interest must be well represented in the data set. For each 
object a number of variables must be available that are relevant to  
the classification problem at hand. 

Data Representation 
The data to  be studied by pattern recognition methods are 

represented in a particular way-as points in 1 high-dimensional 
space. A single observation is represented as 

where xi is an individual variable, and d is the number of dimensions 
of the space and corresponds to  the number of descriptors (variables 
or measurements) that are available for each object or experiment. 
Many types of chemical data can be represented in this way, and 
some examples from recent papers include (i) particulate samples of 
polluted air characterized by their trace metal concentrations, (ii) 
trace level concentrations of organic acid in human body fluids, and 
(iii) molecular structures of antitumor drugs. Data represented in 
this manner cannot be examined visually, so pattern recognition 
methods have been developed to investigate problems in this 
domain. 

A basic assumption is that the degree of similarity between pairs 
of objects o r  experiments will be reflected by the proximity of the n- 
dimensional points representing those objects o r  experiments. The 
through-space distance between pairs of points is inversely related to  
their degree of similarity. 

An aspect of data representation that is not strictly part of the 
pattern recognition analysis, but definitely affects the results ob- 
tained, is preprocessing and normalization of the data. The natural 
units for the variables involved in a pattern recognition analysis 
problem are often different. For example, one variable in analysis 
could have a range of 0.2 to  2 (for example, the percentage by 
weight of carbon in steel) and another a range of 2 t o  1 0  ppm (a 
trace constituent). The normalization operation called autoscaling is 
often used to convert each raw variable in a data set to  a standard- 
ized variable with zero mean and unit variance. A recent paper 
presents a discussion of the effects of normalizations on  pattern 
recognition analyses (9). 

Pattern recognition studies often involve a set of data called the 
training set, a set of observations with known class memberships. 
The discriminants or predictive models are developed from the 
training set by what are called supervised methods. From the 
training set, relations that tie together the available variables and an 
obscure property of the observations are found. Additional data are 
used for assessing the predictive ability of the discriminants o r  
models-a process called validation. Alternatively, some pattern 
recognition methods use a set of data without class membership 
labels; they seek relationships among the data directly by unsuper- 
vised methods, such as clustering. 

Methods 
Pattern recognition methods can be divided into the follou~ing 

major categories (10): mapping and display, discriminant develop- 
ment, clustering, and modeling. 

Mappin. and display. The multidimensional data under study can 
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be displayed as a graph for direct viewing. This allows the scientist 
to seek visual patterns in the simplified two-dimensional display. A 
number of useful and imaginative graphical techniques have been 
developed for direct display of multivariate data, for example, 
metroglyphs, linear and circular profiles, and Andreus plots (11). A 
circular profile consists of a polygonal line connecting the points 
located on evenly spaced rays, where the distance from the center 
represents the value for each of the variables. These display methods 
have not been widely used in chemistry to date. 

An alternative strategy is to map the multidimensional data points 
onto a two-dimensional plane and then display the results. One 
common way for selecting a suitable plane is to use eigenanalysis to 
find the principal components (PC's) of the data set. The data set 
being transformed is represented by an n x d data matrix X with 
elements xij, where n is the number of objects and d is the number of 
variables. Let p,k be the mean value for variable k .  Then the 
individual elements (cjk) of the d x d covariance matrix are defined 
as 

The eigenvectors and eigenvalues are extracted from C by diagonal- 
ization. The two eigenvectors corresponding to the tcvo largest 
eigenvalues represent the two orthogonal axes with greatest vari- 
ance. These two PC's define a plane, which can be thought of as a 
window into the high-dimensional data space. The high-dimension- 
a1 points are mapped onto the plane defined by the two PC's, and 
then the plane is displayed. The resulting plot is usually called a PC 
plot. Each point in the PC plot is a linear combination of the 
original variables. This mapping operation has been called the 
Karhunen-Lokve transformation in the pattern recognition litera- 
mre (10). 

Nonlinear mapping methods develop a correspondence where 
each point in the original data set is mapped onto a point in a special 
two-dimensional plane. The interpoint distances in the two-dimen- 
sional plane are intended to mimic the interpoint distances in the 
original space, but such a mapping inevitably involves error. Opera- 
tionally, nonlinear mapping is done by iteratively minimizing an 
error function by means of standard function-minimization tech- 
niques, for example, steepest descent. 

Discriminant development. Many problems studied by pattern 
recognition involve category data. That is, each observation or event 
is tagged by its membership in a discrete category, for example, 
petroleum type, smelter that is the source of particulate emissions, or 
the clinical status of a patient. In such cases, pattern recognition 
methods can be used to examine the points of the data set as a whole 
to see whether they can be subdivided into meaningful categories. 
Placing a discriminant surface through the space and observing that 
members of one category are on one side separated from members of 
another category is one way to gain understanding of a data set. 

Both parametric and nonparametric methods are used for the 
development of discriminants. Paramerric pattern recognition meth- 
ods use the mean vectors and covariance matrices (or other statistical 
measures) describing the members of the two classes as their basis 
for development of discriminants. An example of a parametric 
method for the development of discriminants is the Bayesian 
method, which is also known as linear discriminant analysis (LDA). 
The linear discriminant function developed from this approach is 

where s is >O for one class and s is <O for the other class, X is the 
pattern being classified, pk is the a priori probability for class k, C is 
the covariance matrix of the data set, and mk is the mean vector for 

class k. In this approach a multivariate normal distribution for the 
data and equal covariance matrices for the members of the nvo 
classes are assumed. 

Nonparametric pattern recognition programs develop their dis- 
criminants from the training set of patterns to be classified rather 
than from statistical measures of their distributions. Examples of 
nonparametric methods for the development of discriminants in- 
clude error-correction feedback linear learning machines (percep- 
trons) (121, iterative least-squares methods (3, 13), and simplex 
optimization methods of searching for separating classification 
surfaces (14). Each of these methods searches for a separating 
discriminant by an iterative procedure designed to improve classifi- 
cation performance as experience increases. Error-correction feed- 
back directly corrects errors when they are committed, whereas 
iterative least-squares and simplex methods minimize error functions 
iteratively. 

The classification results obtained with linear discriminants are 
strongly affected by the ratio of the training set size, n, and the 
number of descriptors per observation, d. This point has been 
discussed (10, 12) and examined for real cases in recent papers (15). 
The probability of correctly classifying 100% of the members of a 
training set due to chance is low for nld > 3, but substantial 
classification success above the random expectation of 50% can still 
be obtained. For example, for nid = 5 the probability is one-half 
that 77% of the members of the training set will be correctly 
classified, as a result of chance alone. These results place limits on the 
problems that can be attempted by pattern recognition problems, 
and they provide measures by which classification results can be 
judged. 

Clustering methods. Clustering methods are unsupervised, in that 
class labels are not used. These methods attempt to determine 
structural characteristics of a set of data by organizing the data into 
subgroups, clusters, or  hierarchies. Hierarchical clustering is a 
widely used method, by which one measures the distances between 
all pairs of points, identifies the nearest pair, combines them into a 
new point,midway between them, recalculates the distances from 
this new point to every other point in the data set, finds the new 
nearest pair, combines them, and so on, until all points have been 
linked. The resulting structure can be displayed as a dendrogram, 
which shows at what degree of similarity each pair of points was 
combined. Clustering methods have been applied to many types of 
data (16). These methods are exploratory and are used in seeking 
insights and suggestions contained in large data sets. 

Modeling. wethoh. The construction of mathematical models can 
be used for pattern recognition. The methods are closely allied to 
statistical modeling. A well-known method is sof? independent 
modeling of class analogy (SLUCA) (7, 17), which models the 
members of each class separately in terms of PC's. Unknowns to be 
classified are fitted to the class models, and the classifications are 
made according to the goodness of the fits. An unknown pattern is 
assigned a probability for each class, and, if all probabilities are low, 
then the pattern may be an outlier in that it belongs to none of the 
original classes. 

The K-nearest neighbor method is a direct classification scheme: 
an unknown pattern is assigned to the class to which the majority of 
its nearest neighbors belong. 

Selected Applications of Pattern Recognition 
Application studies of chemical problems based on the use of 

pattern recognition techniques have been reported In many areas (2, 
3, 5 4 .  In this section I will summarize some areas of application 
and provide references to a sampling of the primary publications. 
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Fig. 1. Representative PyGC from the CF hetetozygote study. The numbers marking each peak were assigned on the basis of the peak-matching sofnvare. 
The major peaks defining the regions are those with assignments that are multiples of 100. [Reprinted from (33) with permission of the American Chemical 
Society] 

Spectral data analysis. The elucidation of chemical structure infor- 
mation from spectral data is a long-standing problem of chemistrp. 
This is the area first studied and most intensively studied through 
the use of pattern recognition. Studies have been reported on mass 
spectra (18), infrared spectra (19), nuclear magnetic resonance 
(NMR) spectra (20), and electrochemical data (21). 

Classijcation of complex mixtures. Materials or mixtures character- 
ized by many measurements can be classified into categories, for 
example, origin, by pattern recognition methods. ~ x & n ~ l e s  of 
identification or classification problems drawn from diverse areas are 
found in the literature: manufacturers and grades of papers (22), 
quarry sites of archeological artifacts (23), sources of atmospheric 
particulate matter (24), classification of wines (25), determination of 
the origin of olive oil samples (26), identification of crude oil 
samples ( 2 3 ,  selection of adsorbates for chemical sensor arrays (28), 
determination of the clinical status of patients from urine samples 
(29), classification of cancer cells (30), the study of acute lymphocyt- 
ic leukemia (31), classification of human brain tissues (32), detection 
of cystic fibrosis heterozygotes (33), and the classification of bacteria 
(34). 

Prediction of properciesj%om molecular structure. Pattern recognition 
and associated multivariate methods can be used to predict physico- 
chemical properties of compounds. Structural descriptors used can 
be ph~~sicochemical parameters or calculated structural descriptors. 
A few representative structure-property studies are as follows: gas 
chromatographic retention indices (35), liquid chromatographic 
retention indices (36), and chemical shifts of I3c NMR spectra (37, 
38). 

Molecular structure-biological activity relations. Studies of the appli- 
cation of pattern recognition to the problem of searching for 
relations benveen molecular structure and biological activity have 
been reported. A large fraction of this type of research is involved 
with the generation of appropriate descriptors from the molecular 
structures available. Areas of study include drug structure-activity 
relations (SAR), studies of chemical cornmunic~nts (for example, 
olfactoy stimulants), and studies of structure-toxicity relations. 
Early applications of pattern recognition to drug design have been 
reviewed by Kirschner and Kowalski (39); a book describing one 
approach to SAR research has appeared (4). A few representative 
SAR studies include a study of 200 drugs for anticancer activity 

(40), a study of 9-anilinoacridines for antitumor selectivity (41), 
studies of drugs of accepted therapeutic value (42), structure- 
carcinogenic potential (43), olfactory quality of organic compounds 
(PZ), and structure-carcinogenic potential of polycyclic aromatic 
hydrocarbons (45). 

Cystic Fibrosis Heterozygotes Versus 
Normal Subjects 

Profiling of complex biological materials with high-performance 
chromatographic methods is an active research area with a large and 
growing literature (6, 29-31, 46): Such chromatographic experi- 
ments often yield chemical profiles containing hundreds of constitu- 
ents, which are chemical- fingerprints of t h e  complex samples. 
Analysis of such profiles depends on the use of multivariate meth- 
ods, and pattern recognition techniques have been useful. 

Pattern recognition methods have been used to distinguish 
between indivihuals in a particular diseased state and normal 
individuals (29, 31, 32) on the basis of fingerprint chromatographic 
data. By these methods the researcher attempts to classifi a sample 
according to a specific property (for example, diabetic versus 
normal) from measurements that are indirectly related to that 
property. An empirical relation is then derived from a set of data for 
which the ~ r o p e ~ t v  of interest is known and the measuiements are 

L L ,  

available (a training set). Such a relation or classification rule may be 
used to infer the presence or absence of this property in objects that 
are not part of the original training set. 

One recently reported study involved the application of pyrolysis 
gas chromatography and pattern recognition methods to the prob- 
lem of identieing carriers of the cystic fibrosis (CF) defect (6, 33, 
47). The biological samples used in this experiment were 48 
cultured skin fibroblasts grown from 24 samples obtained from 
parents of children with CF and from 24 presumed normal donors. 
The pyrolyzed fibroblasts were analyzed in triplicate on fused silica 
capillay columns with temperature programming, typically yielding 
pyrochromatograms (PyGC's) with more than 150 resolved peaks 
(Fig. 1). Each PyGC was normalized on the basis of the total area of 
its peaks. 

The 144 PvGC's were standardized and peak-matched by means 
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Principal  component 1 

Fig. 2. Principal components (PC) plot of the 144 PyGC's as represented by 
six peaks. The squares represent the C F  heterozygotes, and the triangles 
represent the normal subjects. Both PC1 and PC2 are linear combinations of 
the original six PyGC peaks with coefficients determined by eigenanalysis of 
the covariance matrix of the original data. The nvo PC's represent 59% of the 
total variance of the data. Some separation is observed but considerable 
overlap is present. 

of an interactive computer program (47). Each PyGC was divided 
into 12 intenlals bounded by 13  prominent peaks that were present 
in every PyGC. The retention times of the peaks within the intenlals 
were scaled linearly for best fit with respect to a reference PyGC. 
The peak-matching procedure yielded 214 standardized retention 
time \vindon,s. The set of chromatographic data was autoscaled so 
that each peak had a mean of zero and a SD = 1 within the entire set 
of PyGC's. The training set thus consisted of 144 PyGC's of 214 
peaks each, a 144 x 214 data matrix. Our objective was to use 
pattern recognition analysis to  uncover relations buried in this mass 
of data that would support separation of the CF heterozygotes from 
normal subjects. 

T o  apply pattern recognition methods to this overdetermined 
data set, it was first necessary to select a feature by oblecti\e means 
that would reduce the number of peaks per PyGC to reduce the 
probabilinr of separation due to chance and that would render the 
Hna~ysis tractable. The data set contains 48 independent PyGC's, so 
we analyzed at one time 16 peaks at most to keep the probability of 
separation due to chance at a low level. 

Experimental variables (cell culture, batch number, passage num- 
ber, donor gender, and chromatographic column identity) contrib- 
uted to the overall classification process. For example, one discrimi- 
nant function was developed on the basis of only the 12 peaks 
contained in intenla1 three. The C F  PyGC's were completely 
separable from the PyGC's of the presumed normal donors. Howev- 
er, when the points from this 12-dimensional space were mapped 
onto a plane that best represented the pattern space (the plane 
defined by the two largest PC's), we observed groupings related to 
chromatographic column identity. Furthermore, classifiers devel- 
o ~ e d  from these 12 oeaks vielded favorable classification results for 
skveral of the experikentai variables. The information pertinent to 
the pathological alteration characteristic of CF heterozygotes must 
be isolated from the large amount of qualitative and quantitative 
data resulting from experimental conditions that is also contained in 
the complex capillan PyGC's. 

We identified a set of six PvGC ~ e a k s  that se~arated the PvGC's of 
r I 

CF heterozygotes from those of presumed normal subjects on the 
basis of valid chemical differences. Then we analyzed the 65  peaks 
that were present in at least 90% of  the PvGC's. We assessed the 
usefulness of each of these 65  peaks alone for discrimination 

between PyGC's with respect to  gender, passage number, and 
column identity. We selected for further analysis 12 peaks that had 
better classification success rates for C F  versus normal subjects than 
for any other dichotomy. This procedure identified those peaks 
containing the mosc information about C F  versus normal subjects as 
opposed to the extraneous experimental variables. A classification 
rule developed from these 1 2  peaks by means of the I<-nearest 
neighbor procedure correctly classified 90% of the PyGC's in the 
data set. We used 1 ariance feature selection (3) combined with the 
linear learning machine and the adaptive least-squares methods (3, 
13) to remove six of the peaks found to be least relevant to the 
classification problem. A final set of six PyGC peaks remained. 

When we evaluated the ability of each of the six peaks individually 
to differentiate between the PyGC's of CF and normal subjects, 
classification succes,, rates ranged from 59 to 80%. A mapping of the 
six-dimensional space was done by means of the Karhunen-Loeve 
transform described above, and Fig. 2 shows a plot of the nvo PC's. 
While some tendency toward separation is evident, there is consider- 
able overlap between the classes. Classifiers were developed bv 
several routines fclr ~arametr ic  and nonoarametric discr imini t  
generation. The iterative least-squares method generated a discrimi- 
nant that misclassified only eight of the PyGC's (136 correct of 144, 
94%). A histogram shows the distances from the discriminant to 
each of the 144 Py(2C's and a scatter plot of these distances against 
the sequence numl~ers of the sample (Fig. 3) .  The discriminant 
divided the six-dimensional space into two regions, with 136 of the 
144 PvGc's located on the correct side. 

We assessed the contribution of the experimental parameters to  
the overall dichotornization power of  the decision function based on 
the SIX peaks by reordering experiments. The set of PyGC's was first 

0 
D i s tance  f r om d iscr iminant  

D i s t ance  f r om d iscr iminant  

Fig. 3. (a) Plot of the distance benveen each of the 144 PyGC's (as 
represented by six peaks) and the separating discriminant (x-axis), against the 
sequence number of the PyGC @axis). The squares represent the CF 
heterozygotes and tk,e triangles represent the normal subjects. Five CF 
heterozygote PyGC's are misclassified and three from normal subjects are 
misclassified. (b) Histogram showing the distribution of the distances. The 
small areas represent ,:he eight misclassified PyGC's. 
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reordered in terms of donor gender, and the classification results 
obtained were indistinguishable from random. When we did similar 
studies for passage number and column identity, comparable results 
were obtained. The results of the reordering tests suggested that the 
decision function based on the six peaks incorporated mainly 
chemical information to separate the PyGC's of the CF heterozy- 
gotes from those of the normal subjects. 

We tested the ability of the decision function to classifi a 
simulated unknown sample by a procedure known as internal 
validation. Twelve sets of PyGC's were chosen by random selection 
where the training set contained 4 4  triplicates and the validation set 
contained the remaining four triplicates (held-out set). Any particu- 
lar triplicate was present in only one validation set of the 12 
generated. Discriminants developed for the training sets were tested 
on the PyGC's that were held out. The average correct classification 
percentage for the held-out PyGC's was 87%. This same internal 
validation test was repeated except that members of the held-out sets 
included triplicate samples analyzed on the same column or grown 
in the same batch of growth medium. The average correct classifica- 
tion for the held-out PyGC's in this set of runs was 82%. Although 
the classification success rate of the decision function was dimin- 
ished, \ire obtained favorable results. 

The set of 144 PyGC's was also studied by other pattern 
recognition methods (6, 33). It was shown that the PyGC's did 
indeed contain a great deal of information relevant to separating 
normal subjects from CF heterozygotes. 

Carbon- 13 NMR Chemical Shifts 
Carbon-13 NMR spectroscopy is one of the most widely used 

methods for organic structure elucidation, because it provides direct 
information about the skeletal carbon atoms in a molecule. The 
observed chemical shifts of the peaks are directly related to  the 
environments of the carbon atoms, and each carbon center produces 
a peak. The development of computer-assisted methods for the 
interpretation of I3c NMR spectra is an active area of research (48). 
Methods for file searching (49), spectral interpretation (50), chemo- 
metrics approaches (51), and additivity of contributions (37, 38) 
have appeared recently. Empirical studies in this area are justified 
because theoretical methods have not yet fully elucidated the origin 
of chemical shifts. 

We have reported a project to  simulate 13C NMR shift (38). This 
research focuses on the simulation of 13c NMR chemical shifts bv 
linear model equations that relate the molecular environments of 
carbon centers to  their observed chemical shifts. The linear models 
have the following form 

where S is the predicted chemical shift of a given carbon center, x; 
are numerical descriptors, derived directly from the molecular 
structure, that encode structural features of the chemical environ- 
ment of the carbon atom of interest, b; are coefficients determined 
through multiple linear regression analysis of a set of experimentally 
observed chemical shifts from compounds with assigned spectra, 
and p is the number of descriptors contained in the model. 

The initial efforts focused on  designing, implementing, and 
testing the system, which provides the user with the capability (i) to  
enter and to store the structures of compounds and their associated 
I3C NMR spectra, and (ii) t o  build three-dimensional models of the 
compounds based on molecular mechanics. One can (iii) perceive 
unique and similar carbon centers within the compounds to  predict 
the number of expected I3c NMR peaks, and (iv) generate a wide 
variety of sophisticated carbon-center descriptors derived from the 

I I 
P r i n c i p a l  c o m p o n e n t  1 

Fig. 4. Principal components plot of the 470 unique carbon centers 
contained in the 31 hydrosy steroids. Five clusters of carbon centers are 
obscn~ed. The points in clusters 1, 2. 3, 3A. and 4 correspond to primary, 
secondar), tertiary. tcniary lvith attached hydrosyl, and quaternary carbon 
centers, respecti\rcly. 

topology and geometn of the structures. From that basis, it is 
possible (v) to  build and to evaluate linear predictive equations by 
means of multiple linear regression analysis and other multivariate 
statistical methods, (vi) to  search spectral libraries to evaluate the 
quality of predicted spectra compared to authentic spectra, (vii) to  
store and to manipulate models derived from different sets of 
compounds, and ( ~ ~ i i i )  to  choose which of many stored models to 
use for predicting the I3c NMR chemical shifts of the unique 
carbon centers in an unknown compound. The overall goal of the 
project is the de~~elopment of a minicomputer-based interactive 
system for the simulation of "C NMR spectra of high quality for a 
variety of molccular structural classes. 

Before a model is developed, the carbon centers in a set of 
compounds under investigation that are unique must be selected to  
facilitate removal of duplicate carbon centers that would unduly 
affect the statistical model building. We reported a practical method 
for assessing similarity (52) where the surroundings of each carbon 
center were represented by a six-dimensional vector whose terms 
represented the effects of  the environment within five bonds of the 
carbon center. Each term was deri\.ed from known effects of 
structural moieties on '"C NMR shifts in simple molecules. Since six 
variables cannot be viewed directly, \ye used PC plots, which 
showed strong clustering among carbon centers. This observation, 
coupled with other experiments, demonstrated the effectiveness of 
the similarity assessment method. 

In structure-property studies such as this one, a major focus of the 
work is the development of relevant structural descriptors, here for 
individual carbon centers. Several classes of descriptors have been 
developed: (i) simple topological descriptors include nearest neigh- 
bor counts, valency counts, and connectivin indices, all derived 
solely from the topology of the structures. (ii) Topological electron- 
ic descriptors include partial charges from sigma electrons on the 
carbon center of interest and nearby atoms. (iii) Geometrical 
descriptors are derived from the three-dimensional molecular mod- 
els, and they include counts of atoms within specified radial 
distances from the carbon of interest, energy parameters related to  
conformational strain energy, and distances from the carbon center 
to  other nearby atoms. Details regarding the calculation of these 
descriptors have appeared (53). 
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such mcthods  to stud!, complex data,  to seek obscure rdatjonshjps 
for classifiing objects o r  events into categories, or to build quantita- 
tive models for simulation. 
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Fig. 5 .  Simulated (a) and obscrved (b)  ''C NMR spectra of Sa-androstan- 
16-a-01. The standard error of the simulated spectrum is 0.885 ppm. There 
are 15 pcaks in each spectrum, and some pairs of pcaks are not distinguish- 
ably different on the scale of this plot. 

The computer s o h  arc system lvas used to develop linear predic- 
tive models for a set of 3 1 hvdroxv steroids (54). The 3 1 structures 
contained 589 carbon centers in all (neglecting alkyl side chains). 
When the carbon centers were each described by the six-dimensional 
representations of their surroundings and then displayed in a PC 
plot, Fig. 4 resulted. It  shelved the carbon centers forming five 
band-shaped regions. After elimination of duplicate carbon centers, 
\ve developed model equations for the sets of carbon centers 
comprising each band in Fig. 4: primary carbon centers (n = 48, 
p = 4, r = 0.973, SE = 0.74), secondan carbon centers (n = 224, 
p = 7, r = 0.990, SE = 1.07), tertiary carbon centers (n = 120, 
p = 5 ,  r = 0.994, SE = 0.97), tertian carbons with attached hy- 
droxyls (n = 25, p = 4, r = 0.966, SE = 1.21), and quaternary 
carbon centers (n = 53, p = 6, r = 0.970, SE = 0.81), where n is 
the number of carbon centers used to derive each model, p is the 
number of terms in the equation, r is the multiple correlation 
coefficient, and SE is the standard error in parts per million. Full 
simulated spectra xvere generated from these equations and were 
compared with the experimentally observed spectra. Mean errors 
were in the 1-ppm range. As an example, Fig. 5 sho\vs the simulated 
and obsenred spectra for 5a-androstan-16-a-01. The spectra of 
compounds not used to derive the equations \Irere also simulated, 
and similar results were obtained. When simulated spectra were used 
to search against libraries of authentic spectra, ~ v k  found that the 
simulated spectra were excellent approximations to  the actual spectra 
of these hydro? steroids (54). 

The sets of comvounds studied to date were limited in their 
structural diversin, saturated, and had only the hydroxyl functional 
group (cyclohexanes, c\.clohexanols, decalin alcohols, steroids, and 
alkyl chain-substituted analogs of them). The approach may be 
avvlied to  more diverse molecular structures that are unsaturated or 

I I 

that contaln additional functional groups. Pattern recognition may 
be used to investigate a set of substituted cyclopentanes and 
cyclopentanols to  probe the applicability of these methods to  
structures less rigid than the six-membered ring systems studied 
pre\iously. Another extension of this \\fork could involve bicyclo 
and tricyclo compounds. 

Conclusions 
Pattern recognition methods are an efective way to investigate 

multivariate data in analytical chemical problems. Chemists can use 
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