
during the period offlow. Chemical analyses 
from streams were done weekly, with pH, 

Natural Sources of Acid Neutralizing Capacity in Low 
Alkalinity Lakes of the Precambrian Shield 

A detailed alkalinity budget was constructed for Lake 239 in the Experimental Lakes 
Area of northwestern Ontario and for three small watersheds in its terrestrial basin. 
Alkalinity generation in the lake averaged 118 milliequivalents per square meter per 
year, 4.5 times as high as the areal rate in the terrestrial basin. Although acid 
deposition in the area is low, only one of the three terrestrial watersheds was a 
significant source of alkalinity. A second terrestrial watershed yielded very little 
alkalinity. The third watershed, which contains a wetland, was a sink for, rather than a 
source of, alkalinity. An analysis of ion budgets for the lake revealed that more than 
half of the in situ alkalinity production was by biological rather than geochemical 
processes. The major processes that generated alkalinity were: biological reduction of 
SO:- (53%), exchange of H+ for Ca2+ in sediments (39%), and biological reduction of 
NOT (26%). Comparison with experimentally acidiiied Lake 223 revealed that 
alkalinity production by sulfate reduction increased in response to increased inputs of 
sulfuric acid. 

I N ACID-SENSITIVE LAKES, ALKALINITY 

(that is, acid neutralizing capacity) is 
assumed to originate from chemical 

weathering of geological substrates and ion 
exchange reactions in the terrestrial portion 
of a lake's catchment. The acidification of 
lakes under increased acidic deposition has 
been assumed to result from such geological 
processes being exhausted or overwhelmed 
(1). This conclusion may indeed be the case 
in some lakes of the Adirondacks, where the 
degree of acidification of three lakes has 
been shown to be related to the depth of 
terrestrial soils (2). However, we noted that 
the low-alkalinity lakes of the Experimental 
Lakes Area (ELA), northwestern Ontario, 
typically had much higher alkalinities than 
their inflow streams (3), suggesting impor- 
tant aquatic sources of alkalinity. Our long- 

term data revealed that there was no detect- 
able tendency for lakes or streams draining 
terrestrial catchments in the area to become 
more acidic with time (3), so that it seemed 
reasonable to hypothesize that in situ pro- 
cesses in the lakes were a major source of 
their alkalinity (4). 

To test this hypothesis, we made detailed 
alkalinity measurements by Gran titration 
and budgets for base cations and strong acid 
anions for 3 years on Lake 239 in the ELA 
area, on its three tributary streams, on its 
outflow, and on precipitation (5) (Fig. 1). 
Water budgets for the lake have been mea- 
sured for 15 years and balance to within a 
few percent (6). All inflow streams and the 
outflow were gauged with continuous level 
recorders and flumes or V-notch weirs, 
which were serviced at least twice a week 

nitrate, ammonium, dissolved &organiccar- 
bon and other perishable analyses per- 
formed within a few hours of collection (7). 
Bulk precipitation was collected from a 
0.5-m by 0.5-m plexiglass collector on a 
small rocky island in the lake during the ice- 
free season and at the meteorological sta- 
tion, 0.5 km west of the lake in winter. Rain 
samples were filtered and refrigerated within 
a few hours after each precipitation event 
and analyzed for perishable ions the same 
day (8). Snow samples were kept frozen and 
analyzed similarly once a month. 

Precipitation supplied negative alkalinity 
averaging -9.6 milliequivalents per square 
meter per year directly to the lake and to 
its catchment (8) (Table 1).  Alkalinity yield 
from each terrestrial catchment to the lake 
was thus the sum of alkalinity production in 
the catchment plus the alkalinity in precipi- 
tation. Of the three terrestrial catchments, 
one, the Northeast Subbasin, drains a small 
wetland that consumed alkalinity, so that it 
supplied negative alkalinity to the lake (9). 
One of the two remaining streams, the 
Northwest Subbasin, drainea a small, rocky 
upland with shallow overburden. Alkalinity 
production in this catchment averaged about 
10 meq m-2 approximately neutral- 
izing rainfall acidity. It supplied a small 
negative amount of alkalinity to the lake in 
1981, and slightly positive amounts in 1982 
and 1983 (Table 1). The third stream sup- 
plied most of the terrestrially derived alka- 
linity to the lake (20.7 rneq m-2 year-'). 
This stream (the East Subbasin) is known to 
contain small amounts of calcarkous material 
in sediments of the valley bottom; this is 
unusual for streams in the area (10). 
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Table 1. An annual alkalinity budget for Lake 239 based o n  Gran titrations. Averages are given with standard error of  the mean 

Budget 

Alkalinity yields t o  Lake 239 (keq year-') Average Average 
alkalinitv alkalinitv 

Basin Average yield* ' production'(+) 
area 1981 1982 (meq m-2 1983 1981-1983 o r  consum tion ( )t 
(ha) year-') 

P -- (meq m -  year ') 

NW inflow 
NE inflow 
E inflow 
Direct runoff* 
Total terrestrial input 
Precipitation t o  surface 
Precipitation and terrestrial input 
Outflow 
Annual change in mass (AM,) 
Alkalinity produced ( P J  

-- 

*Alkalinity yield is measured. Alkalini production is calculated as production = yield - precipitation. tThe difference between recipitation input and outflow losses to the 
basin divided by basin area. +Baseabn the assum don that out uts per square meter are similar to the E subbasin. IAverage dalinity input and output per square meter of 
lake surface. \\Calculated according to Eq. 1, V d e s  are annua) averages and standard errors of the mean. 
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Table :!. Mass balance budgets for nonproteolytic ions of potential significance to the alkalinity of Lake 239 for 1981-1983. Data are annual means for 1981- 
1983, in kiloequivalents per year. Numbers in parentheses are standard errors of the means of total input (I) and outflow (0) for the three annual values. 
-- - 

Base Strong: acid 
Ca2 + Mg2+ Na+ K+ NH: SO:- CI- NO; cations anizns Ak* 

(2)  (2)  

- -- 

* M t y  = B base cations - B strong acid anions. t P ,  = alkalinity produced from sediments = 0 + AM - I for cations and I - (0 + PM) for anions, where AM is the 
change in mass of an element in the lake. $Alkalinity generated by addiuon of base cations and removal of strong acid anions, respectively. $Statistical si nificance ofthe an- 
nual change in mass in the lake (PM) and I - 0 are based on paired t tests (14); P, is considered to be significant if either AM or I - 0 is significantly digrent.  

In addition to the streams, 30% of the 
terrestrial area drained directly to the lake. 
Much of this area is rocky with shallow 
overburden. However, the area near the 
ELA campsite on the west side of the lake 
(Fig. l ) ,  about 7% of the terrestrial drainage 
area, has an overburden of up to 20 m in 
depth. Twenty piezometers in this area 
yielded chemical concentrations slightly less 
than the East Subbasin stream (11). In order 
to make our calculations as conservative as 
possible (that is, we would underestimate 
alkalinity production in the lake), we as- 
sumed that all direct flows to the lake had 
chemistry similar to the East Subbasin. 

Calculated average terrestrial alkalinity 
product:ion in the entire catchment of the 
lake was only 26 meq m-2 Since 
about 10 meq m-2 year-' of the alkalinity 
produced was used to neutralize incoming 
precipitation, the average yield to lake by 
streamflow from the entire terrestrial basin 
was only 16 meq m-2 year-' (Table 1). 

If precipitation and terrestrial yield were 
the only sources of alkalinity for Lake 239 
and 1981-1983 inputs were typical, the 
lake's alkalinity would be less than 70 p,eq 
liter- ' (.12). However, the measured alkalin- 
ity concentration of the lake averaged 151 
p,eq liter-'. In addition, there was a substan- 
tial alkalinity loss from the outflow of the 
lake. Armual alkalinity production (Pa) in 
the lake was calculated as 

Pa = AMa + 0, - I, (1) 
where AM, is the annual change in mass of 
alkalinity in the water column, 0, is the 
annual loss of alkalinity by outflow, and I, is 
the annual alkalinity input, all measured by 
Gran titration. Water level in the lake dif- 
fered by only 0.021 m on the first and last 
dates used for calculation of AM, and is thus 
ignored in the calculation. The years 1981, 
1982, and 1983 were the 4th, 6th and 9th 
driest ye:ars in a 14-year record and are 
assumed to represent long-term values. Av- 
erage alkalinity generation in the lake was 
118 +. 211 meq m-2 or about 4.5 
times the: average production for terrestrial 
areas and about 7.4 times the average yield 
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(Table 1). Moreover, although the terrestri- 
al area was more than six times that of the 
lake, total alkalinity production in the lake 
(64 + 11 keq year-') exceeded the total 
supply of alkalinity to the lake from terrestri- 
al drainage (55 r 5 keq year-'). 

By assuming electroneutrality, the relative 
contributions of various ions to alkalinity 
(Alk) can be calculated from the balance 
between input, output, and change in mass 
in the lake of nonprotolytic cations and 
anions, where 

Alk = (caZC + M g +  + Na+ + K+ + N&+) 
- (SO!- + NOT+ CI-) 
= HCQ-+ OH- + C@- + A- - H C  

(2) 

and A- represents organic anions. For sim- 
plicity, we ignore organic anions here (13). 
The ions CO:- and OH-  were negligible in 
all samples analyzed. No other ions contrib- 
uted significantly to the alkalinity budget of 
Lake 239. Alkalinity as calculated by both 
Eqs. 1 and 2 can assume negative values. 

There was no significant difference be- 
tween average alkalinity produced in the 
lake as measured by Gran titration (Table 1 
and Eq. 1) and that calculated from ionic 
balance (Eqs. 1 and 2; Table 2) for the 3 

years when both were measured (14). The 
latter contains more uncertainty, because it 
represents the summation of eight separate 
ionic budgets, some of which cannot be 
measured as precisely as Gran alkalinity. The 
agreement between Gran alkalinity measure- 
ments and those calculated by ion balance 
on individual samples is shown in Fig. 2. 
The average Pa and standard deviation for 
1981-1983 (n  = 3) by Gran titration was 
64 5 11 keq year-' for the whole lake, 
whereas that calculated by ion balance was 
40 r 37 keq year-' (mean and standard 
error, respectively). The difference between 
these values was not statistically sigdcant 
(14). 

Alkalinity in lakes caused by increasing 
concentrations of cations results largely 
from diffusion of calcium and potassium 
from sediments. While ammonium, iron, 
and manganese are also released from sedi- 
ments of Lake 239, organisms in the water 
column consume all of the ammonium that 
diffuses from sediments, and high redox 
potentials in the water column reprecipitate 
iron and manganese so that they contribute 
little alkalinity to the water column (15). 
Alkalinity can also be produced by processes 
removing anions. Common anion-removing 
processes in lakes are sulfate removal-for 

I RAWSON LAKE WATERSHED I 

\ )"' Fig. 1. A map of the Lake 239 (Rawson Lake) water- 

0 shed, showing the three stream catchments. [Modified 
from Schindler et al. in (4 ) ]  
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example, by sulfate reduction followed by Table 3. Within-lake ionic processes affecting the alkalinity budgets of Lake 239 (natural) and Lake 223 
precipitation of iron sulfides or binding as (acidified to pH 5 with H2S04). Values are 1981-1983 averages of total alkalinity production. 

organic sulfur, denitrification, and biologi- Negative numbers represent alkalinity consumption. 

cal removal of nitrate (16). Many of the Alkalinity Alkalinity 
ionic changes that can affect alkalinity are Ion Lake 239 generated (+) Lake 223 generated (+ ) 
difficult to detect, because they involve rela- (meq m-' year-') or consumed (-) (meq m-' year-') or consumed (-) 
tively small changes in concentration of the (%I (%I 
ion in the lake (14). Ca2+ 29 39" 76 19* 

Most of the alkalinity generated in the Mg:' - 10 - 14 -37 -9* 
lake could be accounted for by sulfate re- Na -3 -4  - 10 - 2 

K+ moval (39 meq m-2 exchange of NH: 2 3 - 12 -3 
- 13 - 18" -20 -5 

H +  for calcium in the sediments (29 meq ~ ~ 2 +  7 2" 
m-Z year-'), and reduction of nitrate (19 SO:- 39 53" 368 92" 
meq m-2 year-') (Tables 2 and 3). While C1- 11 15 11 3 
statistically significant, exchange of H' for 19 26" 19 5" 
potassium was only 2 meq m-2 year-'. The Total 74 100 402 100 
removal of NH4f from the lake consumed 
13 meq rn-2 year-' of allcalinity. The contri- *Statistically significant contributions to the alkalinity budget, based on paired t tests of AM and I - 0. 

butions of sodium, magnesium, and chlo- 
ride to the alkalinity budget were not statis- 92% of the total within-lake alkalinity gen- importance to the alkalinity budget were 
tically significant. eration. Calcium exchange in Lake 223 was remarkably similar in the two lakes. The 

It is of interest to compare the "natural" also 2.5 times as high as in Lake 239. The similar fluxes of nitrate and ammonium in 
alkalinity budget with that of an acidified increased acidity of Lake 223 also caused the two systems make it seem unlikely that 
lake. Lake 223, in the ELA, has been pur- manganese to become a small, but signifi- acidification with sulfuric acid disrupts the 
posely acidified with sulfuric acid. Most of cant, contributor to the alkalinity budget. nitrogen cycle, as has been suggested (19). 
the lake's watershed has only 0 to 1 m of Whereas in Lake 239 manganese was as- Calcium exchange of sediments in Lake 223 
overburden, so that it was assumed to be sumed to enter in complexed form-that is, was only 2.5 times as high as in Lake 239, 
similar to the Northwest Subbasin, contrib- not contributing significantly to charge bal- indicating that calcium exchange has much 
uting little alkalinity to the lake. An up- ance-the acidification of Lake 223 caused a less effect on the alkalinity budget of acidi- 
stream lake also contributed little alkalinity substantial flux of Mn2' from sediments to fied lakes than biologically mediated reac- 
to Lake 223 (17). Acid added was a large overlying water in the anoxic hypolimnion. tions. 
source of negative alkalinity. Within-lake Iron was a net "sink" for alkalinity in both Our lakes are chemically similar to acid- 
processes affecting the alkalinity of Lake 223 lakes, even though it appeared seasonally in vulnerable freshwaters throughout much of 
are compared with those in Lake 239 in large quantities in the anoxic hypolimnion the Precambrian Shield in North America 
Table 3. Addition of sulfuric acid to Lake of Lake 223. Inexplicably, the acidification (20). Our results suggest that the terrestrial 
223 caused greatly increased alkalinity gen- of Lake 223 also caused increased move- watersheds of such lakes are not necessarily 
eration by sulfate removal (18). The rate of ment of magnesium to sediments, which the predominant sources of alkalinity, even 
removal of SO:- in Lake 223 was almost 10 would consume alkalinity (1 7).  when the acidity of precipitation has not 
times that in Lake 239, contributing about The rates of exchange of all other ions of been increased by man under natural condi- 

tions. Although anthropogenic inputs are 

500r B Eas t  Subbasin 
clearly capable of overwhelming the com- 

1::~ A Precipitat ion bined in situ and watershed-based alkalinity 
sources in lakes, biological alkalinity-gener- 
ating processes in lakes are actually stimulat- 

300 ed by sulfate and nitrate to increased rates in 
1:1 acidified environments (21). As a result, we 

predict that the recovery of alkalinity to 
normal values in lakes should be relatively 

+ +, rapid once the acidity of atmospheric depo- 
sition is reduced. 

Y 
100 200 300 400 - 
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Antarctic Mesopelagic Micronekton: Evidence from 
Seabirds That Pack Ice Affects Community Structure 

Through a multidisciplinary project (AMERIEZ), with an unusual complement of 
components, previously unknown temporal and spatial dimensions to the structure of 
Antarctic epipelagic and mesopelagic communities were revealed. In late spring, an 
abundance of crustacean species thought to occur only below 300 meters was detected 
in ice-covered surface waters, Evident in ice-free waters were the expected occurrence 
patterns of these normally nonmigratory mesopelagic organisms. Where the pack was 
consolidated and little light penetrated to depth, primary and secondary production 
was confined to ice floes, and the physical environment immediately beneath the ice 
was reminiscent of a mesopelagic one. This suite of characteristics possibly explains 
why the crustaceans resided at the surface. 

A NTARCTIC PACK ICE COVERS 10 PER- 
cent of the world ocean at its maxi- 
mal extent during early spring (1). 

Associated with the ice is a distinct biologi- 
cal community, including in-ice living algae 
and bacteria, epipelagic micro- and macro- 
zooplankton, fishes, birds, and pinnipeds (2, 
3 ) .  As the pack recedes, ultimately to be 
confined to seven major refugia by early 
summer (4 ) ,  open-water species, particularly 
those of upper trophic levels, move south- 
ward with the retreating ice edge (2 ,3) .  The 
open-water community takes advantage of 
its major phytoplankton bloom, which oc- 
curs when waters previously shielded by ice 
are exposed to the long hours of summer 
sunlight and low density meltwater imparts 
significant vertical stability to the water col- 
umn (5). 

In contrast to epipelagic species, the inf-lu- 
ence of seasonal ice cover and changing day 
length is poorly known for the deeper-living 
(100 to 1000 m) mesopelagic component of 
the Antarctic marine community. In other 

areas of the world's oceans, a substantial 
fraction of the mesopelagic fauna migrates 
from 200- to 500-m davtime d e ~ t h s  to or 
near the surface at dusk, and returns to 
depth at dawn. These organisms orient to a 
constant light level or isolurne, which moves 
up and down in the water column with the 
setting and rising sun (6). At night, vertical 
migrators can make up greater than 70 
percent of the micronektonic biomass in the 
top 100 m (7). In the Antarctic, species 
exhibiting light-oriented movement could 
have radicallv different vertical distributions 
through the austral seasons if light-mediated 
behavior is maintained throughout the year- 
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