
Recovering Phase Information 
from Intensitv Data 

T HE CONCEPT OF A CRYSTAL IS THAT OF A SOLID BODY IN 

which the atomic or molecular units are so arranged as to 
form an array having three-dimensional periodicity. Because 

of the periodicity, it is possible to describe the arrangements of the 
atomic composition by means of Fourier series. The type of Fourier 
series that is used in crystal structure analysis represents the electron 
density distribution in a crystal. This is indeed equivalent to 
representing the structure of a crystal since the atomic locations are 
represented by the regions of highest electron density in the electron 
distributions. 

The experimental technique used for examining the structure of 
crystals is called diffraction. In a diffraction experiment, rays are 
made to impinge on a crystalline substance of interest, and, given the 
proper geometric conditions, the rays are scattered as if they were 
bouncing off large numbers of different planes imagined to be 
cutting through the crystal. The collected intensities of scattering 
(often 5,000 to 10,000 in number) are called a scattering pattern or 
diffractiori pattern and comprise the experimental data from which 
the structure of the crystal of interest is to be elucidated. The most 
commonly used rays are Roentgen rays or x-rays, as they are usually 
called. Orher rays, composed of neutrons or electrons, also have 
their purposes. 

The problem that the analyst faces is to be able to take the 
diffraction pattern and from it determine the atomic architecture of 
the crystal which cannot be observed directly. There is a special 
problem in taking the intensity information from a diffraction 
pattern and calculating from it the electron density distribution of a 
crystal by use of the Fourier series. The coefficients in the Fourier 
series are, in general, complex numbers. Only the magnitudes of the 
complex numbers appear to be available from the measured intensi- 
ties of scattering. The required phase angles of the complex numbers 
seem to be lost in an ordinary x-ray diffraction experiment. It was 
therefore generally thought that it was not possible to go directly 
from a diffraction pattern to a determination of a crystal structure. 
The impasse was overcome in a series of steps that involved 
recognition that the required phase information was contained in 
the experimental intensity information, the derivation of a founda- 
tion mathematics that displayed relationships between phases and 
magnitudes and even among phases alone and, finally, the develop- 
ment of practical procedures for structure determination, strategies 
that brought together in a more or less optimal fashion the 
mathematical relationships with suitably adjusted and refined ex- 
perimental data. 

The results of structure determinations have been playing a 
valuable role in a number of areas of scientific endeavor. Crystalliza- 
tion, for example, is a very common phenomenon and many types of 
substances form crystals ranging from metals and minerals to huge 
macromo1~:cules such as viruses. Knowledge of structure allows one 
to relate structure to function, that is, understand physical, chemical, 
or biological properties and activities; provides the chemist with 

useful information for syntheses, modifications, and reaction mecha- 
nisms; and can also be used to identify very small quantities of scarce 
material. It often provides the theoretical chemist with a starting 
point for his calculations. Structural research provides a conceptual 
basis for many associated scientific disciplines and it is the opportu- 
nity to interact with a variety of such disciplines that has made 
structural research particularly appealing to me. 

Electron Density Distribution 
The electron density distribution, p(r), is expressed in terms of the 

three-dimensional Fourier series 

where Vc is the volume of the unit cell of the crystal, the basic 
structural unit from which, through three-dimensional periodicity, 
the crystal is formed. The coefficients 

are the crystal structure factor associated with the plane labeled with 
the vectors h. The h have integer components, h, k, and 8, the Miller 
indices, whose values are inversely proportional to the intercepts on 
the x, y, and z axes, respectively, of planes cutting through the 
crystal. The angle C$h is the phase associated with Fh, and r labels the 
position of any point in the unit cell. FhE is the amplitude of the 
scattered wave associated with the plane labeled by h, where E is the 
electric field vector of the incident beam. The measured intensities of 
x-ray scattering are proportional to I F ~ I ~ .  If the values of the +h were 
also obtained directly from experiment, structures could be immedi- 
ately calculated from (1). The seeming absence of this information 
gave rise to the so-called "phase problem." 

The Fourier inversion of ( l ) ,  followed by the replacement of the 
integral by the sum of contributions from the N discrete atoms in 
the unit cell gives, for the Fourier coefficient, 

  he ref;^ represents the amplitude of scattering of the jth atom in the 
unit cell and rj is its position vector. 
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Overdeterminacy 
A system of simultaneous equations is formed by the definition of 

the crystal structure factors given by (3) since the values of the 
scattered intensities are measured for a large number of h. The 
unknown quantities in (3) are the phases +h and the atomic 
positions rj. The known quantities are the IFh/ obtained from the 
measured intensities and the& which differ little from the theoreti- 
cally calculated atomic scattering factors for free atoms. Since each 
equation in (3) involves complex quantities, there are really two 
equations, one for the real and one for the imaginary part. In order 
to determine the overdeterminacy, a comparison is made of the 
number of unknown quantities with the number of independent 
data available. With the use of CuKa radiation, the overdeterminacy 
can be as great as a factor of about 50 for crystals that have a center 
of symmetry and about 25 for those that do not. In practice, 
somewhat fewer than the maximum available data are measured, but 
the overdeterminacy is still quite high. 

Some Attempts, Some Successes 
There were some early attempts to obtain structural information 

or phase information from the structure factor equations. The names 
Ott (I) ,  Banerjee (2), and Avrarni (3) are associated with early 
attempts. The computational demands of these approaches limited 
their application to very simple structures and the limitations cannot 
be suitably overcome even now with modern computers. 

A significant advance in the attempt to obtain structural informa- 
tion from the measured intensities was made in 1934 by A. L. 
Patterson (4, 5). He developed a Fourier series which has as its 
coefficients the magnitude of the square of the structure factors 
rather than the structure factors themselves. The phases may be 
eliminated from (3) by multiplying by the corresponding complex 
conjugates to obtain 

The Fourier transform of (4) is known as the Patterson function (4, 
51, 

- m  

The maxima of a Patterson function represent the interatomic 
vectors in a structure. Evidently the values of the coefficients are 
directly obtainable from the measured intensities of scattering. This 
function has been very useful in locating the heavier atoms in a 
structure, if they are not too numerous, since the interatomic vectors 
associated with them would predominate in a map computed from 
(5) and the atomic positions for them could then be readily 
deduced. The coordinates for the heavy atoms may be used with (3) 
to compute an initial set of approximate phases. Depending upon 
the scattering power of the heavy atoms, such a computation may be 
suitable for structures containing up to a few hundred atoms. There 
are numerous procedures for developing a complete structure from 
the initial phase information obtained from the heavy atoms. The 
use of the Patterson function with structures containing heavy 
atoms has found widespread application and remains one of the 
major methods of crystal structure determination. 

The difficulty with using the Patterson function with experimen- 
tal data in a general way in the absence of heavy atoms arises from 
the lack of resolution that occurs for the N(N - 1) interatomic 
vectors as well as inaccuracies. The Patterson function becomes 
somewhat accessible when it is used in combination with known 
atomic groupings (6-8). 

Distance C-H C-C C-F C-H F-F C-F H-F H-F 

nZ ,Z i  4 12  36 4 2 7  36 6 6 
Actual area 4.2 12.1 36.0 4 .1  27 .2  36.0 5.4 7 

Fig. 1. The essentially non-negative radial distribution function (solid curve) 
for CH,CF,, computed from the experimental molecular intensity data 
extracted by use of a properly formed background intensity curve. The solid 
curve is a probability density that gives the probability offinding interatomic 
distances in some distance interval along the horizontal axis. The dashed lines 
represent the decomposition of the main peaks into their component 
individual interatomic distances. The individual peaks have a definite width 
related to the internal vibrations in the molecule. 

Relationships between phases and magnitudes that anticipated 
the later developments were the inequalities of Harker and Kasper 
(9). They derived a number of inequalities by application of the 
Schwarz and Cauchy inequalities to the structure factor equations 
(3) in the presence of crystallographic symmetry. The Harker- 
Kasper inequalities have provided valuable insights. For example, 
the simple inequality formulas can provide useful phase information 
as shown by Kasper, Lucht, and Harker (10) in their solution of the 
structure of decaborane. In addition, work with the inequalities 
indicated that they may have probabilistic characteristics. Gillis (1 I ) ,  
for example, noted that the implication of an inequality was 
probably correct even when the magnitudes of the structure factors 
were too small to permit a definitive conclusion to be drawn. Gillis 
speculated that the smallness of the structure factor magnitudes may 
have been due to thermal effects and employed an appropriate 
function to increase the values of the structure factor magnitudes so 
that the inequalities could be applied. The probabilistic interpreta- 
tion, however, remained a possible alternative, namely, that, al- 
though an inequality does not quite determine the value of a phase 
definitively, it still does so with a high probability that the value is 
correct. This could be important because it would imply that the 
inequalities have probabilistic implications that could extend their 
range of usefulness. 

Non-Negativity and General Inequalities 
The initial motivation to investigate the mathematics of crystal 

structure determination arose f romi~~er iences  in the development 
of an analytical procedure for obtaining accurate radial distribution 
functions for determining the structures of gaseous molecules by 
electron diffraction. A problem arose, namely, to find an accurate 
background intensity so that the molecular interference intensity 
could be accuratelv extracted from the total intensitv of scattering. " 
The Fourier transform of the molecular intensity can be interpreted 
as representing the probability of finding interatomic distances in a 
molecule. Therefore. this transform must be non-negative and the " 
non-negativity imposed a very useful constraint on the shape of the 
background intensity (12, 13). Figure 1 shows a radial density 
function for CHzCF2 (14) derived from application of the non- 
negativity constraint and the component distances in the molecule. 
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The attendant accuracy of the result permitted not only equilibrium 
interatomic distances to be determined but also estimates of the 
root-mean-square amplitudes of vibration associated with the inter- 
atomic distances. 

At about the time this work in gas electron diffraction was 
proceeding, Herbert Hauptman joined our group at the Naval 
Research Laboratory and, in view of the success of the non-negativ- 
ity criterion, we decided to explore the possibility that this criterion 
might be useful in other areas of structural research. This led us to 
investigate the determination of electron density distributions 
around free atoms (15) which found a very fine application in the 
determination of the electron distribution about argon by Bartell 
and Brockway (1 6). 

We were also quite interested in seeing what the consequences of 
the application of non-negativity would be for crystal structure 
analysis since the electron density distribution defined in (1) is 
constrained not to be negative. This brought in the work ofToeplitz 
(17) early in this century on non-negative Fourier series and 
subsequent development by others. We discussed the theory in 
three-dimensions and wrote it in a form that would have particular 
relevance to crystallographic data. 

The fundamental result was that the necessary and sufficient 
condition for the electron density distribution in a crystal to be non- 
negative is that an infinite system of determinants involving the 
crystal structure factors be non-negative. A typical determinant is 
(18) 

F - k ,  F - k 2  . . . F - h  

k,  FOOO Fk,-k2 . . . Fk,-,, 

k, Fk,-k,  FOOO . . .  Fk2-,, 1: h - k  F h - k 2  . . . FOOO 

contains a relationship among the structure factors that has played a 
most important role in direct crystal structure analysis. This may be 
seen by rewriting (7) in the form (18) 

2 0 

The subscripts in the first column start with 0,0,0 but are otherwise 
arbitrary. The subscripts in the first row are the same but of opposite 
sign. The subscript of the element in the ith row and the jth column 
is the sum of the subscripts of the elements of the zth row and first 
column ;and the first row and jth column. The third order inequality 

For structure factors of unusually large magnitude, the right side 
of (8) becomes quite small and then 

F000 F - k  F - h  

F k  FOOO Fk-, 
F h  F h - k  FOOO 

Fh - FkFh-k/Fm 

One evident conclusion from (9)  is 

2 0 (7) 

(bh - (bk + (bh-k ( lo)  

This states that for large structure factor magnitudes, the value of +h 

may be defined in terms of the values of two other phases. This may 
also be seen from a construction based on (8), Fig. 2, in which 
6 = FkFh--k/FOOO and r is equal to the right side of (8). The form for 
(8) is then 

Fig. 2. The determinantal inequalities Im 

can be written in the general form 
IFh - 81 5 r. This means that Fh is 
bounded by a circle of radius r in the 
complex plane centered at 8. If IFh/ is 
known, the Fh is confined to a line 
within the circle. 

It can be readily shown (18) that all determinants (6) can be written 
in the form of (1  I). As the order of the determinants increases, there 
is a tendency for r to decrease in size, making the determination of 
(bh rather definitive. 

Formula (10) has found wide application beyond the range of 
usellness of (8). This is because of the probabilistic characteristics 
of the inequalities (19) which imply that the most likely value of +h 

is that of (bk + (bh-k and the probability decreases the farther the 
value of (bh deviates from that of (bk + (bh-k. Therefore, even when 
the radius, r, of the bounding circle is large, the most likely value of 
(bh is (bk + (bh-k. 

The structure factors in (6) can be replaced by quasi-normalized 
structure factors, 't;, that represent point atoms (to an approximation 
when atoms of unequal atomic number are present) rather than 
atoms with electron distributions, 

Structure factors representing point atoms are the type of quantity 
normally used in phase-determining procedures. Instead of (9), we 
have 

For centrosymmetric crystals, we have 

where s means "sign of," a plus sign implying that the phase is equal 
to zero and a minus sign that it is equal to T. A one-term tangent 
formula also follows from (13), 

tan(bh = j%k't;h-kl sin((bk + (bh-k) 
I't;k't;h-kl c~s((bk + (bh-k) 

The tangent formula composed of the sum of terms over k both in 
the numerator and the denominator is another formula that has 
played a major role in the practical applications of the theory for 
structure determination. 

The variety of phase determining formulas contained within the 
determinantal inequalities (6) have their counterpart in probability 
theory, that is, similar formulas can be derived with the use of 
probability theory. The pursuit of probabilistic formulas was moti- 
vated by the expectation that the usefulness of the formulas from the 
inequalities could be extended because of the great overdetermin- 
ancy of the structure problem. One of their virtues is that measures 
of reliability can be attached to them and the judicious use of such 
measures was an important feature in bridging the gap between 
mathematical theory and practical application. 

In order to characterize the probabilistic aspects of this subject, 
we initially decided to develop a facility in the use of the random 
walk (20), but subsequently changed to the joint probability 
distribution (21, 22) which culminated in a monograph (23) that 
contained for the first time, a set of probabilistic formulas and 
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measures for attacking the phase problem, in this case limited to 
crystals that have a center of symmetry. It was in the monograph 
(23) also that the theory of invariants and semi-invariants was 
introduced for the purpose of solving the problem concerning how 
many and what types of phases to specify to fix the origin in a crystal 
and what values are permitted. The practical aspects of solving 
crystals that lack a center of symmetry were developed later on and it 
was not until 1964 that the structure of the first crystal lacking a 
center of symmetry was solved (24) by the "direct method" for 
obtaining phase information by direct use of the measured intensi- 
ties of scattering. It is interesting that fairly recent developments in 
the mathematics of the random walk have made this technique quite 
accurate, stimulating revived interest in its application to the 
probabilistic aspects of phase determining formulas (25). 

Formulas for Phase Determination 
The main formulas for phase determination are now listed. They 

will suffice to characterize the nature of the phase determining 
procedures. There are additional formulas that play a variety of 
helphl roles and may be found in the referenced literature of this 
article. 

Centrosymmetric cqstals. The X2 formula is (23), 

where s means the "sign of" and k, represents restricted values of k 
for which the corresponding iEkl and k h - k l  values are large. A plus 
sign refers to a phase of zero and a minus sign to a phase of IT, the 
only two values possible for a centrosymmetric crystal when an 
origin in the crystal is properly chosen. The quantities, E, are 
normalized structure factors which arise as appropriate quantities to 
use with probabilio; theory and are the same as the quasi-normalized 
structure'factors, %, except for a reweighting (26) &certain subsets 
of the E. The treatment of the intensity data to obtain normalized 
structure factors (27) arises from the work of Wilson (28, 29), the 
earliest application of probability methods to crystal structure 
analysis. Formula (16) is the probability equivalent of the set of 
inequalities (8) as k varies over the set k,. The appropriate probabili- 
ty function, P+(h), which represents the probability that the sign of 
Eh be positive, was given in ihe monograph (23). 1t is conveni&tly 
applied in the form derived by use of the central limit theorem by 
Woolfson (30) and Cochran and Woolfson (31), 

where 

and Zj is the atomic number of the jth atom in the unit cell 
containing N atoms. 

Noncentrosymmetric crystals. The sum of angles and tangent formu- 
las are, respectively, 

Formulas (19) and (20) are comparable to (10) and (15), respec- 
tively, and result from combining a number of individual terms as k 

varies over some chosen set. An appropriate measure of the reliabil- 
ity of (19) and (20) is a variance, V (32), given by 

where I, is a Bessel function of imaginary argument (33), 

and 

Expression (21) gives the variance of Oh as determined from a given 
set of Ok + +h-k. This variance formula has its origin in a probabili- 
ty distribution (in somewhat different notation) of Cochran (34) for 
Oh, given a particular Ok + and the accompanying IEl values. 
The tangent formula (20) can be derived in many ways. It has arisen, 
for example, in theoretical investigations of noncentrosymmetric 
space groups by use of the joint probability distribution (35) and 
can be shown to occur (32) in a generalization of the Cochran 
formula (34) for a particular Ok + +h-k to take into consideration a 
set consisting of several or more (Ok + rather than just one 
(32, 34). The average in (19) is to be taken in the context of 
maximum clustering, that is, a minimum deviation of the contribu- 
tions of individual addition pairs, Ok + from the average 
value. All + are kept in a range -n<+ 5 IT and maximum clustering 
requires the addition of 0, 2n, or - 2 ~  to each addition pair. A 
practical method for effecting appropriate clustering has been 
described (32). 

Practical Phase Determination 
In this part, the various aspects of practical phase determination 

will be outlined in terms of the first procedure that had broad 
practical applications to both centrosymmetric and noncentrosym- 
metric crystals, the symbolic addition procedure (24, 32, 36, 37). It 
arose mainly from the efforts of my wife, Dr. Isabella Karle, to 
bridge the gap between the mathematics of phase determination and 
the world of experimental data and practical application. 

Once the intensity data are collected, they are transformed into 
normalized structure factors magnitudes defined by 

where E reweights certain subsets of the data (26). A procedure for 
doing this is described in the International Tables fm X-ray Crystal- 
lography (38). 

It is apparent on examining (16), (19), and (20) that it is 
necessary to know the values of some phases before additional ones 
can be evaluated. There are several sources of such information, 
from certain phase specifications associated with establishing an 
origin in the crystal (38), the assignment of symbols to some phases 
for later evaluation, and the use on occasion of auxiliary formulas, 
such as HI and 2 3 ,  that define individual phases in terms of structure 
factor magnitudes alone (38). The number and types of phases to be 
used for specifying the origin in a crystal has been determined by use 
of the theory of invariants and semi-invariants that was developed 
for this purpose. Depending upon the type of space group involved, 
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the number can vary from none at all to as many as three. Suitable 
tables (38) are available for carrying out this task. 

The phase determining procedure is a stepwise one with few 
contributors to (15) or (19) at the start. Use at the start of phases 
associated with the largest possible values of the normalized struc- 
ture factor magnitudes, I E I, will assure that the probability mea- 
sures, (17) and (21) will be as large as possible. The large 
overdeterminacy of the problem helps to ensure that initial probabil- 
ities will be large enough to proceed in a stepwise fashion to build 
up a sufficiently reliable set of phase values to effect a solution to the 
structure problem. Because the nature of phase determination is 
inherently probabilistic and contingent in a stepwise and interde- 
pendent fashion, the problem of establishing optimal procedures 
based on experimental data was not at all straightforward. There are 
a very large number of paths through a phase determination. 
Among many of them are pitfalls in which there arise, for example, 
temptations to take a path in which the interconnections between 
phase evduations flow easily at the expense somewhat of the 
probability measures. Such paths are more likely to lead to missteps 
and cumulative errors that could damage or defeat a phase determi- 
nation than ones that are based only on the highest values of the 
probability measures. 

There is also an ambiguousness inherent in procedures for phase 
determination which is controlled by the use of symbols. The 
symbols can assume more than one value. For centrosymmetric 
crystals, they can have only two phase values, 0 or T. For noncentro- 
symmetric crystals, experience has shown that, whereas phase values 
for the general reflections can have any value in the range from -T 

to a, it is usually sufficient to use only four possible values for the 
symbols spaced ~ 1 2  apart. One of the virtues of using symbols is 
that, as h e  phase determination develops, relationships develop 
among the symbols reducing the number to be assigned values. 

An additional specification, whose character also derives from the 
theory of invariants and semi-invariants, is required for most 
noncentrosymmetric space groups. In making the specification, a 
choice is made of enantiomorph or axis direction or both. A good 
way in which this specification is achieved in the symbolic addition 
procedure is to find that a symbolic representation of a phase value 
most likely has a magnitude that differs significantly from 0 and T. 

The specification is accomplished by assigning a plus or minus sign 
arbitrarily to the magnitude of the phase. 

In the course of applying the procedures of the monograph (23), 
two important features were found that ultimately played an 
important role in the symbolic addition procedure. The first feature 
was that if probability measures were carefully employed at each step 
of a phase determination, it was possible to carry out the procedure 
with a small set of starting phases. It was also apparent that the use 
of symbols could greatly increase the efficiency of the procedure by 
carrying along in their alternative values a residual ambiguity that 
could not be easily overcome. A sufficient number of reliable 
relationships among the symbols usually developed in the course of 
a phase determination to reduce the alternative possible sets of 
phases to consider to just a few. A further reduction could be 
obtained, if desired, by applying auxiliary phase determining formu- 
las at the end of a phase determination to help evaluate the 
remaining symbols. 

There were other early attempts to develop procedures for 
centrosymmetric crystals. They did not have the degree of reliability 
for initiating a phase determination, the method for application of 
probability theory, or the facility to handle ambiguousness that 
could be found in the procedures given in the monograph (23) or 
the symbolic additional procedure. 

The procedural features of the symbolic addition procedure for 
centrosymmetric crystals were extended, in the main by the efforts of 
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Isabella Karle, to noncentrosymmetric crystals (24) with the use of 
(19), (20), and (21). Several problems arose in developing the 
technique for phase determination for noncentrosymmetric crystals 
concerning, for example, the assignment and handling of symbols, 
the use of the probability measure (21), the number of possible 
values to assign to the symbols that represent phase values that range 
continuously from -IT to T, the combined use of (19) and (20) for 
phase determination, the proper use of the tangent formula for the 
processes of phase refinement and phase extension, the development 
of techniques for specif)ing an enantiomorph or axis directions or 
both, and special considerations such as the avoidance of certain 
troublesome triplet phase invariants involving one- and two-dimen- 
sional centric reflections. These various aspects of the symbolic 
addition procedure are to be found in (32) and (38) and in papers 
concerning applications. 

A considerable virtue of the symbolic addition procedure is that, 
because of its efficiency, a main part of the procedure for phase 
determination can be carried through by hand. For many years, the 
procedure for centrosyrnrnetric crystals was carried out in our 
laboratory completely by hand. In the case of noncentrosymmetric 
crystals, the first stage, which involved the use of formula (19), was 
performed by hand until about 100 phases were evaluated and 
useful relationships developed among the symbols. Only after 
selected numerical values were assigned to the few remaining 
symbols was the tangent formula (20) applied with the aid of a 
computer. The benefits of this aspect of the efficiency of symbolic 
addition have been the opportunity for those with modest comput- 
ing facilities to carry out structure determinations, the possibility of 
close interaction with the phase determination as it progresses, and 
the educational value for those newly learning about phase determi- 
nation to be able to witness and carry through the procedure by 
hand. 

Fig. 3. Histrionicotoxin (A)  and the corresponding stereodiagram (D). 
Dihydroisohistrionicotoxin (B) and the stereodiagram (C). 
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Fig. 4. The photorearrangement of N-chloroacetyldimethoxyphenethyla- 
mine (I) to a b e d  ring system consisting of two four- and two five- 
membered rings (11). 

As the application of direct phase determination began to increase 
during the 1960's and structure determination became more and 
more a part of research programs, there began to be developed at the 
end of the 1960's "program packages," software for determining 
structures from x-ray diffraction data. Insight into the contents and 
philosophy of the programs can be obtained from several publica- 
tions of the Commission on Crystallographic Computing of the 
International Union of Crystallography (39-43). On occasion, an 
answer will not be forthcoming from the use of a program package. 
In that case, crystallographers may pursue the problem with special 
techniques and the application of insights and acumen that have 
been too specialized to be found in current programs. 

Applications 
A few examples will be given that illustrate types of applications 

that have been made accessible by the development of direct 
structure determination. They are representative of studies that now 
produce thousands of structural investigations each year. 

The earliest applications after the publication of the monograph 
(23) were collaborations with colleagues at the U.S. Geological 
Survey on colemanite (44) and mayerhofferite (45). This was 
followed by the initial investigations based on the experimental 
work of Isabella Karle, for example, on p, p1-dimethoxybenmphen- 
one (46) and N-benzyl-1,4-dihydronicotinamide (47) that, in time, 
led to the symbolic addition procedure. 

Identijicatwn and stereoconJiguratwn. The problems concerning the 
determination of molecular formula and stereoconfiguration can 
become especially acute when the amount of sample available is very 
small, when the chemical linkages are new and unusual, or when the 
number of asymmetric centers is large. Under such circumstances, 
the use of crystal structure analysis can be not only quite helpful but 
also essential. An example of this is provided by histrionicotoxin and 
dihydroisohistrionicotoxin, two toxic alkaloids secreted by the skin 
of a small frog, Dendrobates aurotaenia, occurring in Colombia and 
Ecuador. These alkaloids are quite unique, having a spiropiperidine 

system with acetylenic and allenic moieties (Fig. 3). The molecular 
structures, stereoconfigurations, and absolute configurations were 
established by crystal structure analyses of a hydrochloride and 
hydrobromide of the histrionicotoxin and a hydrochloride of the 
dihydroiso compound (48,49). Space groups C2 and P212121 were 
involved in the analyses. The histrionicotoxins appear to offer the 
first examples of the occurrence of acetylene and allene moieties in 
the animal kingdom. Other congeners that occur in smaller quanti- 
ties were shown, subsequently, by means of mass and nuclear 
magnetic resonance spectra, to differ only in the saturation of the 
two side chains [(50) and references therein]. The spiro ring system, 
with the internal NH. . .O hydrogen bond, remained unchanged. 

Rearrangements 
In the case of rearrangement reactions, crystal structure determi- 

nation can again play a particularly useful role because many 
rearrangement reactions give products that are the result of vast and 
unanticipated changes in the starting materials. 

A photorearrangement reaction in which a major rearrangement 
takes place is illustrated by the reaction shown in Fig. 4. A crystal 
structure investigation of a single optically active crystal, selected 
from a racemic conglomerate, established the structural formula and 
configuration of the photoproduct (51, 52). The substance crystal- 
lized in space group P212121. The structure analysis showed that the 
photoproduct consisted of four ring systems, two five-membered 
and two four-membered rings. 

Ultraviolet irradiation of N-chloracetyltyramine, where there is a 
hydroxyl group on the phenyl ring in contrast to the two methoxy 
groups in the previous example, yields entirely different photorear- 
rangement products. HC1 was eliminated and two unusual photo- 
dimers, shown in Fig. 5, were produced. Their molecular formulas 
and stereoconfigurations have been identified by use of crystal 
structure analysis (53). It is interesting to note that dimer (11) is the 
more stable since it is produced from dimer (I) by use of additional 
ultraviolet radiation. Dimer (I) crystallizes in space group P21/c, and 
dimer (11) crystallizes in space group Pbca. Dimer (I) is seen to have 
a central cage bounded by four six-membered rings and two four- 
membered rings. Each four-membered ring is puckered, with the 
torsion angles around the ring bonds having values of about 20". 
The six-membered rings assume distorted boat conformations. 
Dimer (11) is seen to have a more complex, partially open, cage 
bounded by one three-, two five-, two six-, and one seven- 
membered ring. The six-membered rings are again in a distorted 
boat conformation. Once the structural characteristics of the photo- 
products are known, it is possible to consider possible reaction 
mechanisms that describe the intermediate changes that occur in the 
rearrangements of the initial materials resulting in the final products. 
Postulated mechanisms for the formation of dimers (I) and (11) 
have been presented (54). 
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Fig. 5 .  The configurations of two dimers formed by photorearrangement from N-chloroacetyltyramine. Dimer (11) is seen to be formed from dimer (I) by 
continued irradiation with ultraviolet light. 
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Conformation large change of hydrophobicity around the backbone in the perhy- 
droantamanide complex is related to the loss of biological activity. 

The conformations of molecules can be importantly related to 
their chemical and physiological behavior. It may be argued, and 
rightly so, that biologically active materials may assume conforma- 
tions in the crystalline state that they would not assume in solution. 
There are, however, numerous instances of conformational studies 
in which the results of crystal structure analyses are either highly 
suggestive or rather definitive. One way in which the crystalline state 
can imitate the circumstances found in solution is to include in the 
crystallization relatively large amounts of solvent. 

The cyclic decapeptide antamanide acts as an antidote to the toxin 
phalloitlin found in the deadly poisonous mushroom Amanita 
phalloides. Antamanide can also be isolated from the same mush- 
room but occurs in much smaller quantities. The synthetic analog of 
antamanide in which all four phenylalanyl residues are hydrogenated 
to cyclohexylalanyl residues (Cha), cyclic(Va1ProProAlaChaCha- 
ProProChaCha), has no antitoxic potency despite its ability to form 
ion complexes in the same manner as antamanide. A conformational 
analysis of the hydrogenated antamanide was carried out by means 
of a crystal structure analysis of Lii . perhydroantamanide which 
crystallizes in space group P212121 (55) (Fig. 6 ) .  The backbone 
encapsulates a Li' ion in quite the same fashion as in Li' . antaman- 
ide. In the Li' . antamanide, however, the four phenyl groups are 
folded against the backbone, thus providing a hydrophobic surface 
for the complex, whereas in Li' . perhydroantamanide the four 
cyclohexyl moieties are extended away from the folded backbone, 
with the consequent exposure of large portions of the polar 
backbone to the surrounding environment. As a result, elements of 
the backbone that would be otherwise shielded from the environ- 
ment were found to make hydrogen bonds and ligands that would 
not occur in the Li' . antmanide complex. It would appear that the 

Fig. 6. Phenyl rings folded up around the backbone of a biologically active 
antamanide: complex with Li+ or Na+ providing a lipophilic surface (top). In 
the inactive analogue, Li+ . perhydroantamanide, the cyclohexyl groups are 
folded down, thus exposing the peptide backbone to the environment 
(bottom). 

These few applications represent only a miniscule portion of the 
broad range of topics and individual studies represented by the 
thousands of structural investigations performed each year. They do 
illustrate, however, how structure determination can play a usehl 
and often indispensable role in the progress of many research 
disciplines. 
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