
environment with a variety of patterns for a 
short period after emergence (12). Since 
there are strikmg similarities between the 
phenomena observed in the fly and those 
observed in vertebrates, it seems that there 
are also similarities in the neuronal and 
molecular bases of the modification of the 
developing nervous system. One possibility 
is a change in synapses through disuse (1 1). 
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Differential Conditioning of Associative Synaptic 
Enhancement in Hippocampal Brain Slices 

An electrophysiological stimulation paradigm similar to one that produces Pavlovian 
conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal 
brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic 
inputs by pairing high-frequency electrical stimulation of the weak input with 
stimulation of a third, stronger input to the same region. Forward (temporally 
overlapping) but not backward (temporally separate) pairings caused this enhance- 
ment. Thus hippocampal synapses in vitro can undergo the conditional and selective 
type of associative modification that could provide the substrate for some of the 
mnemonic functions in which the hippocampus is thought to participate. 

T HE HIPPOCAMPUS IS A CORTICAL 

structure that has been strongly im- 
plicated in certain mnemonic func- 

tions (1 ). Some of the information process- 
ing that occurs in this region has been 
described in terms of a general spatiotempo- 
ral theory of higher-order Pavlovian condi- 
tioning (2). Hippocampal synapses can 
show rapid and persistent (3)  associative 
changes when subjected to brief bursts of 
high-frequelicy electrical stimulation (4). 
Here we use a pattern of stimulation that 
shares formal features with differential Pav- 

2.5 mV [the strong (S) response]. The 
current delivered to the other two electrodes 
[weak 1 (Wl)  and weak 2 (W2)] was set to 
give much weaker synaptic responses-be- 
tween 200 and 300 pV [the weak (W) 
responses]. Typical W and S synaptic re- 
sponses are illustrated elsewhere (4). All 
responses were measured with a single extra- 
cellular electrode placed in the dendritic 
region between W1 and W2 (Fig. 1A). 

Each weak synaptic input was tested once 

lovian conditioning to begin to elucidate 
these changes in the hippocampal brain Table 1. Synaptic response am litudes as a func- 

tion of forward ( W i )  and b a c R a r d  (w-) pair- 
slice. ing. AU values expressed as mean +. SEM. 

Rat hippocampal slices were prepared and 
maintained in the conventional manner (4, Amplitude 
5). Three stimulating electrodes were placed Res- Before Mean 

After increase 
in the Schaffer collateral and cornmissural POnSe pairing pairing 
projection to region CA1 (Fig. 1A) (6). The 

(%) 
PV) (cLV) 

current delivered to one stimulating elec- W+ 230, 18 320 19 42 
trode [strong (S)] was set to elicit an extra- W- 244 17 254 +. 20 5 + 2 

every 12 seconds, with W2 following W1 by 
6 seconds. The continuous testing was 
punctuated by several types of conditioning 
trains (Fig. 1B). First, five conditioning 
trains (100 Hz for 600 msec) were applied 
to W1 and W2 to verify that such activity 
alone fails to induce long-term potentiation 
(LTP) in either of these two W responses 
(4). The interval between the onsets of the 
stimulation trains delivered to W1 and W2 
was 800 msec, and the intertrial interval 
between each of the five W1-W2 pairings 
was 6 seconds (Fig. 1B). Second, five condi- 
tioning trains (100 H z  for 400 msec) were 
also delivered to S to verify that such activity 
alone does not produce heterosynaptic LTP 
in either of the W synaptic responses (7). 
Third, five conditioning trains were deliv- 
ered to all three synaptic inputs with either 
the W1-S or the W2-S forward-pairing 
scheme (Fig. 1B). During W1-S forward- 
pairing the W1 trains began 200 msec be- 
fore the S conditioning trains (forward pair- 
ing) and the W2 trains began 600 msec after 
the S trains (backward pairing); in the W2-S 
forward-pairing situation, these temporal 
relationships were reversed (8). To assess 
the effects of W-S pairings, we determined 
the W1 and W2 amplitudes by calculating 
the mean of ten consecutive responses ob- 
tained during a 2-minute period before and 
again after W-S pairing. The first 2-minute 
average was obtained immediately prior to 
W-S pairing. The second 2-minute average 
was taken between 12 and 16 minutes after 
W-S pairing. 

Division of Neurosciences, Beckman Research Institute 
of the City of Hope, 1450 East Duarte Road, Duarte, 
CA 91010. cellular synaptic response of approximately 
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Differential conditioning trains selectively 
enhanced the response of the forward-paired 
pathway. In some experiments, both the 
W1-S and the W2-S forward-pairing 
schemes (Fig. 1B) were applied sequentially 
to the same slice (Fig. 1C) (9). Paired W1- 
W2 conditioning trains and unpaired S 
trains caused only short-term changes in 
either W1 or W2 responses (1 0). However 
the W1-S forward (temporally overlapping) 
pairing resulted in a persistent enhancement 
of the W1 synaptic response. By contrast, 
the W2-S backward (temporally separate) 
pairing failed to induce associative LTP in 
the W2 response. To show that W2-S for- 
ward pairing was capable of inducing asso- 
ciative LTP in this particular W2 response, 
we switched to the W2-S forward-pairing 
scheme. Again, associative LTP only oc- 
curred in the forward-paired, W2 response. 
Thus associative LTP can be induced in 
either the W1 or W2 synaptic input and is 
conditional only upon the temporal pairing 
relationship with S. 

Similar results were obtained in 14 slices 
from ten rats. Seven slices were randomly 

Ext race l lu la r  
record 

chosen to receive the W1-S forward pairing 
and the remaining seven received the W2-S 
forward pairing (Fig. 1B). For statistical 
analyses, data were combined from the 14 
forward-paired (W+)  pathways (W1 results 
from W1-S forward pairings and W2 results 
from W2-S forward pairings) and from the 
remaining 14 backward-paired (W-) path- 
ways. The combined results are summarized 
in Table 1. Prior to pairing there was (by 
design) no significant difference (1 1 ) in the 
mean amplitudes of the W+ and W- re- 
sponses (t(13) = 1.2, P > 0.05). After 
pairing, the mean W+ response ampli- 
tude increased significantly (t(13) = 19.4, 
P < 0.05), but there was no significant 
change in the mean W- response amplitude 
(t(13) = 1.5, P > 0.05). Finally, after pair- 
ing, the mean W +  response amplitude was 
significantly larger than the mean W- re- 
sponse amplitude (t(13) = 3.7, P < 0.05); 
and, most important, the mean increase in 
the W+ response amplitude was significant- 
ly greater than the mean increase in the 
W- response amplitude (t(13) = 12.1, 
P < 0.05). 

B W  1 - W 2  pairing 
6 sec 

--G- // 
~ 2  stimulus iW21i/----- 

W  1-S forward pairing 

- 
W 2 - S  fo rward  pair ing 4 0 0  - msec 

-------' W  1  Lj+ 
---his //--J--- 

j# - 
'>, 7 5 0  

W 1 - W 2  W I - S  forward W 2 - S  forward 
pairing pairing pairing 

0 G 

% 1 0 
0 

* S  alone S  alone 
m I I I 1 I 1 I 1 1 I I -- 

1 0  2 0  3 0  4 0  5  0  
T ime (minutes) 

Fig. 1. Differential conditioning of associative synaptic enhancement. (A) Three bipolar stimulating 
electrodes were placed in stratum radiatum to stimulate Schaffer collateral and commissural fibers 
projecting to area CAI. The stimulating electrode closest to area CA3 is consistently designated W1. 
(B) Timing relations for three stimulation patterns. Square pulses indicate the onset and duration of 
100-Hz afferent stimulation through the indicated electrodes. The first pattern was used as a control to 
determine the effects of stimulation of the weak synaptic inputs alone. In the second pattern, W1 was 
forward-paired with S, while in the third pattern, W2 was forward-paired with S (see text). (C) Results 
from a slice in which the three stimulation patterns were applied sequentially. W1 (@), W2 (0). 

This demonstration of differential and 
timing-specific induction of associative LTP 
shows that, in the absence of complex neu- 
ronal circuits, hippocmpal synapses can ex- 
press the types of conditional changes that 
could mediate aspects of associative learn- 
ing. We have shown that (i) this is an 
activity-dependent form of neuroplasticity; 
(ii) the induction of the functional modula- 
tion is rapid; (iii) rhe expression of the 
enhanced synaptic strength is persistent; (iv) 
modification of one synaptic input is condi- 
tionally dependent upon temporal contigu- 
ity or contingency with activity in another 
synaptic input to the same region (12); and 
(v) the associative enhancement is specific to 
synapses whose activity conforms to the 
temporal requirement (12). These are also 
features of the synaptic interactions in cer- 
tain identified circuits of Aplysia that have 
been demonstrated to mediate behavioral 
differential Pavlovian conditioning (13). 

A reasonable working hypothesis is that 
the mechanism responsible for these plastic 
properties of hippocampal synapses (14) 
participate in some aspect of the suspected 
role (2) of this cortical circuitry in higher- 
order Pavlovian conditioning (15). The oc- 
currence of this form of synaptic memory in 
the hippocampal brain slice will enable in- 
vestigation of associative interactions at the 
level of synaptic microphysiology and bio- 
physics (5, 14). Finally, differential condi- 
tioning paradigms can be used to determine 
the extent to which synaptic modification 
rules parallel those of higher-order condi- 
tioning (2, 12, 15). 
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Vasoconstriction: A New Activity for Platelet-Derived 
Growth Factor 

Platelet-derived growth factor (PDGF) is a potent rnitogen for vascular smooth muscle 
cells that has been implicated in the pathogenesis of atherosclerosis. The potential role 
of PDGF in the altered vasoreactivity of atherosclerotic vessels has been studied 
through an examination of its effects on contractility in the rat aorta. PDGF caused a 
concentration-dependent contraction of aortic strips and was signiticantly more potent 
on a molar basis than the classic vasoconstrictor peptide angiotensin 11. Furthermore, 
PDGF increased the cytosolic free calcium concentration in cultured rat aortic smooth 
muscle cells. These observations suggest a new biological activity for PDGF that may 
contribute to the enhanced vasoreactivity of certain atherosclerotic vessels. 

P LATELET-DERIVED GROWTH FACTOR 

(PDGF), a cationic protein ofplatelet 
alpha granules, is a potent mitogen in 

vitro for vascular smooth muscle cells 
(VSMC) (1).  In addition, PDGF in vitro 
causes migration of VSMC as well as of 
fibroblasts and inflammatory cells (2 ) .  On 
the basis of these activities it has been 
proposed that PDGF, released at sites of 
vascular injury, plays a significant role in the 
development of atherosclerosis, particularly 
in VSMC migration into and proliferation 
in the intima (3). Although contraction and 
maintenance of tone are the major physio- 
logic functions of VSMC, the consequences 

of mitogenic stimulation, as occurs in ath- 
erosclerosis, on these physiologic functions 
of VSMC have not been considered. Be- 
cause both experimental and clinical coro- 
nary artery spasm occur predominantly at 
the site of atherosclerotic lesions (4) and 
because atherosclerotic lesions are thought 
to have increased basal tone (5), it has been 
suggested that some features of this disease 
are responsible for the hypercontractility 
seen basally and in response to agonists such 
as ergonovine, histamine, and serotonin (6). 
We have proposed that mitogenic influences 
acting on VSMC in atherosclerotic arteries 
may contribute to the enhanced contractile 

responsiveness (7). This seems plausible be- 
cause (i) certain mitogens (including 
PDGF) mobilize intracellular calcium in sev- 
eral cell types (8), and (ii) agonist-mediated 
increases in cytoplasmic calcium result in a 
contractile response in VSMC (9). PDGF is 
the mitogen generally considered to be the 
most important in stimulating the prolifera- 
tion of VSMC in atherosclerosis (3). To test 
the hypothesis that PDGF can mediate con- 
traction in VSMC, we assessed its contrac- 
tile effects on rat aorta and its ability to 
mobilize calcium in cultured rat VSMC. T o  
evaluate the relative potency of PDGF as an 
agonist, we compared its vasoactive effects 
with those of the potent vasoconstrictor 
angiotensin 11. 

The effects of purified human PDGF on 
contractile tension in isolated rat aortic 
strips are illustrated in Fig. 1. The PDGF 
used in these experiments was purified to 
more than 99 percent homogeneity accord- 
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