
"The changes for 
learning must be at 
synapses where circuits 
are recwited into 
functional assemblies." 
Wolf Singer. 

This individual retains the ability to learn 
new skills or habits, but is unable to acquire 
new cognitive memory. Based largely on 
this example, researchers segregate proce- 
dural learning, or habit formation, from 
cognitive learning. But they debate about 
how neuronal assemblies fit into the picture. 

For instance, Mark Konishi of the Cali- 
fornia Institute of Technology in Pasadena 
thinks there are qualitative differences be- 
tween learning and memory in lower organ- 
isms and in man. He sees a neuronal assem- 
bly as a population of neurons that performs 
a function, such as song production in birds, 
or coordination of walking or swimming. 
Konishi thinks simple organisms, like Aply- 
sia and Hemntssenda, have neuronal assem- 
blies, although their form of learning is 
mostly procedural. But at the same time, he 
says, "the term assembly is unfortunate be- 
cause it is theoretical and hypothetical." 

In contrast, Mortimer Mishkin of the 
National Institute of Mental Health asso- 
ciates a cell assembly more with cognitive 
processes. He thinks that the brains of 
higher organisms, including man, store 
copies or representations of activity present 
when some object in the environment is 
processed by the brain. He calls the storage 
of this form of learning representational 
memory and equates it with cognitive 
memory. Mishlun views the brain's stored 
copy of a representation as a neuronal as- 
sembly. 

Despite their unending struggle to define 
terms and processes, Dahlem participants 
agreed that neuronal assemblies are coacti- 
vated sets of neurons, capable of changing 
depending upon the kind of activity they 
experience. They theorized that a Darwin- 
ian-like selection process may operate dur- 
ing the generation of neuronal assemblies. 
Certain patterns of cooperative activity 
might reinforce and stabilize connections 
within the assembly. Thus, one assembly 
could survive another because it experiences 
more cooperative activity, from within itself 
and from external sources. 

Understanding the bases for learning 
from gene regulation to functional neuronal 
assemblies is an ambitious objective. But the 
recent Dahlem conference left behind some 
basic principles and observations. 

Coactivation of neurons is fundamental to 

What Does It Mean to 
Be Random? 
A new theory of randomness multipliers may explain what 
randomness is and why most phenomena that are thought t o  
be random are not so random after all 

ERSI Diaconis has spent much of the 
past several years thinking about ran- 
domness-a subject that is proving to 

be as slippery as it is important. ~ iaconis ,  a 
statistician from Stanford University who is 
spending this year at Harvard, says his work 
is leading him to conclude that, "the more 
you think about randomness, the less ran- 
dom thinns become. But sometimes vou can " 
take advantage of a lack of randomness." 

In particular, Diaconis and his colleagues 
Bradley Efron and Eduardo Engle are devel- 
oping a tool that they call randomness mul- 

tipliers that, Diaconis explains, "take a small 
amount of uncertainty and deterministically 
produce highly random outcomes." As a 
direct consequence of this work, these re- 
searchers have, for the first time, a quantita- 
tive definition of chaos. 

This is not the first time that researchers 
have tried to analyze randomness, of course. 
"There have been heroic efforts to under- 
stand randomness," Efron remarks. But the 
concept remains elusive. "Randomness is 
not an easy concept to define," says Efron. 
In fact, books on probability do not even 

the learning process. Researchers have evi- 
dence from models of gene regulation, long- 
term potentiation in hippocampus, synapse 
maturation during development, and neuro- 
nal assembly formation that activity of pre- 
synaptic and postsynaptic cells is important 
for long-term modifications. But why? 

Neurons are more likely to achieve a 
threshold level of activity, triggering calcium 
entry, when they fire together. Calcium 
itself functions as a second messenger and 
enhances other second messenger systems, 
stimulated by neurotransmitters like norepi- 
nephrine, serotonin, and acetylcholine. 

"How one synapse 
learns tells you nothing 
about what can be 
learned.'y Pmko Rukic. 

Such relatively transient changes may set 
the stage for longer lasting ones in gene 
expression, increased neurotransmitter syn- 
thesis, and membrane structures. Some 
changes may be highly localized and restrict- 
ed to specific synapses. Others may be neu- 
ron-wide and affect all the synapses on a cell, 
which in turn, could induce changes in more 
neurons. DEBORAH M. BARNES 

attempt to define it. "It's like the concept of 
a point in geometry books," Efron says. 
"What we're trying to do is like taking 
points apart and seeing what's inside." 

Randomness is of interest not only to 
statisticians. Diaconis stresses. It touches all 
aspects of life and can have political and 
sociological importance. For example, in 
1970. a draft lottenr was carried out and. in 
order to make the drawing appear as fair as 
possible, the planners decided to have indi- 
viduals ~ i c k  birthdavs out of an urn. The 
365 days were put in capsules and placed in 
the urn, the urn was shaken for several 
hours, and then the capsules were chosen, 
one by one, from the urn. But, says Dia- 
conis, "when you looked at the data, it was 
very striking that the dates were not ran- 
dom." Birthdays in December tended to be 
drawn first, those in November next, then 
those in October, and so on. 

The reason the draft lottery drawing was 
not random is that the capsules were put in 
the urn according to a definite pattern. The 
January birthdays were put in the urn first 
and fell to the bottom, the February capsules 
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were put in next and sank down, then the 
 arch capsules were put in. Last of all, the 
December capsules were put in. Even 
though the urn was turned for several hours, 
"it turns out that it takes much longer than 
people think to mix things up," Diaconis 
remarks. 

Another examde of the uses and abuses of 
.randomness is the generation of random 
numbers by computer. These computer- 
generated random numbers "are the main- 
stay of modem computations," says Dia- 
conis. "Scientists from every area of science 
use millions and millions of these random 
numbers every day." They are used, for 
example, in Monte Carlo methods and for 
integrating higher dimensional functions. 
But they are not really random. Computers 
generate these numbers according to fixed 
recipes. And although they pass certain tests 
for randomness-a high number is followed 
by a lower one as often as a lower number is 
fbllowed by a higher one, for example- 
their intrinsic lack of randomness is trouble- 
some to many investigators. 

Several years ago, George Marsaglia of 
Washington State University in Pullman 
found examples of simple randomness tests 
fbr which numbers generated by all the stan- 
dard random number generating programs 
Wed. Now there are several new ways of 
generating random numbers so that they 
pass Marsaglia's tests, but in all likelihood 
&her sim~ie randomness tests will be de- 
vised that "show up the new random number 
generators as well. What this means, says 
Diaconis. is that "scientists should be wor- 
ried." 1f ;hey are ndive about the random- 
ness of these computer-generated numbers 
they could end up with misleading results. 

A final example of the pervasiveness of 
randomness is in the use of probability 
models. "I'm worried about the way people 
use probability models," says Diaconis. "It 
seems to me there is a lot of automated, non- 
thinking use of probability. People write 
down probabilistic models and often assume 
the standard postulates of randomness. But 
frequently their assumptions are just crazy 
and their conclusions are meaningless." 

This sort of use of probability models 
occurs in large-scale models of the econ- 
momy, according to David Friedman of the 
University of California at Berkeley. These 
models are used to make all sorts of predic- 
tions-from the rate of inflation to the rate 
of depletion of the nation's energy re- 
sources-and have become an industry in 
themselves. But, Friedman and others argue, 
they are fundamentally unsound, in part 
because of their misuse of probability mod- 
els. "It concerns me," says Diaconis. "It is a 
use of probability that 1-think is way out of 
control." 

It actually was E b n  who started Dia- 
conis thinking about what it really means to 
be random. Efion gave Diaconis an exam- 
ple. Suppose a wall is painted with 10-foot- 
wide black and white snipes. If you throw a 
dart at the wall, you can decide ahead of 
time whether it d land on a black or a 
white stripe. There is nothing random about 
it. Now suppose you start shrinking the 
smpes until they are only 1/10 inch wide. 
You would say that it is uncertain-ran- 
dom-whether the dart will land on a black 
stripe or a white one. "Brad gave me that 
example and then asked, 'Can you make a 
theory of that?' " Diaconis recalls. "It was a 
key image and a crucial question." 

Diaconis began by going back to the 
clearest, simplest examples of randomness 
and asking what it means to be random. 
'The simplest, or one of the simplest, exam- 
ples is coin tossing," Diaconis says. "It is an 

conditions result in a final outcome of heads 
or mils. This divides the graph into regions. 
The regions get closer and closer together as 
the initial conditions get farther and farther 
from the origin, meaning that tiny changes 
in initial conditions make the difference 
between heads and tails. They showed ex- 
perimentally that most coin tosses fall in this 
region where tiny changes in initial condi- 
tions make all the difference. Thus coin 
tossing turns out to be almost random-you 
would have to flip a coin millions of times to 
see any bias. The two investigators were able 
to prove that the regions must get closer 
together as you move out from the origin-- 
it is not just a matter of inferring this from a 
graph. 

In a similar manner, Diaconis and Keller 
analyzed roulette, the rolling of dice, and 
card shuWing. "Each is its own long story 
and for each the results are roughly similar," 

Persi Diaconis 
"The more you think 
abm randomness, the 
lar random thiys  
become." 

image we all have of a fundamentally ran- 
dom thing. But the first thing to say about it 
is, it's not random-it's physics. The upward 
velocity of the coin, the rate of spin, and 
Newton's laws all determine where the coin 
will land." Recently, three groups of investi- 
gators, including Diaconis and Joseph Kel- 
ler of Stanford, independently analyzed the 
physics of coin tossing. (The other two 
groups are Vladimir Vulovic and Richard 
Prange of the University of Maryland and 
Yue Zeng-Yuan and Zhang Bin of Beijing 
University.) 

Diaconis and Keller began by drawing a 
graph. On the x-axis they plotted velocity 
and on the y-axis they plotted spin. A point 
on the graph is the initial conditions for a 
coin toss. Their graph showed which initial 

Diaconis says. "If you look hard, things 
aren't as random as everyone assumes." 

In some cases Diaconis and Keller saw 
cutoffs after which a phenomenon that is not 
random at all suddenly becomes nearly so. 
For example, if cards are shuffled five or 
fewer times, they simply are not randomly 
mixed. After seven or eight shuffles, they are 
suddenly mixed well. 

Diaconis is building a theory that allows 
him to come to terms with these examples. 
To do so, he had to take into account the 
two competing views of randomness in the 
scientific community. The first view is the 
so-called frequentist view. If you ask a fre- 
quentist what it means to say that coin 
tossing is random, he will respond that if 
you flip a coin often enough, it will come up 
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heads half the time and tails half the time. 
But this definition of randomness is not 
entirely satisfactory, Diaconis points out. 
"We often think of randomness in situations 
where there is no chance of repeating a 
process over and over. We talk about the 
chance of a Mideast war in the next year, for 
example, although we can't even repeat 
things once in that case.'' 

The other standard notion of randomness 
is the subjectivist view. The idea here, says 
Diaconis, is that "coins don't have probabili- 
ties, people have probabilities. A probability 
is a measure of someone's degree of belief in 
an outcome-'For me, it's random.' " 

A number of statisticians have developed 
theorems to explain why the frequentists 
and subjectivists will come to similar conclu- 
sions about simple repetitive phenomena. 
The idea is that as more and more data 
accumulate-a coin is tossed over and over, 
for example-two people with different 
starting assumptions must come to the same 
conclusions. Or, as statisticians say, the data 
swamp prior beliefs. Diaconis's theory of 
randomness multipliers explains why subjec- 
tivists and frequentists agree, even when 
phenomena are not repeated, and captures, 
he proposes, the essential nature of objective 
chance devices like spinning wheels, spin- 
ning urns, and flipping coins. 

It is a theory, Diaconis points out, that is 
based on the nearly forgotten work of a 
statistician, Eberhard Hopf, who began 
such studies in the 1930's. Hopf's work 
never got much attention, however, and 
Diaconis believes it was underappreciated in 
part because Hopf himself and other statisti- 
cians soon became focused on the complete- 
ly unrelated subject of quantum mechanics. 
"Much of what I'm doing is reinterpreting 
Hopf's work and bringing it up to date," 
Diaconis says. 

Diaconis's theory has three ingredients. 
First, there is the space of initial condi- 
tions-the velocities and spins of a coin, for 
example. Then there is a space of out- 
comes-heads or tails, in the coin-tossing 
case. Finally, there is the family of probabili- 
ty distributions-all possible opinions on a 
coin's particular initial velocity and spin. 

To get at the notion of a randomness 
multiplier, Diaconis explains what it means 
for a family of probability distributions to 
have a depth. "You and I can have very 
different ideas of how fast a coin is flipping. 
I may be sure it is flipping 15 times, and you 
may guess that it's more like 5 to 20 times," 
he remarks. The depth of a probability 
distribution asks, with a family of distribu- 
tions, what's the most different the guesses 
can be. 

Diaconis's randomness multipliers map 
the probability distributions that represent 

guesses about the initial conditions into the 
space of heads or tails. "The system is a 
randomness multiplier if it decreases depth," 
he explains. In the coin-tossing example, 
two people could differ widely in their opin- 
ions on the initial conditions, but would be 
forced to agree that there is a 50-50 chance 
that the coin will come up heads. "Very 
different opinions merge," Diaconis says. 

Using this theory of randomness, Dia- 
conis continues, he can identify, quantita- 
tively, just how random the standard exam- 
ples of chance phenomena are. And he also 
can quantify chaos. 

Randomness is 'like the 
concept of a point in 
gemnetvy bo~lts,~~ ERon 
says. 'What we've 
tGing to do is like 
taking points apart and 
seeing whatys inside." 

In chaos, a little bit of uncertainty in 
initial conditions is quickly and enormously 
magnified. The system is unpredictable be- 
cause the initial conditions can never be 
specifed so precisely that you can tell where 
the system will end up. "It is a perfect 
example of a randomness multiplier," Dia- 
conis observes. Investigators who study cha- 
os have analyzed hundreds of systems. Dia- 
conis says the questions he asks are, How 
much uncertainty is there in the initial con- 
ditions? How many times does the mathe- 
matical procedure creating chaos operate? 
And, finally, after this many iterations, How 
close is the system to random? 

This then provides an objective definition 
of chaos: To say a system is chaotic to a 
particular degree means it is a specific dis- 
tance from random after a specific number 
of iterations. 

Diaconis's theory of randomness is not a 
simple one, unfortunately. But perhaps that 
is inevitable. If randomness were simple, it 
would not have remained undefined for so 
long in standard probability texts. It may 
well be that this multistep definition of 
randomness is the best that can be done. In 
any event, the new theory will soon be put 
to use as Diaconis teaches a semester-long 
course on it at Harvard this semester and 
instructs other statisticians and mathemati- 
cians on how to use it to analyze random 
events. GINA KOLATA 

Stanford Synchrotron X= 
Ray Beamline Dedicated 

After days of drenching rains that caused 
widespread flooding in California, on the 
morning of 20 February the sun broke 
through and a rainbow appeared over the 
Stanford Synchrotron Radiation Laboratory 
(SSRL). Laboratory officials hoped it was a 
sign of good times to come, as that after- 
noon they dedicated what Stanford's 
George Brown calls "the brightest source of 
hard x-rays in the world." 

The source is a beamline attached to the 
PEP electron-positron storage ring, a high- 
energy physics facility of the Stanford Linear 
Accelerator Center (SLAC). With the PEP 
beamline, where the first two experiments 
are now under way, researchers can tap the 
intense, highly collimated x-rays emitted by 
the circulating electrons in PEP when they 
pass through a special magnet called an 
undulator. When PEP runs at its normal 
high-energy physics energy of 14.5 giga- 
electron volts, the undulator generates radia- 
tion in the wavelength region from about 
0.5 to 1 angstrom. 

Because of the high brightness or spectral 
brilliance of their light, undulators are the 
coming thing in synchrotron radiation, 
most of which now comes from electrons as 
they follow a circular trajectory through the 
bending magnets of a storage ring. The 
disadvantage of undulators is that the most 
intense radiation comes at longer wave- 
lengths than it does from bending magnets. 
Hence, undulators in SPEAR, a smaller 
storage ring that SSRL shares with SLAC, 
can make lots of longer wavelength soft x- 
rays at the normal SPEAR operating energy 
of 3 gigaelectron volts but not so many 
hard x-rays. PEP'S much higher energy 
pushes the undulator spectrum to shorter 
wavelengths. 

~ c c o r d i n ~  to Brown, who oversaw con- 
struction of the approximately $3.6-million 
project (including building, undulator, 
beamline optics, and an experimental sta- 
tion), the high brightness of the PEP beam- 
line will be immediately useful in the first 
two ex~eriments. The.first is a so-called 
glancing-angle x-ray diffraction study of the 
structure of thin films and surfaces. The 
second is a high-resolution inelastic x-ray 
scattering study of the momentum depen- 
dence of processes in solids with characteris- 
tic energies in the range from 0.03 to 2 
electron volts. The high brightness both 
compensates for comparatively weak signals 
and permits the use of small samples. 

ARTHUR L. ROBINSON 
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