
Massively Parallel Computers: The Connection 
Machine and NON-VON 

article I concentrate on computers at the larger end of the scale, but I 
The demand for high-speed computers is increasing, and will also mention some smaller parallel computers of historical 
as the limits on single-processor computers are ap- importance. 
proached, researchers are turning their attention to paral- 
lel computers. Parallel computers have more than one 
process&g element; massive6 parallel computers contain 
many processing elements. Constructing computers on 
this scale and learning how to program them effectively 
will be major challenges in the next decade. Several such 
computers, for example the Connection Machine and the 
NON-VON, are under development. 

C OMPUTERS HAVE BECOME BOTH FASTER AND LARGER- 

larger in the sense of having more dynamic random access 
memory (RAM) and faster in the instruction-execution rate 

of the central processing unit (CPU). Because computer memories 
are growing faster than the speed of CPU's, the fraction of the 
computer performing useful computations has diminished sharply 
over the years. 

The sorts of computations that are being done today or are being 
contemplated for the near future require considerable amounts of 
computer processing time, and many computations that one would 
like to run in real time or faster cannot now be done. For example, in 
weather prediction simulations of weather must be done faster than 
weather can happen. 

Problems in large databases, artificial intelligence, signal process- 
ing, and weapons design are only some of the areas in which the 
computational limitations cannot be met with current computer 
architectures. The obvious solution to the computational-need 
problem is to apply parallelism. That is, if a computer with a single 
processor is not sufficient, then build a computer that has more than 
one processor-perhaps very many processors-to do the job. 

The Multiprocessor Spectrwn 
Multiprocessors come in various sizes, ranging from two proces- 

sors connected by a simple serial link to computers with tens of 
thousands of processors connected by a complex communications 
network. 

A massively parallel computer requires many processors and 
perhaps many memories. At present, most small parallel computers 
implement a coarse-grained parallelism, in which relatively large 
processors running relatively large, mostly independent computa- 
tions communicate infrequently. Most massively parallel computers 
implement a fine-grained parallelism, in which small processors 
running small or identical operations communicate frequently. As 
the size of the processors decreases, the grain of parallelism de- 
creases, the communication frequency tends to increase, and the 
ratio of communication to processing tends to increase. In this 

Communications Networks 
In a certain class of multiprocessors a typical computer is a 

collection of n processors connected to m memories, and each 
processor can communicate with some subset of the memories. A 
special case is n = m, with each processor communicating with each 
memory. The physical means by which this communication between 
processors and memory occurs is called the communications net- 
work. 

Crossbar switches. When n and m are small, it is reasonable for the 
network to have direct connections between each processor and each 
memory. For example, when n = m, it is possible to build a crossbar 
network in which there is a direct link from each processor to each 
memory. These links can be circuit-switched or package-switched. 
In a circuit-switched link a connection can be used continuously for 
communication, while in a packet-switched link each message is 
routed individually to its destination. A circuit-switched network is 
like a telephone link and a packet-switched network is like the U.S. 
Postal Service (1). The 16-processor Carnegie-Mellon C.mmp (2) is 
an example of a computer with a crossbar switch); performance 
experiments on it provided some of the first important data on 
shared-memory multiprocessors. 

Distributed memory. In another variant of pardel machines the 
processors have memories attached to them and the global memory 
of the computer is nothing more than the sum of each of the 
individual memories. When a processor wishes to access some 
memory location, the address of the memory location determines 
the individual memory module in which the desired memory 
location is located. A memory reference, then, will take a shorter or a 
longer time depending on whether the reference is to a location in 
the local memory or to a location in the local memory of some other 
processor, respectively. 

The communications topology and geometry become important 
for reasons of performance and programming. If it takes relatively 
long to refer to a memory location far away, it becomes more 
important to allocate tasks and data to processors and memories 
close together. If the solution to a problem can be reformulated in 
such a way that the structure of the communications in the solution 
corresponds to the structure of the multiprocessor on which the 
solution will run, then the reformulation may well be worth the 
reprogramming effort. The 50-processor Carnegie-Mellon Cm* is a 
distributed memory multiprocessor; several clusters of machines 
connected by a bus are themselves interconnected by intercluster 
buses (3). 

- ~~~~~ 

hchard P Gabr~el is pres~dent and chief techmcal officer of Luc~d, Inc , Menlo Park, 
CA 9407,s and 1s consulung associate professor of computer sclence, Stanford Umversi- 
ty, Stanford, CA 94306 

28 FEBRUARY 1986 ARTICLES 975 



Gvidc. Processors and their associated memories can be laid out as 
an n x m grid. In one form of grid, each processor is connected 
directly to its north, east, west, and south neighbors, with the 
exception of the processors on the edge of the grid. Algorithms such 
as relaxation are naturally performed on such processors because the 
structure of the processor matches the structure of the problem and 
the problem solution. The east and west edges and the north and 
south edges of a grid can be connected to produce a torus, which has 
a smaller diameter (4). 

ILLIAC IV (5 )  was a grid machine. It had an 8 x 8 array of 
processors, each having a cycle time of 240 nsec and 2048 words of 
memory. The east and west edges of the array were connected to 
produce a cylinder. The machine was used primarily for matrix 
manipulation and for solving partial differential equations. The array 
of processors ran as a single-instruction, multiple-data (SIMD) 
machine and appeared to the programmer as an attached, special- 
purpose processor on a Burroughs B6500 computer. 

One of the first massively parallel computers was the Goodyear 
Massively Parallel Processor (MPP), built in 1979 (6). This machine 
is a 128 x 128 grid of 64-bit, 100-nsec processors. Each processor 
has 1024 bits of RAM. The processors are packaged eight per chip. 

The connectivity of the edges of the MPP can be changed under 
soha re  control. The edges can be left open, the east and west edges 
can be connected to create a vertical cylinder, the north and south 
edges can be connected to create a horizontal cylinder, both 
cylinders can be created to form a torus, and each processor number 
n (0 5 n < 127) on the east edge can be connected to processor 
(n + 1) on the west edge, with processor 127 on the east being 
connected to processor 0 on the west, to create a spiral linear circuit. 

Omega networh. The major problem to solve in building a 
massively parallel computer is how to interconnect a very large 
number of processors and memory modules. In a crossbar switch, if 
n processors are being connected to n memory modules, then the 
amount of hardware is proportional to n2. For n < 100 this amount 
of hardware is feasible, but for n > 10,000, the cost of the crossbar 
switch is prohibitive and its size unmanageable. 

There is a class of connection strategies whose hardware require- 
ments grow as log n; this family uses a network known as the omega 
or butterfly network. This type of network is a member of a class of 
networks called shae-exchange networks. Omega networks use a 
multistage network to implement the shultle-exchange; in an alter- 
native implementation, a recirculating network is used. 

The omega network comprises a column of processors and a 
column of memory modules. Each memory module contains ad- 
dresses in some range of addresses; to move a message from a given 
processor to a given memory module, a series of steps is taken, each 
bringing the message closer to the memory module to which the 
message is directed. 

The address of a memory location can be used to determine the 
memory module in which that location is situated by looking at the 
address one bit at a time; as in binary search, the number of possible 
memory modules in which the desired memory location is contained 
is cut in half at each stage. Furthermore, if a different piece of 
hardware is used at each stage, several memory requests can be 
moving through this network concurrently, gaining the same sort of 
benefits as is obtained from pipelining. 

Consider the case of n = 8; there are eight processors and eight 
memory modules. Three bits are used to move a memory request 
from a processor to a memory module. There are three columns of 
message-processing nodes on the network, where each column has 
elght message-processing nodes. Consider the address of a memory 
location. The first address bit selects the correct half of the network 
to which to direct the memory request. The second column of 
memory-processing nodes examines the second bit and directs the 

memorv reauest to the correct half of the remainder of the network. 
# 4 

That is, the second column of memory-processing nodes is parti- 
tioned into two parts, and each of the parts is able to communicate 
only with half of the remaining network. In each half of the column, 
the same algorithm that is used at the first level of the network is 
used to select the half of the network accessible to the second level. 
After the second column has processed the memory request, the . . 

memory request will have been-routed to the correct quarter of the 
network. 

Figure 1 shows the omega network that connects eight processors 
to eight memories. Memory requests flow from left to right. Figure 
1 is drawn in the traditional manner, which deemphasizes the 
perfect shuffle between each stage. 
- A common simplification mahe in computers of this type is to 
package a memory with a processor so that some memory requests 
are not routed over the network. In Fig. 1, processor PI  would be 
packaged with memory module MI ,  the effect being to fold the 
diagram so that the left-hand edge coincides with the right-hand 
edge. This is the communications network architecture used by the 
Bolt, Beranek & Newman Butterfly computer (7). 

The hypercube. Another simplification to the omega network is the 
hypercube, sometimes called a Boolean n-cube. A hypercube is an 
omega network with the processing elements in each row collapsed 
to one processor. For example, a three-dimensional hypercube has 
eight nodes, arranged as a cube. The nodes of the cube are located at 
the coordinates (0,0,0), (0,0,1), (0,1,0), (O,1,1), (1,0,0), (1,0,1), 
(1,1,0), and (1,1,1). Two nodes are connected if their coordinates 
differ in exactly one component. 

Routing that involves relative addressing in an n-dimensional 
hypercube is particularly simple. If the relative node address of a 
message is all zeros, the message is at the correct node; otherwise, 
the router can ~ i c k  a comDonent of the node address that is not zero 
and send the message in a directioil in which that component of the 
node address is one, zeroing that component before it is sent. Thus, 
every step of the transfer of a message zeroes one component of the 
node ad&ess; it takes at most log n time to transmit a message 
through an n-dimensional hypercube. 

The Connection Machine (1)  uses the hypercube connection 
scheme. 

Massively Parallel Machines: The Connection 
Machine and NON-VON 

In this section two of the massively parallel machines in existence 
or under development are discussed. Special attention is paid to the 
hardware characteristics of the machines, but programming issues 
are also raised. The Connection Machine, built by Thinking Ma- 
chines Corporation, is highlighted because it offers the possibility of 
a high degree of extendable paral!elism and because the program- 
ming issues have been well stated and well thought out by the 
machine's designers. Columbia University's NON-VON is dis- 
cussed as a testing ground for a range of possible parallel architec- 
tures and programming methodologies. 

The Connection Machine. This machine is an SIMD computer 
comprising 65,536 (216) processors connected as a Boolean n-cube. 
In addition, there is an x-y grid superimposed on the machine. Each 
processor in the machine is a 1-bit processor with 8 bits of internal- 
state information and 4096 bits of local memory. The internal state 
is in the form of eight general-purpose registers; in addition, there 
are eight special-purpose registers. These 16 registers are referred to 
as "flags registers." 

Except for processors disabled for the current instruction, all 
processors execute the same instruction at the same time. The 

SCIENCE, VOL. 231 



instructions are broadcast to each processor by another computer, 
the microcontroller, which takes as input a series of "macroinstruc- 
tions" from a controlling computer, converts each macroinstruction 
to a series of three "nanoinstructions," and distributes the nanoin- 
structions to each of the processors in the Connection Machine. The 
nanoinstructions arrive at each Connection Machine processor at 
the rate of 3 million per second (this assumes that the processors are 
controlled by a 3-MHz clock). 

Each processor takes three inputs: 2 bits from memory and a flag. 
From these inputs 2 bits are computed: one to be placed in the local 
memory and another in the flags registers. Three nanoinstructions 
are required to perform each such operation. The operation per- 
formed on the three inputs is determined by a truth table of all 
Boolean hc t ions  on 3 bits; in fact, one truth table is used to 
determine the memory bit written and another for the flags register 
bit written. 

Every nanoinstruction performs one memory transfer. The first 
nanoinstruction gets the first memory bit, specifies the truth table 
for computing the memory result, and specifies the internal flag bit 
for conditionalizing this cycle. The second nanoinstruction gets the 
second memory bit, specifies the truth table for computing the flags 
register result, and specifies the input flag bit. The third nanoin- 
struction conditionally stores the result in memory and specifies 
which flags register gets the flag bit result. 

The microcontroller provides 55 bits of information during this 
three-instruction cycle: two 12-bit memory addresses, 4 bits to 
specify the flags register from which to obtain the flag input, 4 bits 
to specify the flags register to which to write the flag output, 8 bits 
for the truth table for the memory bit computation, 8 bits for the 
flags register computation, 2 bits for the x-y grid motion, and 5 bits 
for conditional execution. 

Each processor receives the same 55 bits of control information. 
The 5 bits of conditional execution information determine whether 
a particular processor executes the nanoinstruction: 4 bits determine 
the flags register to use to determine whether to execute and the 
remaining bit determines how the flag is to be interpreted-if "on," 
the instruction is executed only if the flag is on; if "off," the 
instruction is executed only if the flag is off. 

A microcontroller distributes nanoinstructions to 16,384 proces- 
sors; there are four such microcontrollers in a full Connection 
Machine. The microcontroller takes a sequence of macroinstructions 
from a host computer-either a Symbolics 3600 or a Vax-and 
translates the macroinstructions into a sequence of nanoinstructions 
that are broadcast to the Connection Machine. The microcontroller 
is isolated from the host by a pair of first in-first out buffers (FIFO 
buffers) that buffer macroinstructions from the host to the micro- 
controller and that buffer data returning from the connection 
machine. 

The router moves messages among the processors. Each router 
serves 16 processors; the router and its processors are built on a 
single chip. The router can perform five different operations: 
injection, delivejl, forwarding, buffering, and referral. Injection is 
putting a message into the network, delivery is putting a message in 
the memory of the processor to which it is addressed, forwarding is 
sending a message from one router to another (when a message 
must leave the chip), buffering is used to store multiple messages to 
a single router, and referral is used when the buffer of a destination 
router is full (the message is sent to an adjacent router whose buffer 
is not full). When a message is referred it is not sent any closer to its 
destination. 

When a message is sent to a target processor it moves closer to the 
target by means of the relative routing algorithm mentioned earlier. 
Because the address of any processor in the Connection Machine is 
12 bits and because there can be only 12 bits in an address, the 

Fig. 1. Omega network. 

maximum time required to move a message from one processor to 
another is 12k for some constant k, assuming that no referral occurs. 
However, because a message can move away from its destination 
when it must be referred, there are worse cases than 1212. 

Part of the message is the address to which the message is 
addressed, and messages move in bit-serial form. Assuming a 32-bit 
message and assuming that each processor is sending a message to 
some other processor, one can expect all messages to reach their 
destinations within 8 to 20 petit cycles. A petit cycle is the cycle 
during which the router directs all its messages to some other router. 
The router considers each dimension in the 12-bit address at a time; 
it scans all messages for 1 bit in that dimension and transmits each of 
them somewhere during a dimension cycle. Twelve dimension cycles 
move all messages to some other router. One measure of the 
performance of the router is the time it takes to transmit a bit from 
one router to an adjacent one: 1 psec. 

The Connection Machine components are simple, and one might 
expect that programming it would be similar in complexity to 
microcoding a uniprocessor-single bits are operated one at a time, 
with concurrent activities constantly happening. The host computer 
and the microcontrollers help the programmer by translating higher 
level instructions into the low-level nanoinstructions. 

Programming the connection at the higher level can be accom- 
plished in Connection Machine LISP (CmLISP). This LISP can be 
characterized as a radical extension of an existing programming 
language, in this case Common LISP (8). The extension is the 
addition of a new data structure, called a xector, which is a sequence- 
like structure. A xector comprises a domain, a range, and a mapping 
from the domain to the range. One can think of this data structure as 
being a set of processors in the Connection Machine (the range) and 
a set of names for the processors (the domain); the mapping of 
domain to range is handled by the association of a name with a 
processor. The mapping of an element in the domain to an element 
in the range is called an element of the xector, and the two 
components of the element are called the index and the value. 

The following is a simple xector that maps the domain {a b c} onto 
the range (1 2 3): {a -, 1 b + 2 c -, 3). In this xector there are 

28 FEBRUARY 1986 ARTICLES 977 



three elements: one with index a and value 1, one with index b and 
value 2, and one with index c and value 3. 

Operations are defined on xectors that enable the programmer to 
express operations which are performed concurrently on the ele- 
ments of xectors. LISP programs manipulate xectors, and operations 
on xector-based obiects run faster on the Connection Machine than 
they would on a uniprocessor. In this respect, the Connection 
Machine is like a special-purpose processor attached to the host 
machine. 

There are two basic operations, a and @. Operation a takes an 
expression and produces a xector that has the value of that expres- 
sion as its constant value, and its domain is every possible object. 
Operation a is most useful when used in conjunction with an 
extension to Common LISP function calling: function calling using 
a xector of functions. 

Operation @ takes three arguments, a function and two xectors. 
The two xectors are assumed to be over the same domain. The result 
of @ is a third xector; the values of the resultant xector are taken from 
the values of the first a r m e n t  xector and the indices of the " 
resultant xector are taken from the values of the second argument 
xector. 

By definition, a mapping cannot contain two elements each with 
the same index; the resultant xector produced by @ can contain such 
a collision. The first argument in a @-the function-is used to 
resolve a collision by supplying a function to apply to the colliding 
values to compute a single value. 

The Connection Machine must implement these abstract pro- 
gramming constructs by being programmed to manipulate xectors, 
which are used as active memorv. The allocation of obiects in the 
Connection Machine is one of a class of low-level programming 
tasks whose running efficiency determines the overall efficiency of 
the machine and whose programmability determines the machine's 
short-term usefulness. 

Often, the low-level programming involves finding out which 
processors contain certain information and placing specific proces- 
sors in touch with other specific processors. The following simple 
algorithm is representative of the style of programming used at the 
lower levels of the Connection Machine. 

Suppose that it is important for a processor to find another 
processor that is free and that is close to the first one. The first 
processor, called the requesting processor, sends a message to all 
neighboring processors that contains a request for a free processor as 
well as the address of the requesting processor. Each processor that 
receives such a message sends it along to all its neighbors (except the 
one from which it received the message) unless it is free; in the latter 
case, a response is sent to the requesting processor. When the 
requesting processor receives the response from the found proces- 
sor, it sends out a cancellation notice along the same paths followed 
by the original request, but at a higher rate. This cancellation 
message will eventually reach the wave front of the original request 
and cancel it. 

For the cancellation message to move faster than the original 
request, the original request must move slower than it naturally 
could through the machine, and this is accomplished with artificial 
delays. Further complications arise when it is possible for many such 
requests to be active in the machine at once. For example, when two 
waves meet, both must halt at the meeting place. 

The NON-VON computer. NON-VON is used to describe a family 
of parallel machines having a similar architecture. Designed by 
David Elliot Shaw and his colleagues at Columbia University, the 
first 64-element prototype was completed in late 1984 (9). The 
NON-VON family of architectures is represented by the general 
NON-VON machine, which contains all the elements present in the 
family. 

There are two categories of processors in the NON-VON, the 
small processing element (SPE) and the large processing element 
(LPE). SPE's are configured as a complete binary tree--each 
processor, except for the root and the leaves, is connected to three 
others: its parent, a left child, and a right child. The leaf processors 
are connected by a two-dimensional grid in which each leaf is 
connected to four neighbors. This tree is referred to as the active 
memory tree. SPE's operate in SIMD mode under the control of the 
LPE's. 

Each SPE is connected to an LPE, which has an associated active 
memory controller that broadcasts an instruction stream to SPE's at 
or below the level of connection. Therefore, subsets of the active 
memory tree operate as a set of SIMD processors. 

An LPE is a processor having approximately the power of the 
Motorola MC68020. It is a 111 32-bit microprocessor which, at a 
clock speed of 16.67 MHz, is a 2 to 4 MIPS machine. An SPE is a 
much smaller processor; each is connected to a small amount of 
RAM-32 to 256 bytes. The processors are 8-bit computers with 
some number of 1-bit registers and some number of 8-bit registers. 

The LPE's are connected via a communications network called the 
root-point network. In summary, NON-VON can support SIMD, 
MIMD (multiple-instruction multiple-data), and MSIMD (multiple 
SIMD) operations. 

NON-VON machines share the SIMD programming style of the 
Connection Machine: The same instructions are issued to all SPE's 
under the control of a given LPE, but each SPE can be directed to 
set a flag that depends on its own state that will cause that SPE to 
ignore the broadcast instruction stream. 

Conclusions 
Many programmers wish to solve problems that require more 

computer power than is easily available. As the range and the size of 
problems that can be solved by computers grow, the range and size 
of the problems that programmers would like to solve also grow. 

The only known way to achieve consistent increases in computer 
power is through the use of parallelism. As might be expected, those 
who would design the parallel machines to solve the computer 
power problem are among the people who most need faster 
computers. The key to designing a successful computer is to 
simulate-n another computer-its characteristics carefully and 
thoroughly before fabrication and construction. 

Programming a parallel computer of a design greatly dissimilar to 
that of computers currently in use will require computer scientists to 
stretch and extend programming methodologies. To solve the 
computer power problem, it will be necessary to design machines 
that have a high instruction-execution rate and that are program- 
mable. In other words, there must be power to tap and &ere-must 
be a way to tap that power. 

REFERENCES AND NOTES 

I. W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985). 
2. S. H. Fuller and S. P. Harbison, TechnicalRepmt Camegie-Mellon Univemiiy (No. 

CMU-CS-78-146, Came ie MeUon University, Pittsburgh, 1978). 
3.  R I. swan et d, Proc. &PS imNatL. C o m y  Conf + (19,7), p 641. 
4. Diameter is a tern used to compare the c araaensucs of a communications 

network. It is the maximum of the minimum distances between pairs of nodes in a 
network, where distance is measured either as the number of routing stops through 
which the message passes or the time it takes the message to travel from its source 
to its destination. 

5 .  G .  H. Barnes et d., lEEE Trans. Comput. C-17, 746 (1968). 
6. Goodyear Aeros ace Co., Tech. Rep. GER-16684 (1979). 
7. R. Rettber et a!, Bolt, Beraneb Q Newman Rep 4098 (1979). 
8. G. L. ~teefe, Common Ltsp Refeena Manual (Digital Press, Burlington, MA, 

1984). 
9. D. E. Shaw, TechnicalRepmt (No. CUCS-29-82, Columbia University, New York, 

1982). 

SCIENCE, VOL. 231 




