
REFERENCES AND NOTES

I. A. Newell and H. A. Simon, Human Problem Solving (Prentice-Hall, Englewmd
cliffs, y, 1972).

2. E. A. Feigenbaum, B. Buchanan, J. Lederberg, in Machine Intelligence B. Meltzer
and D. Michie, Eds. (American Elsevier, New York, 1971)~ vol. 6.

3. The related term "expert system" is less desirable for its lack of technical substance
and tendency to suggest inappropriate standards. Calling something an expert
system primarily advertises the aspiration to have it perform at the level of human
experts. Although this has been accomplished in several cases, significant utility has
arisen from knowledge-based systems that fimction as intelligent assistants and
colleagues, without ever becomng expert at their task.

4. R. 0 . Duda and E. H. Shortliffe, Science 220, 261 (1983).
5. I coined the term "inference engine" in 1974 in conscious analogy to C. Babbage's

term for his pioneering 19th-cennuy machine, the "analytical engine," but with the
ap ropriate modificauon to make clear that its basic operation is inference, not
cJulation.

6. B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Systems (Addison-Wesley,
Reading, MA, 1984).

7. H. E. Pople, in AI in Medicine, P. Szolovits, Ed. (Westview, Boulder, CO, 1982).
8. R. 0 . Duda and R. Reboh, inAIAppluationsfirBwiness, W. Reitman, Ed. (Ablex,

Norwood, NJ, 1984).
9. M. C. Maletz, Anificial Intelligence 1985 (1985), p. 71

10. R. Bogen et al., "MACSTMA Refevence Manual" (Laboratory for Computer
Science report, Massachusetts Institute of Technology, Cambridge, 1975).

11. Proceedings of the AAAI Workshop on Uncertainty and Probability in Artificial
Intelligence (American Association for Artificial Intelligence, Menlo Park, CA,
1985).-

12. J. Fox, C. D. Meyers, M. F. Greaves, S. Pegram, Method Infirm. Med. 24, 65
(1985).

13. T h s explanation has been simplified to present only the points needed for what
follows. A more detailed explanation can be found m (4) or (6).

14. B. K. P. Horn, Robot Vkwn (MIT Press, Cambridge, MA, 1984).
15. J. Kunz et al., "A hysiological rule-based system for interpreting pulmonary

function results" (&mputer Science Department working paper HPP-78-19,
Stanford University, Stanford, CA, 1978),

16. J. S. Bennett, L. A. Creary, R. S. En elmore, R. E. Melosh, "SACON: A
knowledge-based consultant in struchlrf analysis" (Computer Science Depart-
ment report HPP-78-23, Stanford University, Stanford, CA, 1978).

17. J. S. Bennett and C. R. Hollander, Proc. Int. Joint Conf:AI 7, 243 (1981).
18. W, vanhielle, "A domain independent system that aids in constructing consulta-

tion rograms" (Computer Science Department report STAN-CS-80-820, Stan-
ford bniversity, Stanford, CA, 1980).

19. The concept that programs might be iven advice rather than instructions appears
quite early in the history of A1 D. Mctarthy, in Semantic InJbwnationProcessin M.
Minsky, Ed. (MIT Press, Cambrid e, MA, 1968)] This same motivation is a fo at
the heart of some of the work on kngua es like Prolog.

20. This is not always easy. (i) Each equationaas to be inverted; this can be difticult in
complex models. (ii) It may be necessary to keep track of alternative choices: if

c = a + b, for instance, c can be changed by changing a alone, b alone, or both
together. But often it can be done and in those situations illustrates an important
technique. Even where equations cannot be inverted, there is still utility in moving
backward through the model to determine which quantities are relevant to the
desired result.

21. Various commercial spreadsheet pro rams have several of these capabilities; a
small, experimental program used in t8e MIT course on knowledge-based systems
does them all (crudely).

22. R. Davis and D. B. Lenat, Knowledge-Based Systems in A I (McGraw-Hill, New
York, 1982).

23. J. Bachant and J. McDermott,AIMag. 5, 21 (1984); R. Davis, Artif: Intell. 12, 121

(1979).
24. W. J. Clancey, Int. J . Man-Mach. Stud. 11, 25 (1979).
25. A N. Cam bell, V. F. HoUiier, R. 0 . Duda, P. E. Hart, Science 217, 927 (1982).
26. R. G. s m i i , AIM%. 5, 61 (1984).
27. G. T. Vesdoner. S. 1. Stolfo. T. E. Zielinski, F. D. Miller. D. H. Copp, Pmc. Int. , . '

con6 ~1 8, I16 (198;).
28. R. K. Lindsa , B. G. Buchanan, E. A. Feigenbaum, J. Lederberg, Applications of

Artificial Inteligencefir Organic Chemishy (McGraw-Hill, New York, 1980).
29. R. W. Olford and S. C. Peters, in Anificral Intellbetace and Stathis, D. Pregibon,

Ed. (Addison-Wesley, Reading, MA, 1985); D. Pregibon, ibid., p. 136.
30. M. Stefik, Artif: Intell. 16, 111 (1981); P. Friedland and Y. Iwasaki, J. Automated

Reasoning I, 161 (1985).
31. W. T. Wipke, H. Braun, G. Smith, F. Choplin, W. Sieber, in Computer-Asshed

Oraanic Svnthesis. W. T. W i ~ k e and W. J. House. Eds. (American Chemical
SoTiety, washington, DC, I&).

32. D. B. Lenat, Artif: Intell. 9, 257 (1977); D. B. Lenat and J. S. Brown, ibid. 23, 269
(1984).

33. R. Pad, "Causal understanding of patient iUness for electrolyte and acid-base
diagnosis" (Computer Science Department, report MITLCSRR-267, Massachu-
setts Institute of Technolo Cambridae, 1981). ,

34. J. G. Carbonell, R. S. Michgki, T. Mitc ell, mMachmeleaming, R. S. Michalski,
J. G. Carbonell, T. Mitchell, Eds. (Tioga, Palo Alto, CA, 1983).

35. J. McDermott, Artif: Intell. 19, 39 (1982).
36. C. Forgy and J. McDermott, Proc. Int. Joint Conf: AI 5, 933 (1977).
37. R. Davis, Anif Intell. 15, 179 (1980); M. R. Genesereth, Proc. Natl. Conf: AI (1983)~

p. 119; W. J, CIancey, ibid., p. 74.
38. H. J. Levesque, R. J. Brachman, in Readings in Knowledge Representation, R. J .

Brachman and H. J. Levesque, Eds. (Morgan-Kaufmann, Los Altos, CA, 1985).
39. W. Clancey, Artif: Intell. 27, 289 (1985).

40. Anif: Intell. 24, 1-491 (1984).
41. J, deKleer, in (@), p. 205; A. Stevens et al., "Steamer: advanced computer-aided

instruction in propulsion engmeermg" (report 4702, Bolt, Beranek & Newman,
Cambridge, MA, 1981).

42. R. Davis, in (M), 247; M. R. Genesereth, in (@), p. 411.
43. J. deKleer and J. $ '~ rown, in (4) ; p. 7.
44. Useful comments on earlier drafts were received from B. Williams, R. Duda, W.

Hamscher, M. Shirl D. Weld, T. Malone, R. Valdes-Perez, P. Szolovits, D.
Lenat, and E. ~ e i ~ e x a u m .

Small Shared-Memory Multiprocessors

Multiprocessors built from today's microprocessors are
economically attractive. Although we can use these multi-
processors for time-sharing applications, it would be
preferable to use them as true parallel processors. One key
to achieving efficient parallel processing is to match the
communications capabilities of the multiprocessor to the
communications needs of the problem. The other key is
improved parallel programming systems. If these are
achieved, then efficient parallel processing can be ap-
proached from both ends by providing more communica-
tions capability in the hardware and restructuring the
problem to reduce the communications requirements.

T HE LABORATORY COMPUTING ENVIRONMENT FOR SCIEN-

tists and engineers has been changed dramatically, first by
minicomputers and, more recently, by personal computers

and powef i workstations. Small multiprocessors promise to in-
crease the speed with which computationally intensive problems can
be solved in the laboratory (1). While such machines should be as
much as one order of magnitude faster than today's minicomputers,
they will probably have comparable or lower costs. These multipro-
cessors will be small in that the processors will number on the order

Forest Baskett is director, Western Research Laboratory, Di ital Equipment Corpora-
tion, roo Hamilton Avenue, Palo Alto, CA 94301. John %. Hennessy is associate

rofessor, Departments of Electrical Engineering and Computer Science, Stanford
f;niversity, Stanford, CA 94305

28 FEBRUARY 1986 ARTICLES 963

'- Possible second processor on cache

Fig. 1.

I Shared memory bus I

memory n piq
interface

Shared-memory multiprocessor. input/output dev ices

of ten rather than 100 or more. Although there are many possible
implementation technologies for the individual processors, CMOS
(complementary metal oxide semiconductor) microprocessors are
economically very attractive.

In this article we will discuss problems in using these multiproces-
sors as parallel processors. Given a parallel program, the multipro-
cessor can provide a better response by executing the program on
multiple processors (2, 3). But even if none of the parallel program-
ming problems we describe has good solutions, the kind of small
multiprocessor described can easily be used in a traditional time-
sharing mode to run existing applications. The multiple users of a
time-sharing system can be distributed among the available proces-
sors. Only the operating system need "know" that it is running on a
multiprocessor.

This ability to support time-sharing for existing applications and
the promise of faster solution times for future applications makes
shared-memory machines more commercially appealing than many
other multiprocessor structures (4, 5).

A Small Shared-Memory Multiprocessor
A small multiprocessor built with today's technology would

comprise 5 to 20 processors, the heart of each of which would be a
32-bit microprocessor. Each microprocessor or each pair of micro-
processors would be supported by a separate high-speed memory
that is a cache on a larger, common main store. Each cache would
share access to the main memory system via a single common bus.
One or more additional mechanisms might be provided to enable
the separate caches to keep a coherent view of shared data. Data
could be exchanged between processors via the common main
storage. Sometimes additional high-speed processor-to-processor
communication mechanisms would be available; these mechanisms
can be crucial to the performance of a multiprocessor application.
Figure 1 depicts a block diagram of such a small multiprocessor.

What Makes the Small Multiprocessor
Attractive?

CMOS semiconductor technology has provided two key compo-
nents in this multiprocessor organization: 32-bit microprocessors
and caches built of fast, static memory. A cache is a local memory

that keeps a copy of the most recently accessed data from main
memory. A datum may be retrieved more quickly from a cache than
from the main memory.

The workstation market ensures continued rapid development of
32-bit CMOS microprocessors; their high speed is well matched to
the speed of the latest CMOS static memory devices. Thus, a natural
tight coupling is a 32-bit microprocessor and a cache.

A large cache can support very high hit rates, the hit rate being the
probability that the datum desired by the processor will be found in
the cache. (Scientists and engineers will also want to know that the
density of logic on CMOS integrated circuits can now support high-
performance floating-point arithmetic logic.)

The cost of a laboratory computer today is dominated by the cost
of the main memory, the peripherals (disks), the power, and the
packaging. The microprocessor and its tightly coupled cache are
cheap in comparison to the rest of the computer. The marginal cost
of additional processor-cache pairs is small, and the high hit rate in a
cache means that the main memory can support more than one
processor-cache pair without being overloaded (6).

An additional critical element for achieving faster solution of
individual problems on multiprocessors is new compiler technology.
For multiprocessors to be easily used in the laboratory they must be
easily programmed. Compiler technology has developed to the
point where there are now commercial systems that can automatical-
ly decompose a traditional sequential algorithm into a form that can
be executed in parallel on certain multiprocessors. While these
systems currently tend to work best on well-structured, numerical
problems and often need advice from the programmer, work
continues in this area, and more powerfd systems seem imminent.

Bolting Processors Together Is Not Adequate
If several processor-cache pairs are tied together in the most

straightforward way, the performance may be extremely poor. The
crucial shared resources in a shared-memory multiprocessor are the
main memory and its bus. To learn about performance in this kind
of computer, one looks at the point when the main memory and its
bus become saturated. The saturation point is the knee in the curve
of performance versus number of caches. I t is the intersection point
of the initial slope of the curve, which is 1, and the final slope of the
curve, which is 0 (the intersection of the two asymptotes). The
results show the sensitivity of the performance of these systems to
the cache miss rate and the ratio of main memory speed to processor
speed.

Reference rate is a more precise term than miss rate: it is the
probability that a main memory reference will be generated by a
single processor in a single machine cycle. The formula for the
saturation point (in numbers of caches) is

I t
(1 - reference rate) x (cache service time)
(reference rate) X (memory service time)

If we assume that the memory service time is ten machine cycles (a
reasonably aggressive value), then the results shown in Table 1 are
obtained. This indicates the importance of a high cache hit rate,
which is the major determinant of the reference rate, to the overall
performance of the multiprocessor. It also makes clear the impor-
tance of the service time of the main memory system.

The most obvious source of main memory references are requests
to satisfy cache misses. Synchronization and cache consistency traffic
increase the reference rate above the simple cache miss rate, because
this traffic uses the shared bus. With very large caches, interproces-
sor communication may dominate the bus traffic (7). Hit rates better
than 98 percent should be attainable on a multiprocessor if multi-

SCIENCE, VOL. 231

Table 1. The saturation point as a function of the
reference rate when the main memory service time
is ten machine cycles.

Reference rate Saturation point

programming and operating system interference can be reduced.
The percentage of the traffic not originating from cache miss
requests is not well understood and is probably program-dependent.
Because performance is so sensitive to the reference rate, a proces-
sor-to-processor data exchange mechanism that requires one or
more main memory service times and is heavily used will result in
low multiprocessor performance.

If the memory system is pipelined, then the memory service time
in the formula should be the reciprocal of the memory service rate
rather than the latency. Thus, if pipelining the memory system can
double the service rate, it nearly doubles the saturation point.
Electrical bus loading constraints of current components make it
difficult to build buses that are fast and support more than about ten
connections. Since the saturation point analysis indicates a similar
numerical constraint on the number of caches, small multiprocessors
are a good engineering design point.

Interprocessor Communication Support
The first problem to overcome in designing a shared-memory

multiprocessor is to create an efficient way for processors to share
and communicate data. The previous section demonstrated that, if
the bus is the only way for processors to communicate, then, as soon
as they start trying to share substantial amounts of information, the
bus and main memory become saturated. So some systems provide a
separate mechanism for processors to synchronize and exchange
data. Although a number of multiprocessors have been built, there
has not been suflicient experience to evaluate all the alternatives to
using a shared main-memory bus. The choice of the best communi-
cation mechanism is M e r clouded by differences among applica-
tions and the match between particular communication mechanisms
and particular applications.

The major advantage to communicating via shared memory is that
asynchronous communication is easy. The shared memory provides
an almost infinite buffer between two communicating processors
and allows a less rigid form of communication than a completely
synchronous communication channel.

It is desirable that the processors have a consistent view of the
shared memory. A cache coherency mechanism guarantees that the
caches always reflect the most recent value of every memory
location. The most common hardware cache coherency strategy is a
snoopy cache, which watches the traffic on the shared bus (as well as
from the processor) and tries to maintain a consistent view of shared
memory by tracking updates to the memory made by other proces-
sors (8).

Use of a separate interprocessor communication bus may, it is
hoped, relieve some of the traffic on the shared-memory bus. The
major disadvantage of this separate bus is that it must be synchro-
nous and communication must follow a rigid protocol. However,
some traffic (such as scheduling requests and synchronization
activity) may naturally fit this synchronous model. Of course, the
separate bus removes some of the attractiveness and simplicity of the

simple shared-memory model. But, if software that can use this bus
in a programmer-transparent fashion is developed, then a separate
bus will be an advantage in reducing memory bus contention.

The value and role of each of these communication mechanisms
are not well understood. However, it appears that the choice of the
mechanism can significantly affect performance. In some cases, the
best choice will vary depending on the application.

Dividing a Single Task for Parallel Processing
Even if there is an efficient communication mechanism, we still

have to worry about how to partition the problem. Some problems
have no parallelism. Given a problem with parallelism, we must still
decide how to decompose it into separate pieces, each to be executed
by a single sequential processor. It would be ideal if there were no
dependencies among the pieces, but usually there are, and the
dependencies force a certain amount of sequential execution of the
pieces. The object is to get as many of the pieces as possible to
execute independently in parallel.

The challenge in this decomposition task is to balance the
communication and computational requirements of each piece with
the capabilities of each processor. The larger the granularity, the
more computation each piece includes. For example, consider the
partitioning of doubly nested DO-loops that is done in the Cray-
XMP FORTRAN com~iler (9'1. The XMP allows several Drocessors

I \ I

to be connected for parallel execution of a task. In the best case, the
outer loop can be split among the processors and the iterations of
the outer loop are independent, that is, no data need to be
transferred among the pr&essors in executing separate iterations of
the loop. The existence of the inner loop provides each processor
with enough work to justify the overhead of splitting up the
computation and resynchronizing the processors at the end. If the
iterations of the outer loop had dependencies that required inter-
processor communication, a different partitioning, perhaps involv-
ing fewer processors and larger granularity, might be better.

Different types of multiprocessors have different grain sizes that
they can accommodate efficiently. For example, dataflow machines
~rovide extensive hardware s u ~ ~ o r t for low-overhead comrnunica-

I I

tion and scheduling, making small grain sizes practical. The class of
machines discussed in this article must achieve a delicate balance
between communication cost and computation. In general, comrnu-
nication of a data item will require about an order of magnitude
more time than a simple machine cycle on one of the processors.
Because the number of processors is small and the communication
overhead is high, part i thing the program into larger grains with
less communication among the pieces seems prudent.

Another phenomenon motivates us to be cautious in our choice of
a larger size: the predictability of the grain size. Whether the
partitioning into parallel tasks is done by a program or by a
programmer, the computation cost of a piece must be estimated. If
this cost is estimated poorly, performance can be lost because the
communication-computation balance is disturbed. Another prob-
lem that can occur from incorrect estimates is an inefficient schedul-
ing of the parallel pieces. For example, assume that we partitioned a
problem into n components to be executed on n processors, with the
result from all processors needed before the computation could
~roceed. If we underestimated the size of the one of the tasks. it
kould become the bottleneck. Accuracy in predicting the cornpita-
tional requirements of a piece of code decreases as the pieces get
larger, simply because the larger pieces contain more conditional
activity and their behavior is less predictable.

When we partition a task, we must be carehl to examine the total
cost of making the task parallel. Parallel partitioning often adds to

28 PEBRUARY 1986 ARTICLES 965

the computation work in an amount proportional to the number of
subcomputations. Most real problems require additional computa-
tion to resolve the subcomputations done for each partition. For
example, in a parallel simulation, this might involve reconciling of
data among partitions or decisions to alter the time step. Typically,
these portions of the computation have a much lower degree of
parallelism. If we achieve a tenfold speedup for 90 percent of a
computation but 10 percent of the computation remains serial, we
have actually achieved a fivefold speedup. Great care is required to
ensure that this more sequential interaction does not become the
bottleneck in an attempt to exploit parallelism.

Tools for Parallel Programming
We can build tools to help decompose tasks for parallel execution.

There are three basic approaches to obtaining parallelism: using a
sequential language with explicit parallelism directives, using a
sequential language and relying on a compiler to extract parallelism,
and starting with a language that is inherently parallel. Each of these
approaches presents different challenges and has different advan-
tages.

To express parallelism, we could use a conventional programming
language with directives that specify a set of separate processes, each
a potential task for a processor and each a sequential program. In
addition, we need to have "primitives" to control the interaction of
these processes. Without these synchronization primitives, the
processes may interact in an unforeseen manner, yielding incorrect,
and even unpredictable, results. This approach has been the main
technique used to organize operating systems for 20 years, and its
main advantage lies in its simple implementation and well-under-
stood behavior. Programming languages such as Ada and Concur-
rent Pascal support this style of programming directly, and other
languages support it through operating system calls that create
processes and synchronize them. The disadvantage of this approach
is that it requires the programmer to establish the number of parallel
tasks and explicitly synchronize their interaction, thereby limiting
the ways in which parallelism might be used. Since each parallel
activity must be clearly delineated, this approach is more attractive
for large-grain parallelism with a fairly low degree of information
sharing among processes.

A second approach is to extract parallelism from programs written
in existing languages by using compiler techniques. Kuck et al. (10)
have been using this approach on FORTRAN programs with
success for many years. Clearly, extracting parallelism from pro-
grams in languages that programmers know and have used is a major
advantage, especially for existing software that need not be rewritten
to take advantage of a multiprocessor. The main disadvantage of this
approach is that the amount of parallelism that can be successfully
extracted and usefully exploited is usually limited. These techniques
are most successful in extracting low-granularity parallelism and at
finding a particular style of parallelism, such as a vector operation.
Because of these limitations, automatic parallelism extraction is
currently most feasible for scientific programs that are amenable to
vectorization. By concentrating on local, low-granularity parallelism
and on structured parallel operations, the problem of translating
these tasks to appropriate hardware is straightforward. However,
exploiting other types of parallelism or compiling for machines that
do not support the appropriate structured operations may be
difficult and will not yield much improvement. Many applications
will not obtain any performance increase from a multiprocessor with
this approach to parallelism; for example, a logic simulation pro-
gram, which is inherently highly parallel, may not benefit.

The final technique that some researchers are pursuing are

languages that are fbndarnentally parallel. These languages vary
from extensions to LISP to parallel versions of PROLOG (a logic-
based programming language) to single-assignment languages (val-
ue-oriented languages). The aim of all these approaches is to provide
a language that allows the programmer to convey the parallel
structure of the program. The task of the compiler in such an
environment is to decide how much parallelism to attempt to use (as
in how big the grain size should be) and how best to map the
parallel structure to a particular multiprocessor. These approaches
face a variety of challenges in the software area, including finding a
way to compile such programs efficiently, determining how and on
what basis to set the grain size, and finding algorithms for efficient
scheduling and processor assignment. Because these languages are
less well understood and their translation to a multiprocessor
involves more automation and less human direction, we suspect that
effective schemes for exploiting this approach will take longer to
develop. The reward these schemes may bring is a level of machine-
independence in the programming process that exceeds, what is
obtainable with the other approaches. Compilers could partition the
problem, depending on the characteristics of the program and the
architecture.

Related Efforts
Although the small, general-purpose multiprocessors may repre-

sent the most general style of multiprocessor, other approaches that
have advantages in certain aspects or application areas are being
pursued. Many of these efforts are aimed at the major shortcoming
of the shared-memory multiprocessor: the ability to expand. To
maintain expandability, large-scale multiprocessors must usually rely
on a local memory architecture and communicate between proces-
sors by passing messages through a point-to-point interconnection
network (11). An alternative approach with limited expandability is
the use of a large interconnection network that can allow hundreds
of processors and memories to communicate simultaneously (12).

Most of the large-scale machines are organized as a regular
interconnected set of processor-memory modules (13). The massive-
ly parallel machines described by Gabriel (14) are such machines.
The Cosmic Cube (15) is another example of a machine in this class;
it consists of hypercube-connected processor modules, each module
containing a microprocessor, a floating point chip, and its own local
memory. In general, programming such machines is more difficult
than programming a smaller scale, shared-memory processor. How-
ever, application-oriented programming systems could be developed
that would ease the programming of larger machines, at least for
certain classes of applications.

Related to the topic of general-purpose parallelism is the issue of
vectorization. Vectors represent one of the simplest forms of
parallelism (since there is only one instruction stream); vectorization
is also attractive because it fits the computation paradigm for many
scientific problems, and automatic vectorization is a viable ap-
proach. The recent development of floating-point processors with
vector support will probably lead to even more multiprocessors and
uniprocessors with vector hardware.

Conclusion
The combination of microprocessor and memory technology with

compiler technology for parallel decomposition of single-stream
programs makes it seem that small multiprocessors will have an
important place in the laboratory computing environment for many
scientists and engineers in the near future. While these systems are

SCIENCE, VOL. 231

most immediately useful for traditional time-sharing, they promise
to provide high performance for individual applications as well. But
it is not yet clear which of a variety of hardware and software
structures and systems will have sufficient applicability and perform-
ance to become widespread.

REFERENCES AND NOTES

I. C. G. Bell, Science 228, 462 (1985).
2. J. T. Deutch and A. R. Newton, paper presented at the ~ 1 s t Design Automation

Conference, Miami Beach, FL, June 1984.
3. G. C. Fox and S. W. Otto, Phy. Today 37, 50 (May 1984).

4. Session on Commercial Multiprocessors, 12th Symposium on Computer Architec-
ture, Boston, June 1985.

5. S. Frank, Elemnia 57, 164 (12 January 1984).
6. J. Goodman, paper presented at the Tenth Symposium on Computer Architecture,

Trondheim, Norwav, June 1983.
7. M. Dubois and F. A. Briggs, IEEE Trans. Comput. C-31, 1083 (1982).
8. R. H. Kau et d., paper presented at the 12th Symposium on Computer

Architecture, Boston, June 1985
9. S. Reinhardt, paper presented at the Tenth Symposium on Operating Systems

Principles, Orcas Island, WA, December 1985
10. D. L. Kuck et d., paper resented at the Eighth Symposium on Principles of

Programming Languages, k'il~iamsbur~, VA, January 1981.
11. C. L. Seitz, IEEE Trans. Comput. C-33,1247 (1984).
12. J. T. Schwartz, ACM TOPLAS 2, 484 (1980).
13. W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
14. R. P. Gabriel, Science 231, 975 (1986).
15. C. L. Seiu, Commun. ACM 28, 22 (1985).

Parallel Supercomputing Today
Cedar Approach

and the

More and more scientists and engineers are becoming
interested in using supercomputers. Earlier barriers to
using these machines are disappearing as software for
their use improves. Meanwhile, new parallel supercom-
puter architectures are emerging that may provide rapid
growth in performance. These systems may use a large
number of processors with an intricate memory system
that is both parallel and hierarchical; they will require
even more advanced software. Compilers that restructure
user programs to exploit the machine organization seem
to be essential. A wide range of algorithms and applica-
tions is being developed in an effort to provide high
parallel processing performance in many fields. The Ce-
dar supercomputer, presently operating with eight pro-
cessors in parallel, uses advanced system and applications
software developed at the University of Illinois during the
past 12 years. This software should allow the number of
processors in Cedar to be doubled annually, providing
rapid performance advances in the next decade.

T HE HISTORY OF PERFORMANCE GAINS IN SUPERCOM-

puters is remarkable, yet the rate of improvement over this
history has steadily declined. In a 5-year period in the 194OYs,

computer speeds increased by lo3 as technology shifted from relays
to vacuum tubes. ENIAC had a peak rate of about lo3 floating-
point operations per second (flops) in 1946. In the mid-198OYs,
after changes to transistor and then integrated circuit technology
and accompanying architectural enhancements, systems are reaching
peak rates of lo9 flops for an improvement factor of lo6 in 40 years,
or an average factor of 10 every 7 years. Clock speed is the rate at
which basic computer operations are performed. The Cray 2

computer (with a clock period of 4.1 nsec in 1985) has a clock speed
only about three times that of the Cray 1 computer (clock period,
12.5 nsec in 1976), and this took 9 years to achieve. New materials,
such as gallium arsenide devices, are not expected to increase clock
speeds by more than a factor of 5 in the next 5 to 10 years.

Furthermore, clock speeds are no longer an adequate indicator of
system performance. For example, the recently released Cray 2 (1)
has a clock speed that is more than twice the speed of the Cray X-MP
(I) , and yet, because of its architecture, most initial users cannot
obtain from the Cray 2 a performance equal that of the Cray X-MP.
In such complex, highly concurrent systems, actual delivered per-
formance is program- and algorithm-specific. Seemingly attractive
architectural features often have low payoff in delivered system
performance on actual applications, and severe system bottlenecks
appear in unexpected places. Thus delivered performance to actual
users is often only 5 to 15 percent of the peak performance rates
quoted above, except when hand optimization and assembly lan-
guage programming are used on well-suited programs.

On the optimistic side, semiconductor performance and device
densities in very large scale integration (VLSI) have increased to the
point where 32-bit microprocessors and high-speed 64-bit floating-
point arithmetic chip-sets are available and are beginning to be usec
in some supercomputer systems. Memory chips with up to lo6 bits
and access times of about 100 nsec are also becoming available to
system designers. These densities are expected to continue to
advance in the coming decade, with some improvements in both
component performance and performance-cost ratio.

In an effort to restore a high growth rate in supercomputer
performance, computer designers have made the first half of the
1980's a turning point in the organization of commercially available
systems. Existing companies have observed that they can no longer

The authors are at the Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.

ARTICLES 9 6 7 28 PEBRUARY 1986

