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Small Shared-Memory Multiprocessors 

Multiprocessors built from today's microprocessors are 
economically attractive. Although we can use these multi- 
processors for time-sharing applications, it would be 
preferable to use them as true parallel processors. One key 
to achieving efficient parallel processing is to match the 
communications capabilities of the multiprocessor to the 
communications needs of the problem. The other key is 
improved parallel programming systems. If these are 
achieved, then efficient parallel processing can be ap- 
proached from both ends by providing more communica- 
tions capability in the hardware and restructuring the 
problem to reduce the communications requirements. 

T HE LABORATORY COMPUTING ENVIRONMENT FOR SCIEN- 

tists and engineers has been changed dramatically, first by 
minicomputers and, more recently, by personal computers 

and powef i  workstations. Small multiprocessors promise to in- 
crease the speed with which computationally intensive problems can 
be solved in the laboratory (1). While such machines should be as 
much as one order of magnitude faster than today's minicomputers, 
they will probably have comparable or lower costs. These multipro- 
cessors will be small in that the processors will number on the order 
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of ten rather than 100 or more. Although there are many possible 
implementation technologies for the individual processors, CMOS 
(complementary metal oxide semiconductor) microprocessors are 
economically very attractive. 

In this article we will discuss problems in using these multiproces- 
sors as parallel processors. Given a parallel program, the multipro- 
cessor can provide a better response by executing the program on 
multiple processors (2, 3). But even if none of the parallel program- 
ming problems we describe has good solutions, the kind of small 
multiprocessor described can easily be used in a traditional time- 
sharing mode to run existing applications. The multiple users of a 
time-sharing system can be distributed among the available proces- 
sors. Only the operating system need "know" that it is running on a 
multiprocessor. 

This ability to support time-sharing for existing applications and 
the promise of faster solution times for future applications makes 
shared-memory machines more commercially appealing than many 
other multiprocessor structures (4, 5). 

A Small Shared-Memory Multiprocessor 
A small multiprocessor built with today's technology would 

comprise 5 to 20 processors, the heart of each of which would be a 
32-bit microprocessor. Each microprocessor or each pair of micro- 
processors would be supported by a separate high-speed memory 
that is a cache on a larger, common main store. Each cache would 
share access to the main memory system via a single common bus. 
One or more additional mechanisms might be provided to enable 
the separate caches to keep a coherent view of shared data. Data 
could be exchanged between processors via the common main 
storage. Sometimes additional high-speed processor-to-processor 
communication mechanisms would be available; these mechanisms 
can be crucial to the performance of a multiprocessor application. 
Figure 1 depicts a block diagram of such a small multiprocessor. 

What Makes the Small Multiprocessor 
Attractive? 

CMOS semiconductor technology has provided two key compo- 
nents in this multiprocessor organization: 32-bit microprocessors 
and caches built of fast, static memory. A cache is a local memory 

that keeps a copy of the most recently accessed data from main 
memory. A datum may be retrieved more quickly from a cache than 
from the main memory. 

The workstation market ensures continued rapid development of 
32-bit CMOS microprocessors; their high speed is well matched to 
the speed of the latest CMOS static memory devices. Thus, a natural 
tight coupling is a 32-bit microprocessor and a cache. 

A large cache can support very high hit rates, the hit rate being the 
probability that the datum desired by the processor will be found in 
the cache. (Scientists and engineers will also want to know that the 
density of logic on CMOS integrated circuits can now support high- 
performance floating-point arithmetic logic.) 

The cost of a laboratory computer today is dominated by the cost 
of the main memory, the peripherals (disks), the power, and the 
packaging. The microprocessor and its tightly coupled cache are 
cheap in comparison to the rest of the computer. The marginal cost 
of additional processor-cache pairs is small, and the high hit rate in a 
cache means that the main memory can support more than one 
processor-cache pair without being overloaded (6). 

An additional critical element for achieving faster solution of 
individual problems on multiprocessors is new compiler technology. 
For multiprocessors to be easily used in the laboratory they must be 
easily programmed. Compiler technology has developed to the 
point where there are now commercial systems that can automatical- 
ly decompose a traditional sequential algorithm into a form that can 
be executed in parallel on certain multiprocessors. While these 
systems currently tend to work best on well-structured, numerical 
problems and often need advice from the programmer, work 
continues in this area, and more powerfd systems seem imminent. 

Bolting Processors Together Is Not Adequate 
If several processor-cache pairs are tied together in the most 

straightforward way, the performance may be extremely poor. The 
crucial shared resources in a shared-memory multiprocessor are the 
main memory and its bus. To learn about performance in this kind 
of computer, one looks at the point when the main memory and its 
bus become saturated. The saturation point is the knee in the curve 
of performance versus number of caches. I t  is the intersection point 
of the initial slope of the curve, which is 1, and the final slope of the 
curve, which is 0 (the intersection of the two asymptotes). The 
results show the sensitivity of the performance of these systems to 
the cache miss rate and the ratio of main memory speed to processor 
speed. 

Reference rate is a more precise term than miss rate: it is the 
probability that a main memory reference will be generated by a 
single processor in a single machine cycle. The formula for the 
saturation point (in numbers of caches) is 

I t  
(1 - reference rate) x (cache service time) 
(reference rate) X (memory service time) 

If we assume that the memory service time is ten machine cycles (a 
reasonably aggressive value), then the results shown in Table 1 are 
obtained. This indicates the importance of a high cache hit rate, 
which is the major determinant of the reference rate, to the overall 
performance of the multiprocessor. It also makes clear the impor- 
tance of the service time of the main memory system. 

The most obvious source of main memory references are requests 
to satisfy cache misses. Synchronization and cache consistency traffic 
increase the reference rate above the simple cache miss rate, because 
this traffic uses the shared bus. With very large caches, interproces- 
sor communication may dominate the bus traffic (7). Hit rates better 
than 98 percent should be attainable on a multiprocessor if multi- 
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Table 1. The saturation point as a function of the 
reference rate when the main memory service time 
is ten machine cycles. 

Reference rate Saturation point 

programming and operating system interference can be reduced. 
The percentage of the traffic not originating from cache miss 
requests is not well understood and is probably program-dependent. 
Because performance is so sensitive to the reference rate, a proces- 
sor-to-processor data exchange mechanism that requires one or 
more main memory service times and is heavily used will result in 
low multiprocessor performance. 

If the memory system is pipelined, then the memory service time 
in the formula should be the reciprocal of the memory service rate 
rather than the latency. Thus, if pipelining the memory system can 
double the service rate, it nearly doubles the saturation point. 
Electrical bus loading constraints of current components make it 
difficult to build buses that are fast and support more than about ten 
connections. Since the saturation point analysis indicates a similar 
numerical constraint on the number of caches, small multiprocessors 
are a good engineering design point. 

Interprocessor Communication Support 
The first problem to overcome in designing a shared-memory 

multiprocessor is to create an efficient way for processors to share 
and communicate data. The previous section demonstrated that, if 
the bus is the only way for processors to communicate, then, as soon 
as they start trying to share substantial amounts of information, the 
bus and main memory become saturated. So some systems provide a 
separate mechanism for processors to synchronize and exchange 
data. Although a number of multiprocessors have been built, there 
has not been suflicient experience to evaluate all the alternatives to 
using a shared main-memory bus. The choice of the best communi- 
cation mechanism is M e r  clouded by differences among applica- 
tions and the match between particular communication mechanisms 
and particular applications. 

The major advantage to communicating via shared memory is that 
asynchronous communication is easy. The shared memory provides 
an almost infinite buffer between two communicating processors 
and allows a less rigid form of communication than a completely 
synchronous communication channel. 

It is desirable that the processors have a consistent view of the 
shared memory. A cache coherency mechanism guarantees that the 
caches always reflect the most recent value of every memory 
location. The most common hardware cache coherency strategy is a 
snoopy cache, which watches the traffic on the shared bus (as well as 
from the processor) and tries to maintain a consistent view of shared 
memory by tracking updates to the memory made by other proces- 
sors (8). 

Use of a separate interprocessor communication bus may, it is 
hoped, relieve some of the traffic on the shared-memory bus. The 
major disadvantage of this separate bus is that it must be synchro- 
nous and communication must follow a rigid protocol. However, 
some traffic (such as scheduling requests and synchronization 
activity) may naturally fit this synchronous model. Of course, the 
separate bus removes some of the attractiveness and simplicity of the 

simple shared-memory model. But, if software that can use this bus 
in a programmer-transparent fashion is developed, then a separate 
bus will be an advantage in reducing memory bus contention. 

The value and role of each of these communication mechanisms 
are not well understood. However, it appears that the choice of the 
mechanism can significantly affect performance. In some cases, the 
best choice will vary depending on the application. 

Dividing a Single Task for Parallel Processing 
Even if there is an efficient communication mechanism, we still 

have to worry about how to partition the problem. Some problems 
have no parallelism. Given a problem with parallelism, we must still 
decide how to decompose it into separate pieces, each to be executed 
by a single sequential processor. It would be ideal if there were no 
dependencies among the pieces, but usually there are, and the 
dependencies force a certain amount of sequential execution of the 
pieces. The object is to get as many of the pieces as possible to 
execute independently in parallel. 

The challenge in this decomposition task is to balance the 
communication and computational requirements of each piece with 
the capabilities of each processor. The larger the granularity, the 
more computation each piece includes. For example, consider the 
partitioning of doubly nested DO-loops that is done in the Cray- 
XMP FORTRAN com~iler (9'1. The XMP allows several Drocessors 

I \ I  

to be connected for parallel execution of a task. In the best case, the 
outer loop can be split among the processors and the iterations of 
the outer loop are independent, that is, no data need to be 
transferred among the pr&essors in executing separate iterations of 
the loop. The existence of the inner loop provides each processor 
with enough work to justify the overhead of splitting up the 
computation and resynchronizing the processors at the end. If the 
iterations of the outer loop had dependencies that required inter- 
processor communication, a different partitioning, perhaps involv- 
ing fewer processors and larger granularity, might be better. 

Different types of multiprocessors have different grain sizes that 
they can accommodate efficiently. For example, dataflow machines 
~rovide extensive hardware s u ~ ~ o r t  for low-overhead comrnunica- 

I I 

tion and scheduling, making small grain sizes practical. The class of 
machines discussed in this article must achieve a delicate balance 
between communication cost and computation. In general, comrnu- 
nication of a data item will require about an order of magnitude 
more time than a simple machine cycle on one of the processors. 
Because the number of processors is small and the communication 
overhead is high, part i thing the program into larger grains with 
less communication among the pieces seems prudent. 

Another phenomenon motivates us to be cautious in our choice of 
a larger size: the predictability of the grain size. Whether the 
partitioning into parallel tasks is done by a program or by a 
programmer, the computation cost of a piece must be estimated. If 
this cost is estimated poorly, performance can be lost because the 
communication-computation balance is disturbed. Another prob- 
lem that can occur from incorrect estimates is an inefficient schedul- 
ing of the parallel pieces. For example, assume that we partitioned a 
problem into n components to be executed on n processors, with the 
result from all processors needed before the computation could 
~roceed. If we underestimated the size of the one of the tasks. it 
kould become the bottleneck. Accuracy in predicting the cornpita- 
tional requirements of a piece of code decreases as the pieces get 
larger, simply because the larger pieces contain more conditional 
activity and their behavior is less predictable. 

When we partition a task, we must be carehl to examine the total 
cost of making the task parallel. Parallel partitioning often adds to 
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the computation work in an amount proportional to the number of 
subcomputations. Most real problems require additional computa- 
tion to resolve the subcomputations done for each partition. For 
example, in a parallel simulation, this might involve reconciling of 
data among partitions or decisions to alter the time step. Typically, 
these portions of the computation have a much lower degree of 
parallelism. If we achieve a tenfold speedup for 90 percent of a 
computation but 10 percent of the computation remains serial, we 
have actually achieved a fivefold speedup. Great care is required to 
ensure that this more sequential interaction does not become the 
bottleneck in an attempt to exploit parallelism. 

Tools for Parallel Programming 
We can build tools to help decompose tasks for parallel execution. 

There are three basic approaches to obtaining parallelism: using a 
sequential language with explicit parallelism directives, using a 
sequential language and relying on a compiler to extract parallelism, 
and starting with a language that is inherently parallel. Each of these 
approaches presents different challenges and has different advan- 
tages. 

To express parallelism, we could use a conventional programming 
language with directives that specify a set of separate processes, each 
a potential task for a processor and each a sequential program. In 
addition, we need to have "primitives" to control the interaction of 
these processes. Without these synchronization primitives, the 
processes may interact in an unforeseen manner, yielding incorrect, 
and even unpredictable, results. This approach has been the main 
technique used to organize operating systems for 20 years, and its 
main advantage lies in its simple implementation and well-under- 
stood behavior. Programming languages such as Ada and Concur- 
rent Pascal support this style of programming directly, and other 
languages support it through operating system calls that create 
processes and synchronize them. The disadvantage of this approach 
is that it requires the programmer to establish the number of parallel 
tasks and explicitly synchronize their interaction, thereby limiting 
the ways in which parallelism might be used. Since each parallel 
activity must be clearly delineated, this approach is more attractive 
for large-grain parallelism with a fairly low degree of information 
sharing among processes. 

A second approach is to extract parallelism from programs written 
in existing languages by using compiler techniques. Kuck et al. (10) 
have been using this approach on FORTRAN programs with 
success for many years. Clearly, extracting parallelism from pro- 
grams in languages that programmers know and have used is a major 
advantage, especially for existing software that need not be rewritten 
to take advantage of a multiprocessor. The main disadvantage of this 
approach is that the amount of parallelism that can be successfully 
extracted and usefully exploited is usually limited. These techniques 
are most successful in extracting low-granularity parallelism and at 
finding a particular style of parallelism, such as a vector operation. 
Because of these limitations, automatic parallelism extraction is 
currently most feasible for scientific programs that are amenable to 
vectorization. By concentrating on local, low-granularity parallelism 
and on structured parallel operations, the problem of translating 
these tasks to appropriate hardware is straightforward. However, 
exploiting other types of parallelism or compiling for machines that 
do not support the appropriate structured operations may be 
difficult and will not yield much improvement. Many applications 
will not obtain any performance increase from a multiprocessor with 
this approach to parallelism; for example, a logic simulation pro- 
gram, which is inherently highly parallel, may not benefit. 

The final technique that some researchers are pursuing are 

languages that are fbndarnentally parallel. These languages vary 
from extensions to LISP to parallel versions of PROLOG (a logic- 
based programming language) to single-assignment languages (val- 
ue-oriented languages). The aim of all these approaches is to provide 
a language that allows the programmer to convey the parallel 
structure of the program. The task of the compiler in such an 
environment is to decide how much parallelism to attempt to use (as 
in how big the grain size should be) and how best to map the 
parallel structure to a particular multiprocessor. These approaches 
face a variety of challenges in the software area, including finding a 
way to compile such programs efficiently, determining how and on 
what basis to set the grain size, and finding algorithms for efficient 
scheduling and processor assignment. Because these languages are 
less well understood and their translation to a multiprocessor 
involves more automation and less human direction, we suspect that 
effective schemes for exploiting this approach will take longer to 
develop. The reward these schemes may bring is a level of machine- 
independence in the programming process that exceeds, what is 
obtainable with the other approaches. Compilers could partition the 
problem, depending on the characteristics of the program and the 
architecture. 

Related Efforts 
Although the small, general-purpose multiprocessors may repre- 

sent the most general style of multiprocessor, other approaches that 
have advantages in certain aspects or application areas are being 
pursued. Many of these efforts are aimed at the major shortcoming 
of the shared-memory multiprocessor: the ability to expand. To 
maintain expandability, large-scale multiprocessors must usually rely 
on a local memory architecture and communicate between proces- 
sors by passing messages through a point-to-point interconnection 
network (11). An alternative approach with limited expandability is 
the use of a large interconnection network that can allow hundreds 
of processors and memories to communicate simultaneously (12). 

Most of the large-scale machines are organized as a regular 
interconnected set of processor-memory modules (13). The massive- 
ly parallel machines described by Gabriel (14) are such machines. 
The Cosmic Cube (15) is another example of a machine in this class; 
it consists of hypercube-connected processor modules, each module 
containing a microprocessor, a floating point chip, and its own local 
memory. In general, programming such machines is more difficult 
than programming a smaller scale, shared-memory processor. How- 
ever, application-oriented programming systems could be developed 
that would ease the programming of larger machines, at least for 
certain classes of applications. 

Related to the topic of general-purpose parallelism is the issue of 
vectorization. Vectors represent one of the simplest forms of 
parallelism (since there is only one instruction stream); vectorization 
is also attractive because it fits the computation paradigm for many 
scientific problems, and automatic vectorization is a viable ap- 
proach. The recent development of floating-point processors with 
vector support will probably lead to even more multiprocessors and 
uniprocessors with vector hardware. 

Conclusion 
The combination of microprocessor and memory technology with 

compiler technology for parallel decomposition of single-stream 
programs makes it seem that small multiprocessors will have an 
important place in the laboratory computing environment for many 
scientists and engineers in the near future. While these systems are 
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most immediately useful for traditional time-sharing, they promise 
to provide high performance for individual applications as well. But 
it is not yet clear which of a variety of hardware and software 
structures and systems will have sufficient applicability and perform- 
ance to become widespread. 
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Parallel Supercomputing Today 
Cedar Approach 

and the 

More and more scientists and engineers are becoming 
interested in using supercomputers. Earlier barriers to 
using these machines are disappearing as software for 
their use improves. Meanwhile, new parallel supercom- 
puter architectures are emerging that may provide rapid 
growth in performance. These systems may use a large 
number of processors with an intricate memory system 
that is both parallel and hierarchical; they will require 
even more advanced software. Compilers that restructure 
user programs to exploit the machine organization seem 
to be essential. A wide range of algorithms and applica- 
tions is being developed in an effort to provide high 
parallel processing performance in many fields. The Ce- 
dar supercomputer, presently operating with eight pro- 
cessors in parallel, uses advanced system and applications 
software developed at the University of Illinois during the 
past 12 years. This software should allow the number of 
processors in Cedar to be doubled annually, providing 
rapid performance advances in the next decade. 

T HE HISTORY OF PERFORMANCE GAINS IN SUPERCOM- 

puters is remarkable, yet the rate of improvement over this 
history has steadily declined. In a 5-year period in the 194OYs, 

computer speeds increased by lo3 as technology shifted from relays 
to vacuum tubes. ENIAC had a peak rate of about lo3 floating- 
point operations per second (flops) in 1946. In the mid-198OYs, 
after changes to transistor and then integrated circuit technology 
and accompanying architectural enhancements, systems are reaching 
peak rates of lo9 flops for an improvement factor of lo6 in 40 years, 
or an average factor of 10 every 7 years. Clock speed is the rate at 
which basic computer operations are performed. The Cray 2 

computer (with a clock period of 4.1 nsec in 1985) has a clock speed 
only about three times that of the Cray 1 computer (clock period, 
12.5 nsec in 1976), and this took 9 years to achieve. New materials, 
such as gallium arsenide devices, are not expected to increase clock 
speeds by more than a factor of 5 in the next 5 to 10 years. 

Furthermore, clock speeds are no longer an adequate indicator of 
system performance. For example, the recently released Cray 2 (1) 
has a clock speed that is more than twice the speed of the Cray X-MP 
(I) ,  and yet, because of its architecture, most initial users cannot 
obtain from the Cray 2 a performance equal that of the Cray X-MP. 
In such complex, highly concurrent systems, actual delivered per- 
formance is program- and algorithm-specific. Seemingly attractive 
architectural features often have low payoff in delivered system 
performance on actual applications, and severe system bottlenecks 
appear in unexpected places. Thus delivered performance to actual 
users is often only 5 to 15 percent of the peak performance rates 
quoted above, except when hand optimization and assembly lan- 
guage programming are used on well-suited programs. 

On the optimistic side, semiconductor performance and device 
densities in very large scale integration (VLSI) have increased to the 
point where 32-bit microprocessors and high-speed 64-bit floating- 
point arithmetic chip-sets are available and are beginning to be usec 
in some supercomputer systems. Memory chips with up to lo6 bits 
and access times of about 100 nsec are also becoming available to 
system designers. These densities are expected to continue to 
advance in the coming decade, with some improvements in both 
component performance and performance-cost ratio. 

In an effort to restore a high growth rate in supercomputer 
performance, computer designers have made the first half of the 
1980's a turning point in the organization of commercially available 
systems. Existing companies have observed that they can no longer 
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