
by whether they are understandable and easily changed. Thus 
computer tools that bring computational leverage to prigramming 
are helping computer scientists to regain a sense of control over 
systems that have become increasingly complex. 
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Knowledge-Based Systems 

First developed two decades ago, knowledge-based sys- 
tems have seen widespread application in recent years. 
While performance has been a strong focus of attention, 
building such systems has also expanded our conception 
of a computer program from a black box providing an 
answer to something capable of explaining its answers, 
acquiring new knowledge, and transferring knowledge to 
students. These abilities derive fiom distinguishing clear- 
ly what the program knows from how that knowledge 
will be used, making it possible to use the same knowl- 
edge in different ways. 

W ORK IN ARTIFICIAL INTELLIGENCE (AI) HAS OFTEN 
looked for inspiration to the only easily accessible exam- 
ple of intelligence, human behavior. The earliest attempts 

to design intelligent programs were heavily influenced by the 
observation that people seem to make some progress on virtually 
any task, even those that are unfamiliar. Given problems in symbolic 
logic or algebra, naive subjects displayed a consistent set of widely 
applicable problem-solving methods ( I ) .  Generality came to be seen 
as a keystone of human intelligence; intelligence appeared to reside 
in a small collection of domain-independent problem-solving meth- 
ods. Programs based on such methods displayed encouraging early 
success. 

It became clear that although these methods provided a useful 

foundation, they were soon overwhelmed by the complexity of real- 
world problems. Performance on such problems seemed to require 
large stores of task-specific knowledge (2). 

This observation led to a significant shift in emphasis for the part 
of the field that came to be known as knowledge-based systems, in 
which work has come to focus on the accumulation, representation, 
and use of knowledge specific to a particular task. The term 
knowledge-based is primarily a label for this focus and an indication 
of the source of the systems' power: task-specific knowledge, rather 
than the domain-independent methods used in early A1 programs 
(3). That knowledge is often incomplete and at times involves 
inexact judgments, unlike the knowledge that underlies carefully 
designed algorithms of traditional software. The systems can also be 
characterized by an architecture and a set of capabilities that result 
from it, inclulng explanation, knowledge acquisition, and tutoring, 
as well as problem-solving performance. 

Previous discussions have focused largely on performance, de- 
scribing applications and levels of performance reached (4). This 
discussion considers how these systems have expanded our view of a 
program, an expansion made possible in part by the ability to use the 
same knowledge in several different ways. This is demonstrated in 
the context of a rule-based system, since it is the most familiar 
technology used for constructing these systems. 

Randall Davis is an associate professor at the Sloan School of Management at 
Massachusetts Institute of Technology and a member of the MIT Artificial Intelligence 
Laboratory, Cambridge 02139. 
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The Underlying Technology 
Two components are central to the operation of these systems: 

the knowledge base and the inference engine (5). The knowledge 
base contains all of the system's task-specific information, often in 
the form of a few hundred simple rules of the form shown below. 
The inference engine is the system's machinery for selecting and 
applying knowledge from the knowledge base to the specific case at 
hand. 

The knowledge base. A variety of A1 technologies have been used in 
constructing knowledge bases, including rules ( 4 ,  frames (7, 
semantic nets (8), predicate calculus (9), and procedures (lo). A 
rule-based system is used here for illustration, since it is one of the 
most common and easily understood approaches. A sample rule 
from the Mycin system (6) (designed for diagnosing infectious 
diseases) is shown below. Mycin's knowledge base is composed of 
some 500 rules like this. 

Rule 27 
If the infection is primarily in the blood stream, and 

the culture was obtained from a normally sterile site, and 
the suspected portal of entry of the organism is the gastro- 
intestinal tract, 

then there is suggestive evidence (3) that the identity of the 
organism is bacteroides. 

The rules are for the most part quite simple: the if-then form 
provides modest machinery for expressing knowledge. Despite this, 
the successful application of this technology often results in rules 
that are relatively self-contained and coherent. Rule 27, for example, 
can be understood on its own, without examining all the other rules 
in the system, indicating that it proved possible to "dissect" 
knowledge of infectious disease diagnosis into a few hundred 
relatively independent rules. The rules are also comprehensible 
because they have been supplied by human experts asked to explain 
their own reasoning; hence they use a familiar vocabulary and 
reasoning style. 

The .8 indicates how strongly the conclusion follows from the 
premises. Since there are few absolute rules, there must be some way 
to express "maybe" and "probably," and some way to "add" them 
together. This is a topic of considerable research (11) and little 
agreement. It may, however, be of only secondary importance; most 
ofa system's performance seems to arise from having the rules at all, 
that is, knowing which facts lead to which conclusions. In one 
experiment (12) "rounding off" the certainty measures in a set of 
rules from nine different fine-grained values to only two (effectively 
"certain" or "possible") actually resulted in a small increase in system 
accuracy. 

The inference engine. The most common forms of inference engine 
use the rules to reason either forward, from observations to 
conclusions, or backward, from a hypothesis back toward observa- 
tions that might support or  refute the hypothesis. 

Systems that reason fonvard start with data supplied by the user 
and apply all rules whose "if" part are satisfied. If, for example, the 
input data given to the system included the facts that the infection 
was in the blood stream, the culture was from a sterile site, and the 
portal of entry was the gastrointestinal tract, the system would note 
that rule 27 was applicable and would draw the conclusion shown. 
This may in turn result in a cascade of rule applications, as one rule 
produces a conclusion needed in the premise of another. 

Systems that reason backward start with a goal (such as, deter- 
mine the identity of the infecting organism) and retrieve all rules 
whose conclusions deal with this topic (13). Each premise of the 
rulcs retrieved becomes a new goal in turn, and rules relevant to 
rhuse goals are retrieved. In this case, reasoning backward through 

rule 27 would cause the retrieval of rules able to infer infection type, 
site sterility, and portal of entry. This process of working backward 
from initial goal toward more primitive data continues until the 
system encounters topics for which there are no rules. At that point 
information is requested from the user. 

It is also possible to combine both procedures, reasoning forward 
through the rules from an initial set of observations to generate 
tentative hypotheses, then working backward, through other rules, 
from the hypotheses to request additional observations or tests from 
the user. 

Although rule-based systems have been built for a wide variety of 
tasks, the implication to be drawn is not that rules are a powerful 
way to represent knowledge, nor that applying rules is a powerful 
reasoning method. The technology plays an important supporting 
role by encouraging the style of knowledge encoding illustrated by 
rule 27, a style that has facilitated the difficult process of making 
explicit the knowledge that had previously existed implicitly in the 
practice of experts. More important, the existence of these systems is 
an interesting comment about some varieties of expertise: it is an 
empirical observation that substantial bodies of skill have been 
captured by accumulating a few hundred or a few thousand simple 
chunks. It was not obvious at the outset that any interesting 
problem would succumb to such a simple dissection. It is primarily a 
comment about the knowledge in an area when such an approach 
succeeds and interesting that it has done so in more than a few 
isolated cases. 

While the performance of these systems has been impressive in 
some cases, they also have well-recognized limitations. The task 
needs to be primarily cognitive, for instance; perceptual or motor 
tasks require research procedures from other areas of A1 (14). These 
systems are appropriate where the task is more an art (like designing 
organic synthesis), than a science (like solving simple physics 
problems); in the latter case straightforward algorithms suffice. The 
task should be a narrowly defined area in which human expertise has 
been demonstrated. The system may perform well within this area, 
but may fail on tasks that appear to us only superficially different, 
giving important evidence of the shallowness of understanding of 
most existing systems. For example, while rule 27 mentions the 
gastrointestinal tract, to the system this is simply the name of one of 
the portals by which bacteria can enter the body; it knows nothing 
of food, digestion, anatomy, and so forth. 

"What to Know" as Opposed to 'What to Do" 
One of the distinguishing characteristics of these systems is the 

sharp distinction between the inference engine and the knowledge 
base. This division has two interesting consequences. First, it makes 
possible the substitution of a new knowledge base for a new task in 
place of the existing knowledge base, producing a new system as a 
result. Experimental systems for tasks as diverse as pulmonary 
h c t i o n  test interpretation (15), finite element analysis (16),  and 
electronic troubleshooting (17) were all constructed by assembling 
different sets of rules for the same inference engine (18). 

Second, it encourages taking an additional step along what has 
been called the "how to what" spectrum. Programming in machine 
or assembly language requires attending to a great many details (like 
register allocation) specifying exactly how a computation should be 
carried out. Higher level languages like Fortran or Algol suppress 
this detail, offering a new set of constructs for expressing computa- 
tion at the level of arithmetic expressions, subroutine calls, and 
iteration. This facilitates expressing what should be done (what 
expressions to compute) with considerably less attention to exactly 
how it should be done. Current database retrieval languages take a 
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similar step, allowing the user to express what to retrieve (such as 
"Show all the salesmen over quota in New England") rather than 
writing a program specifying how to find it in the database. 

The separation of inference engine and knowledge base produces 
another step in this direction, encouraging the construction of a 
knowledge base containing what the program should know, rather 
than what it should do (19). That is, the key task is to express 
knowledge about the problem (individual rules), without also 
committing to one specific way of using that knowledge (as, for 
example, a decision tree). The most important consequence of this 
distinction is that it enables the system to make multiple different 
uses of the same knowledge, facilitating explanation, knowledge 
acquisition, and tutoring. The separation of inference engine and 
knowledge base, and resulting multiple use of the same knowledge, 
is thus at the root of an expanded view suggesting that a program 
may do considerably more than compute an answer. One relatively 
easy way to make clear how this can work is to examine the 
spreadsheet programs currently popular in business, using them as a 
familiar example to illustrate a number of important technical ideas. 

Spreadsheets 
Spreadsheet programs are a particularly convenient way of doing 

arithmetic computations. They offer a way of expressing the calcula- 
tion in terms of a two-dimensional array of "cells," where the value 
in each cell is either given by the user, or computed from values in 
other cells accordmg to the user's instructions (Fig. 1). In comput- 
ing the budget for an academic research project, for example, the 
first three cells in column 1 might be labeled faculty salary, graduate 
student salary, and support staff salary, with the fourth cell labeled 
salary subtotal, and its value indicated as the sum of the values in the 
first three cells. If we then insert values into the first three cells, the 
program will compute (and display) the value in the fourth cell. If 
we change any input value, we can ask for an updated view of the 
array. 

In any real use elaborate computations are done that contain 
hundreds or even thousands of rows and columns. The important 
point is that these programs change the nature of the task from 
writing a program, to building a model, that is, expressing relation- 
ships. 

This happens because many of the "details" have been taken care 
of. Most important of these is control: in any traditional program- 
ming language we need to specify the sequence of steps to be carried 
out. In a spreadsheet we can focus instead on expressing the 
(mathematical) model itself. One important result is a clear distinc- 
tion between what the model says (relations between cells) and how 
the model is to be used. Thus, like knowledge-based systems, 
spreadsheets distinguish between what to know and what to do. 

Knowledge expressed in this fashion can be used in several 
different ways. For example, spreadsheets are traditionally used to 
reason forward, working from input data toward results. But it is 
also useful to be able to work "backward" on the same model, 
perhaps to keep one or more category of expense within known 
limits. Given a fixed amount of money available for salaries, for 
example, we may wish to create a budget that matches. One way to 
do this would be to run the model forward in a process of trial and 
error: supply a set of inputs, run the model, check for overruns, then 
try changing some inputs to eliminate the overruns. But in any fairly 
complex model, it may not be obvious which inputs to change 
(which inputs affect the quantity in question?) and how (up or 
down, and by how much?). 

It is more effective to work backward: start from the offending 
amount and by examining the equation that produced it, determine 

F a c u l t y  

S t a f f  

S a l a r y  
s u b t o t a l  

Fig. 1. Schematic view of the 
operation of a spreadsheet. 

what quantities it depends on and how. Next see what each of those 
quantities in turn depends on. This process continues until we arrive 
at primary inputs (that is, values input by the users, because there are 
no equations for them). At that point we will have accumulated a 
picture of which inputs are relevant and how they should be 
modified (20). This is a new way of using exactly the same model: 
instead of running it forward, the system works backward through 
the same information. 

Now imagine trying to get this same effect in any traditional 
program. Having written a Fortran program for the budget, for 
example, all we have to do is run it backward. This makes no sense, 
of course, but why? Because a Fortran program is fbndamentally a 
description of a set of calculations to carry out, not a description of 
relationships between variables. In order to express something in 
Fortran, the programmer has to write it as a calculation, deciding for 
instance which should be the independent variables (faculty, stu- 
dent, and staff salary) and which the dependent variables (salary 
subtotal). As a result, the program doesn't express what we know 
(the relations in the model), but requires that we state what to do (in 
this case, run the model forward). By keeping these two things 
distinct we leave open the option to use the knowledge in multiple 
ways. 

This distinction also facilitates explanation. In a complex model 
we might find it useful to be able to answer questions about the 
results, such as 

How did you determine that overhead would be $126,3441 
Why did the total decrease by $43,250 when I lowered graduate 

student support by only $18,1551 
How is the amount of employee benefits computed? 

The first two are answered by augmenting the machinery that runs 
the model, having it maintain a record, an audit trail, of the 
computations it carries out. Given any result, it can then review the 
audit trail, describing each computation. The third question is 
answered not by running the model but by examing it, retrieving the 
equations relevant to the computation mentioned. This is a third use 
of the same information: the knowledge base is in effect being 
treated as a database containing information to be retrieved (21). 

An additional advantage of the distinction is clarity: the content 
of the model is more obvious in the equations of the spreadsheet 
than in Fortran code. This phenomenon is well known: the body of 
a technical paper never lists code, it describes the relevant equations. 
This distinction also offers increased assurance that the program and 
model express the same thing because they are the same thing. 
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As this example suggests, there are significant advantages to 
distinguishing carehlly between expressing the knowledge underly- 
ing a task and writing a more traditonal program. This is of interest 
because everything true for the mathematical computations done 
with a spreadsheet is also true for the symbolic inferences done with 
knowledge-based systems. In particular, the task changes from 
writing a program to specifying the knowledge required for solving 
the problem. Like the spreadsheet, a knowledge-based system is 
constructed not by describing an algorithm, but by describing 
things about the world. With the spreadsheet this information was 
written in terms of equations and mathematical relations; for a 
knowledge-based system the information consists of symbolic rela- 
tions, that is, task-specific rules. 

This approach of telling a program what to know accounts in part 
for the difference between knowledge-based systems and traditional 
software. A second difference is highlighted by considering what 
basic constructs each supplies and how those constructs affect our 
view of the system's behavior. As noted, high-level languages like 
Fortran supply constructs such as subroutine calling and iteration. 
As a result, while it is certainly possible for the programmer to build 
those constructs when using assembly language, using a high-level 
language makes it unnecessary, thereby reducing both the workload 
and opportunity for error. The new vocabulary also encourages 
viewing the operation of the system in terms of those higher level 
constructs: we can think in terms of formulas evaluated or subrou- 
tines called, rather than individual additions and multiplications. 
Knowledge-based systems in turn supply another set of constructs, 
like forward- and backward-reasoning inference engines and trace 
facilities to aid explanation. The consequences are similar: the 
workload and chance of error are reduced, and more importantly, 
there is a new vocabulary that encourages viewing system behavior 
not in terms of calculations performed but in terms of rules applied. 
All of this has in turn led to a broader conception of the roles 
software can play. 

A Broader View 
Much software traditionally used for scientific and data process- 

ing applications has been based on well-established algorithms and 
has focused on performance, that is, finding the answer to the 
problem at hand. Knowledge-based systems have been applied to 
tasks like medical diagnosis, where few well-defined algorithms 
exist. As a result, significant emphasis is placed on the careful 
specification and accumulation of the knowledge necessary for the 
task. This in turn has focused interest on having the systems play a 
broader role, considering in addition to performance such capabili- 
ties as explanation, knowledge acquisition, and tutoring. 

Many knowledge-based systems explain their results in the man- 
ner suggested earlier, keeping a record of the rules that have been 
applied and playing back the relevant portion of that record (4). 
Some systems are also able to answer questions about what they did 
not do (for example, 'Why didn't you conclude that the organism 
was an Escherichia coli?"). The system examines the knowledge base 
to find all the rules that would have led to that conclusion, 
displaying them and showing why each failed to apply to the case at 
hand (22). General questions about the task (for example, "How do 
you conclude that the organism might be E. coli?) can be answered 
similarly, retrieving relevant rules from the knowledge base. 

Knowledge acquisition is important because the accumulation of 
any sizable knowledge base is a process of iterative refinement, in 
part because the initial explication of previously tacit knowledge is 
difficult, often resulting in incomplete or inconsistent sets of rules. 
For example, a knowledge base might be judged incomplete if it 

contained rule 27 but no rules for inferring portal of entry, because 
it would be better for the system to infer the answer than to rely on 
the user's judgment. In response, one or more new rules might be 
added to allow the system to deduce the answer from more basic 
data. Now when the system, reasoning backward through the rules, 
comes to clause 3 of rule 27, rather than ask the user it will retrieve 
the newly added rules, which in turn may require the more basic 
observations. Adding new rules is rarely this straightforward in 
practice (23), but the process is facilitated by focusing the rules on 
the knowledge underlying the task. 

Knowledge acquisition can also aid in the development and 
systematization of knowledge in a field. It assists in much the same 
way that writing a text ofien helps: building a system requires the 
same sort of methodical listing. Building a system helps in a way that 
developing any kind of computer program helps, and in a way that 
no paper listing can: it provides a form of "mental hygiene" in 
running the rules that is not available in other media. With rules 
written on paper and invoked by hand, there is enormous tempta- 
tion to do what we think the rule meant, not what it actually said. 
Scale is also an issue: the ability to keep track of detail in hand 
simulation is easily overwhelmed by more than a few dozen rules. In 
that case the system can be used to do the reasoning and track the 
details. 

The system also helps by running endless tests and running them 
faster than is possible by hand. This permits an interactive approach 
to knowledge acquisition: the system can be used to evaluate many 
different additions to the knowledge base. Such evaluation in turn 
facilitates incremental knowledge specification, accumulating bits of 
knowledge by distilling them one at a time from hundreds of real 
examples, an approach that has proven successful on tasks chosen in 
part because there is as yet no simple, encompassing theory for 
them. 

Building a knowledge-based system also offers leverage because of 
its ability to provide explanations and because of its incremental 
character. Explanations ensure that we can see how the rules are 
actually being used, which may turn out to be different from what 
was intended. 

Building a system incrementally makes it possible to attack a small 
part of a problem and, over time, add new knowledge to expand the 
scope of competence. As a result, it may not be necessary to 
understand the entire problem before starting on the parts that are 
understood. 

Having laboriously transferred knowledge from an expert to the 
system, it would be useful if the system could transfer the same 
knowledge to a student. This transfer is possible but nontrivial (24), 
in part because teaching sometimes requires a deeper understanding 
than doing, and in part because it also requires pedagogical skills. 
Where problems can often be solved with the rote application of a 
procedure, teaching also requires being able to document why and 
how the procedure works, knowing how to structure a lesson, and 
SO on. 

Current Systems 
While this broader view of programs has implications for the long 

term, much of the near-term impact of knowledge-based systems 
results from their performance on problems of pragmatic value. A 
number of systems are currently in use and under development in 
both the research and commercial communities. The representative 
systems described below were selected on the basis of applicability to 
a problem of scientific interest, substantial development, and current 
performance. 

Geoh~y. The Prospector system (8) was developed to aid in 
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mineral exploration, including regional resource evaluation, ore 
deposit identification, and drilling site selection. The system's 
knowledge base covered ten different kinds of deposits in detail, 
describing the characteristic features of large-scale deposits of lead, 
zinc, copper, molybdenum, uranium, and others. In one instance it 
was able to extend the boundaries of a known deposit (25). 

The Dipmeter Advisor system (26) interprets data from oil wells. 
Tools lowered into the well and slowly retrieved measure such 
things as the inclination (or dip) of rock bedding planes. Using 
knowledge of the effects of geologic forces, human experts can 
interpret these measurements to infer subsurface geology, including 
the presence of faults, ancient sand dunes, river channels, and so 
forth. This knowledge was analyzed and embodied in the system, 
allowing it to produce interpretations, primarily for the deltaic 
environments in which it was originally developed. 

Electronic troubleshooting.. ACE (automated cable expert) was 
developed to analyze the large volume of trouble reports generated 
in residential telephone service (27). These reports were previously 
analyzed by looking for patterns of misbehavior that suggest a 
specific cable, junction box, or other component as a source of 
trouble. This expertise has been captured in approximately 500 rules 
that scan the trouble report database, processing overnight what had 
previously required a week or more. 

Aeronautics-mtronautia. The Navex system is designed to func- 
tion as an interpreter of navigation data gathered during space 
shuttle flights (9). The shuttle is tracked by multiple radar sites, each 
providing estimates of range and azimuth. Like the human console 
operators, Navex determines whether to include or exclude specific 
tracking stations (on the basis of the quality of the data being 
supplied), whether to adjust (restart) the Kalman filter used to 
estimate position, velocity, and acceleration from the possibly noisy 
data, and whether to certify the current position estimate as reliable 
(for use by other groups at Mission Control). 

The system also maintains a model of the mission, which, 
combined with its knowledge of the domain, allows it to anticipate 
events. As one example, the system knows when the solid rocket 
boosters are due to separate and knows that when they do, the C- 
band radars will often track them, rather than the shuttle. 

Chemist?. The Dendral program (28), one of the earliest knowl- 
edge-based systems, aids in the determination of molecular smc-  
tures by interpreting data from a mass spectrometer. Its expertise 
includes aliphatic structures like ketones, ethers, alcohols, and 
mines, and extends to cyclic ketones, estrogenic steroids, and 
prostaglandins. It has been used to check solutions found in the 
literature and often turns up additional possibilities; in one instance 
it proved better than human experts at untangling the data produced 
by a mixture of compounds. 

Dendral's power arises from several kinds of knowledge of 
chemistry. Substantial performance arises from its structure genera- 
tor, an exhaustive, nonredundant enumerator of possible structures 
that ensures no potential solution will be overlooked. Rules con- 
cerning structures that are impossible at room temperature provide 
additional knowledge used to guide and constrain the generator. 
Guidance is also provided by knowledge about mass spectra: various 
patterns of peaks are characteristic of particular families of mole- 
cules. Finally, knowledge of molecular fragmentation processes 
makes possible rules that test candidate solutions. 

Medicine. Medicine has been a rich source of examples and 
challenging problems for these systems. Mycin (6) was designed to 
consult on problems of infectious disease diagnosis and therapy 
selection (diagnosing bacteremia and meningitis, then selecting 
antibiotic treatment). Caduceus (7) works in the broad problem of 
internal medicine; after almost 15 years of knowledge base construc- 
tion effort the system is scheduled for field test late in 1986. 

Mathematics. Macsyma (lo),  another of the earliest knowledge- 
based systems, can perform, at the user's request, a very wide range 
of operations in symbolic mathematics. Experimental systems have 
also been developed for statistics, where the interesting problem is 
not in doing the statistical calculations, but in knowing what 
arithmetic to do and how to interpret the results. Systems under 
development assist with determining when regression can be applied 
(29), basing their decision in part on knowledge of phenomena like 
collinearity. 

The technology has been applied across a wide range of fields: in 
addition to the well-established systems mentioned, experimental 
systems have also been developed for tasks as diverse as planning 
experiments in molecular biology (30), designing organic syntheses 
(31), and investigating creativity in mathematical research (32). 

Research Issues 
While construction of systems like these has in a few cases been 

relatively straightforward (15), often the effort encounters substan- 
tial issues that are the subject of basic research. This section discusses 
a few representative issues. 

Where it has been possible, distinguishing between what to know 
and what to do provides substantial benefits in terms of multiple 
uses of knowledge. But even under these circumstances, explanation 
and knowledge acquisition are not trivial. Explanation viewed as a 
replay of the reasoning is not particularly use l l  if that reasoning is 
long and complex. In response, some systems have modeled their 
tasks at multiple levels of detail and are thus capable of providing 
high-level explanations that avoid unnecessary detail (33). A key 
issue in research on automating knowledge acquisition is credit 
assignment, determining what missing or incorrect knowledge 
caused the system to produce the wrong answer. This in turn 
appears to require substantial knowledge about the task at hand 
(34), offering a technical version of the common-sense observation 
that learning proceeds best when it has an established base of 
knowledge to work from. 

Experience has also indicated that it is difficult to keep this 
distinction sharp. Difficulties arise because an important part of 
expertise in many tasks is knowledge of sequence and problem- 
solving strategies. Xcon (35), for example, a large system with over 
3000 rules, checks the purchase order for a computer system to 
ensure that it is complete (all of the appropriate components are 
present) and consistent. Six basic steps must be followed, in order, 
to accomplish this task, but there is no direct way to express this fact 
by using rules of the sort illustrated earlier. Such rules are well suited 
to expressing small, independent inferences, not the overall structure 
of the solution. Expressing overall solutions is not impossible 
through the use of rules, only very difficult and often indirect (36), 
intermixing the domain knowledge and how it is to be used, thereby 
losing clarity and the other advantages this distinction offers. While 
the sequencing of steps is easily expressed in any standard program- 
ming language, it is not yet obvious how to combine rules and 
procedures in the same program to get the benefits of both. 

Problem-solving strategies express ways of attacking a problem, 
such as "use process of elimination," or "generate all hypotheses 
consistent with the initial data, then generate tests that will distin- 
guish among hypotheses." They are ubiquitous in analytic problems 
like the diagnosis and data-interpretation tasks often encountered by 
knowledge-based systems. Yet neither rules of the sort illustrated 
earlier nor any of the standard knowledge representation techniques 
offer a way to express this information directly. 

This difficulty has led to an active body of research whose 
fundamental hypothesis is that specifying and selecting a problem- 
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solving strategy-deciding what to do next-is itself a knowledge- 
based task (37). In response, strategies are treated as a task domain 
in much the same way that the original knowledge-based systems 
focused on their tasks: specify and accumulate a body of knowledge 
about the topic. This new body of knowledge is used to select a 
strategy appropriate to the problem at hand; that strategy is then 
used to guide application of knowledge in the original knowledge 
base. The difficult problems here are discovering the strategies and 
developing knowledge representation languages that are both ex- 
pressive and efficient (38). 

But even where distinction between knowing and doing has not 
been maintained with complete clarity, substantial benefit has 
resulted. Developing knowledge bases for a range of tasks has 
helped to make clear what knowledge is required for those prob- 
lems. This in turn has made it possible to study the knowledge bases 
to detect recurring patterns of reasoning that might not otherwise 
have been visible (39).  Ways of expressing those patterns now being 
developed should improve the performance and ease of construction 
of future systems. 

A second area of considerable research activity is building systems 
that reason from a more fundamental understanding than is typically 
captured in rules. Traditionally rules have expressed empirical 
associations, links like those between symptoms and diseases where 
the connection has been observed frequently, but the underlying 
mechanism may not be clear. Rule 27, for instance, asserts such an 
association, but does not indicate why it is true, perhaps because the 
answer is not yet known. 

Research efforts in progress draw on examples from analog and 
digital circuits, simple mechanical devices, and selected areas of 
medicine (33, 40). The key issue is understanding, modeling, and 
reasoning about causality: a central concept in many of the efforts is 
the notion of a causal explanation. While the equations for the force 
on a simple pendulum, for example, can be solved analytically to 
indicate that it will oscillate, this doesn't tell us what causes the 
oscillation. Physical intuition is better served by an explanation that 
describes how the forces at the beginning of the swing accelerate the 
bob from rest, how those forces then decrease as the string moves 
toward the vertical, then reverse, and so forth. The explanation is 
causal in that it identifies explicit causes and their effects, the causes 
precede effects, and effects propagate locally (there is no action at a 
distance)--all intuitive attributes of causality. The explanation is also 
qualitative, using terms like "increase" and "decrease," enabling it to 
suppress the detail present in a quantitative account. 

Explanations like this play a key role in many forms of problem- 
solving currently being investigated. One interesting task is produc- 
ing the explanations themselves: the system is given a structural 
description of a device and produces from it a causal description of 
the device's behavior (41). This differs from the task of traditional 
simulation, in which the basic question is what the device will do; 
here the goal is to produce an explanation of why such behavior 
occurs. 

Such explanations can provide the basis for a p o w e m  form of 
diagnostic reasoning (42). If, for example, a digital circuit is 
malfunctioning, tracing backward from a symptom along the path 
of causality permits the identification of components that may be 
broken. Systems built this way can handle a wider range of devices: 
where the knowledge base of a rule-based system is typically specific 
to a single device, programs built using this approach can in effect 
"read the schematics" to gulde their reasoning. They are also more 
robust, in the sense that they can diagnose a wider range of faults, 
including those that change the connectivity of the circuit, changing 
the path of signal flow. To date only very simple circuits have been 
used; the difficult research problems include describing and reason- 
ing about the behavior of complex devices like microprocessors. 

In the long term this line of work has implications for both theory 
and practice. Theory is advanced by the careful statement of the 
principles that guide construction of these systems (43). One such 
principle, common in many engineering disciplines, indicates that 
the behavior specification of a component should refer only to 
properties of that component, not anything that component may be 
attached to. Thus the behavior of a switch, for instance, should not 
be "if the switch is closed, current will flow," since that presumes the 
switch is attached to a current source. Instead it should simply be 
"when the switch is closed, the voltage at either end of the switch 
will be the same." Following this guideline helps to ensure that the 
model captures physical causality, rather than the biases and expecta- 
tions of the model builder. 

Advances may lead to knowledge-based systems with a wider 
range of abilities. Current systems are narrowly focused in their 
expertise and are fragile, in the sense that their performance falls off 
precipitously near the boundaries of that expertise, especially when 
compared with the more graceful decline exhibited by human 
experts. These systems know the rules, but have no more fundamen- 
tal theory to fall back on when no rules apply. Their rule base 
captures knowledge as a large collection of specific situations, but 
provides no means for reasoning that the current situation is 
different from "but very close to" one specified in a rule. Causal 
reasoning may provide a basis for such reasoning, broadening the 
scope of the system's performance. 

Knowledge-based systems have generated wide interest for the 
kinds of problems they have attacked and the level of performance 
they have occasionally achieved. A more significant impact may be 
the broader view they take of a computer program, suggesting that 
it not be considered simply as a set of instructions written for the 
efficient solution of a problem, but viewed instead as an en\ 'iron- ' 

ment for the development, accumulation, and specification of 
knowledge about that problem. 

This view is made possible in part by distinguishing between what 
to know and what to do, attempting as far as possible to express 
knowledge about the task without also committing to a specific way 
of using that knowledge. The separation of inference engine and 
knowledge base in these systems reflects this distinction; it also 
offers the opportunity to build new systems by writing new 
knowledge bases. Where the knowledge has successfully been 
expressed without committing to a specific way of using it, the same 
information can be used in multiple different ways, providing 
significant support for explanation, knowledge acquisition, and 
tutoring. 

This distinction has been achieved to only a limited extent in most 
operational systems, but even so the systems built have proved to be 
useful tools aiding in the organization and study of knowledge 
about a range of tasks. These systems have also motivated research 
into the elucidation of strategies and the development of advanced 
languages for expressing them. Research focused on understanding 
and reasoning from causality emphasizes the accumulation of princi- 
ples for carel l  construction of models and may provide an irnpor- 
tant base for broadening performance of these systems beyond their 
currently narrow focus. 

While the computational technology described plays a key role in 
facilitating the elucidation, expression, and testing of knowledge, 
the specific computer programs built may prove to be irrelevant. 
The most lasting contribution of these systems will likely lie in the 
knowledge that had to be accumulated and formalized to make them 
work. 
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Small Shared-Memory Multiprocessors 

Multiprocessors built from today's microprocessors are 
economically attractive. Although we can use these multi- 
processors for time-sharing applications, it would be 
preferable to use them as true parallel processors. One key 
to achieving efficient parallel processing is to match the 
communications capabilities of the multiprocessor to the 
communications needs of the problem. The other key is 
improved parallel programming systems. If these are 
achieved, then efficient parallel processing can be ap- 
proached from both ends by providing more communica- 
tions capability in the hardware and restructuring the 
problem to reduce the communications requirements. 

T HE LABORATORY COMPUTING ENVIRONMENT FOR SCIEN- 

tists and engineers has been changed dramatically, first by 
minicomputers and, more recently, by personal computers 

and p o w e f i  workstations. Small multiprocessors promise to in- 
crease the speed with which computationally intensive problems can 
be solved in the laboratory (1). While such machines should be as 
much as one order of magnitude faster than today's minicomputers, 
they will probably have comparable or lower costs. These multipro- 
cessors will be small in that the processors will number on the order 
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