
by whether they are understandable and easily changed. Thus
computer tools that bring computational leverage to prigramming
are helping computer scientists to regain a sense of control over
systems that have become increasingly complex.

-
REFERENCES AND NOTES

I. J. ~McCarth Commun. ACM 3, 185 (1960).
2. E. ~ h a r n i z C. Riesbeck, D. McDermott, Artificial Intelligence Programming

(Erlbaum, Hillsdale, NJ, 1980).
3. R. Davis, Science 231, 957 (1986).
4. N. Prgqramming in Modula-2 (Springer-Verlag, New York, 1985)
5. B. Wichman,Zommun. ACM 27, 98 (1984).
6. G. Birtwistle, 0. Dahl, B. Myhrhaug, K. Nygaard, Simula Begin (Auerbach,

Phiadel hia, 1973).
7. A ~ o l d g e r and D. Robson, SmalltaNs-80, The Langudge and Its Implementation

(~ddison-$esley, Reading, MA, 1983).
8. M. Stef i and D. G. Bobrow, AIMqpzine 6, 40 (1985).
9. D. G. Bobrow and IM. J. Stefik, The LoopsManud (Xerox Corporation, Palo Alto,

CA, 1983).
10. M. Stefik, D. G. Bobrow, K. Kahn, IEEE Sofhvare 3, 10 (1986).
11. J. Doyle, Artif: Intell. 12, 231 (1979).
12. R. A. Kowalski, Commun. ACM 22, 424 (1979).
17. T. ~Moto-oka. Ed.. Fifch Generation Cornouter Systems (Elseviermorth-Holland,

Amsterdam, i982).' '
14. R Davis and J. King, in Machine Intelligence, E. Elcock and D. ~Michie, Eds.

ile , New York, 1976), vol. 8, p. 300-jjz.
n. b W d t n m a n and P ~ a y e s - ~ o $ Eds,, Pattern-Directed Injrence $stems (Aca-

demic Press, New York, 1978).

16. B. G. Buchanan and E. H . Shortliffe, Rule-Based Expert Proguams: The MTCIN
Expen'ments o f the Stanford Heuristic Pro~rammin~ Prqcct (Addison-Wesley, Read- - - -
ing, MA, I&).

17. J. Gordon and E. H . Shortliffe,Artificial Intelligericc 26, 323 (1985).
18. S. Mittal, C. L. Dym, M. Mojaria, in Applicatwris $Knowledge-Based Systems to

EngineeringAnalysis andDesign, C. L. Dym, Ed. (American Society of Mechanical
En ineers, New York, 1985), p. 99.

19. B. f I a y e s - ~ o t h , ~ m ~ Intell. 26, 251 (1983).
20. I. E. Sutherland, thesis, Massachusetts Institute of Technology, Cambridge (1963).
21. A. Borning,ACM TOPLAS 3, 353 (1981).
22. G. Steele, thesis, ~Massachusetts Institute of Technology, Cambridge (1980).
23. H . Abelson and G. Sussman, Stnrcture and Inteqretation $Computer Pvograms

(Massachusetts Institute of Technology Press, Cambridge, 1985).
24. R Fikes and T. Kehler, Commun. ACM 28, 904 (1985).
25. D. G. Bobrow, IEEE Tmns. Sofhvare Eng. SE:11, 10 (1985).
26. D. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, CommonLoopr, A

GYacefirlMerger of Common Llsp and Ohect-On'entedProgramming (Xerox Corpora-
tion, Palo Alto, CA, 1985).

27, B. Hail ern IEEE Sofiare 3, 6 (1986).
28. A. ~odber; , in Interactive Pro ramming Environments, D. Barstow, H. Shrobe, E.

Sandewall, Eds. (Mc~raw- if, New York, 19841, p. 141.
29. B. Sheil, ibid., p. 19.
30. W. Teitelman and L. Masinter, ibid., p. 83.
31. D. Barstow, AAAZ Mvazine 5 , 5 (1984).
32. C. Rich and H. Shrobe, in Interactive Progvamming Enviuonments, D. Barstow, H .

Shrobe, E. Sandewall, Eds. (~McGraw-Hill, New York, 1984), p. 443.
33. J. S. Brown, R. Burton, J, de Kleer, in Intelligent Tutoring Systems, D. Sleeman and

J. S. Brown, Eds. (Academic Press, New York, 1983), p. 227.
34. T. Wino rad, Commun. ACM 22, 391 (1979).
35 M. sanefa, Interlisp-D Reference Manual (Xerox Corporation, Palo Alto, CA,

1983).
36. We thank J . S. Brown, J. de Kleer, K. Kahn, G. Kiczales, M. Miller, and J. Shrager

for comments on earlier versions of this paper.

Knowledge-Based Systems

First developed two decades ago, knowledge-based sys-
tems have seen widespread application in recent years.
While performance has been a strong focus of attention,
building such systems has also expanded our conception
of a computer program from a black box providing an
answer to something capable of explaining its answers,
acquiring new knowledge, and transferring knowledge to
students. These abilities derive fiom distinguishing clear-
ly what the program knows from how that knowledge
will be used, making it possible to use the same knowl-
edge in different ways.

W ORK IN ARTIFICIAL INTELLIGENCE (AI) HAS OFTEN
looked for inspiration to the only easily accessible exam-
ple of intelligence, human behavior. The earliest attempts

to design intelligent programs were heavily influenced by the
observation that people seem to make some progress on virtually
any task, even those that are unfamiliar. Given problems in symbolic
logic or algebra, naive subjects displayed a consistent set of widely
applicable problem-solving methods (I) . Generality came to be seen
as a keystone of human intelligence; intelligence appeared to reside
in a small collection of domain-independent problem-solving meth-
ods. Programs based on such methods displayed encouraging early
success.

It became clear that although these methods provided a useful

foundation, they were soon overwhelmed by the complexity of real-
world problems. Performance on such problems seemed to require
large stores of task-specific knowledge (2).

This observation led to a significant shift in emphasis for the part
of the field that came to be known as knowledge-based systems, in
which work has come to focus on the accumulation, representation,
and use of knowledge specific to a particular task. The term
knowledge-based is primarily a label for this focus and an indication
of the source of the systems' power: task-specific knowledge, rather
than the domain-independent methods used in early A1 programs
(3). That knowledge is often incomplete and at times involves
inexact judgments, unlike the knowledge that underlies carefully
designed algorithms of traditional software. The systems can also be
characterized by an architecture and a set of capabilities that result
from it, inclulng explanation, knowledge acquisition, and tutoring,
as well as problem-solving performance.

Previous discussions have focused largely on performance, de-
scribing applications and levels of performance reached (4). This
discussion considers how these systems have expanded our view of a
program, an expansion made possible in part by the ability to use the
same knowledge in several different ways. This is demonstrated in
the context of a rule-based system, since it is the most familiar
technology used for constructing these systems.

Randall Davis is an associate professor at the Sloan School of Management at
Massachusetts Institute of Technology and a member of the MIT Artificial Intelligence
Laboratory, Cambridge 02139.

28 FEBRUARY 1986 ARTICLES 957

The Underlying Technology
Two components are central to the operation of these systems:

the knowledge base and the inference engine (5). The knowledge
base contains all of the system's task-specific information, often in
the form of a few hundred simple rules of the form shown below.
The inference engine is the system's machinery for selecting and
applying knowledge from the knowledge base to the specific case at
hand.

The knowledge base. A variety of A1 technologies have been used in
constructing knowledge bases, including rules (4 , frames (7,
semantic nets (8), predicate calculus (9), and procedures (lo). A
rule-based system is used here for illustration, since it is one of the
most common and easily understood approaches. A sample rule
from the Mycin system (6) (designed for diagnosing infectious
diseases) is shown below. Mycin's knowledge base is composed of
some 500 rules like this.

Rule 27
If the infection is primarily in the blood stream, and

the culture was obtained from a normally sterile site, and
the suspected portal of entry of the organism is the gastro-
intestinal tract,

then there is suggestive evidence (3) that the identity of the
organism is bacteroides.

The rules are for the most part quite simple: the if-then form
provides modest machinery for expressing knowledge. Despite this,
the successful application of this technology often results in rules
that are relatively self-contained and coherent. Rule 27, for example,
can be understood on its own, without examining all the other rules
in the system, indicating that it proved possible to "dissect"
knowledge of infectious disease diagnosis into a few hundred
relatively independent rules. The rules are also comprehensible
because they have been supplied by human experts asked to explain
their own reasoning; hence they use a familiar vocabulary and
reasoning style.

The .8 indicates how strongly the conclusion follows from the
premises. Since there are few absolute rules, there must be some way
to express "maybe" and "probably," and some way to "add" them
together. This is a topic of considerable research (11) and little
agreement. It may, however, be of only secondary importance; most
ofa system's performance seems to arise from having the rules at all,
that is, knowing which facts lead to which conclusions. In one
experiment (12) "rounding off" the certainty measures in a set of
rules from nine different fine-grained values to only two (effectively
"certain" or "possible") actually resulted in a small increase in system
accuracy.

The inference engine. The most common forms of inference engine
use the rules to reason either forward, from observations to
conclusions, or backward, from a hypothesis back toward observa-
tions that might support or refute the hypothesis.

Systems that reason fonvard start with data supplied by the user
and apply all rules whose "if" part are satisfied. If, for example, the
input data given to the system included the facts that the infection
was in the blood stream, the culture was from a sterile site, and the
portal of entry was the gastrointestinal tract, the system would note
that rule 27 was applicable and would draw the conclusion shown.
This may in turn result in a cascade of rule applications, as one rule
produces a conclusion needed in the premise of another.

Systems that reason backward start with a goal (such as, deter-
mine the identity of the infecting organism) and retrieve all rules
whose conclusions deal with this topic (13). Each premise of the
rulcs retrieved becomes a new goal in turn, and rules relevant to
rhuse goals are retrieved. In this case, reasoning backward through

rule 27 would cause the retrieval of rules able to infer infection type,
site sterility, and portal of entry. This process of working backward
from initial goal toward more primitive data continues until the
system encounters topics for which there are no rules. At that point
information is requested from the user.

It is also possible to combine both procedures, reasoning forward
through the rules from an initial set of observations to generate
tentative hypotheses, then working backward, through other rules,
from the hypotheses to request additional observations or tests from
the user.

Although rule-based systems have been built for a wide variety of
tasks, the implication to be drawn is not that rules are a powerful
way to represent knowledge, nor that applying rules is a powerful
reasoning method. The technology plays an important supporting
role by encouraging the style of knowledge encoding illustrated by
rule 27, a style that has facilitated the difficult process of making
explicit the knowledge that had previously existed implicitly in the
practice of experts. More important, the existence of these systems is
an interesting comment about some varieties of expertise: it is an
empirical observation that substantial bodies of skill have been
captured by accumulating a few hundred or a few thousand simple
chunks. It was not obvious at the outset that any interesting
problem would succumb to such a simple dissection. It is primarily a
comment about the knowledge in an area when such an approach
succeeds and interesting that it has done so in more than a few
isolated cases.

While the performance of these systems has been impressive in
some cases, they also have well-recognized limitations. The task
needs to be primarily cognitive, for instance; perceptual or motor
tasks require research procedures from other areas of A1 (14). These
systems are appropriate where the task is more an art (like designing
organic synthesis), than a science (like solving simple physics
problems); in the latter case straightforward algorithms suffice. The
task should be a narrowly defined area in which human expertise has
been demonstrated. The system may perform well within this area,
but may fail on tasks that appear to us only superficially different,
giving important evidence of the shallowness of understanding of
most existing systems. For example, while rule 27 mentions the
gastrointestinal tract, to the system this is simply the name of one of
the portals by which bacteria can enter the body; it knows nothing
of food, digestion, anatomy, and so forth.

"What to Know" as Opposed to 'What to Do"
One of the distinguishing characteristics of these systems is the

sharp distinction between the inference engine and the knowledge
base. This division has two interesting consequences. First, it makes
possible the substitution of a new knowledge base for a new task in
place of the existing knowledge base, producing a new system as a
result. Experimental systems for tasks as diverse as pulmonary
h c t i o n test interpretation (15), finite element analysis (16), and
electronic troubleshooting (17) were all constructed by assembling
different sets of rules for the same inference engine (18).

Second, it encourages taking an additional step along what has
been called the "how to what" spectrum. Programming in machine
or assembly language requires attending to a great many details (like
register allocation) specifying exactly how a computation should be
carried out. Higher level languages like Fortran or Algol suppress
this detail, offering a new set of constructs for expressing computa-
tion at the level of arithmetic expressions, subroutine calls, and
iteration. This facilitates expressing what should be done (what
expressions to compute) with considerably less attention to exactly
how it should be done. Current database retrieval languages take a

SCIENCE, VOL. 231

similar step, allowing the user to express what to retrieve (such as
"Show all the salesmen over quota in New England") rather than
writing a program specifying how to find it in the database.

The separation of inference engine and knowledge base produces
another step in this direction, encouraging the construction of a
knowledge base containing what the program should know, rather
than what it should do (19). That is, the key task is to express
knowledge about the problem (individual rules), without also
committing to one specific way of using that knowledge (as, for
example, a decision tree). The most important consequence of this
distinction is that it enables the system to make multiple different
uses of the same knowledge, facilitating explanation, knowledge
acquisition, and tutoring. The separation of inference engine and
knowledge base, and resulting multiple use of the same knowledge,
is thus at the root of an expanded view suggesting that a program
may do considerably more than compute an answer. One relatively
easy way to make clear how this can work is to examine the
spreadsheet programs currently popular in business, using them as a
familiar example to illustrate a number of important technical ideas.

Spreadsheets
Spreadsheet programs are a particularly convenient way of doing

arithmetic computations. They offer a way of expressing the calcula-
tion in terms of a two-dimensional array of "cells," where the value
in each cell is either given by the user, or computed from values in
other cells accordmg to the user's instructions (Fig. 1). In comput-
ing the budget for an academic research project, for example, the
first three cells in column 1 might be labeled faculty salary, graduate
student salary, and support staff salary, with the fourth cell labeled
salary subtotal, and its value indicated as the sum of the values in the
first three cells. If we then insert values into the first three cells, the
program will compute (and display) the value in the fourth cell. If
we change any input value, we can ask for an updated view of the
array.

In any real use elaborate computations are done that contain
hundreds or even thousands of rows and columns. The important
point is that these programs change the nature of the task from
writing a program, to building a model, that is, expressing relation-
ships.

This happens because many of the "details" have been taken care
of. Most important of these is control: in any traditional program-
ming language we need to specify the sequence of steps to be carried
out. In a spreadsheet we can focus instead on expressing the
(mathematical) model itself. One important result is a clear distinc-
tion between what the model says (relations between cells) and how
the model is to be used. Thus, like knowledge-based systems,
spreadsheets distinguish between what to know and what to do.

Knowledge expressed in this fashion can be used in several
different ways. For example, spreadsheets are traditionally used to
reason forward, working from input data toward results. But it is
also useful to be able to work "backward" on the same model,
perhaps to keep one or more category of expense within known
limits. Given a fixed amount of money available for salaries, for
example, we may wish to create a budget that matches. One way to
do this would be to run the model forward in a process of trial and
error: supply a set of inputs, run the model, check for overruns, then
try changing some inputs to eliminate the overruns. But in any fairly
complex model, it may not be obvious which inputs to change
(which inputs affect the quantity in question?) and how (up or
down, and by how much?).

It is more effective to work backward: start from the offending
amount and by examining the equation that produced it, determine

F a c u l t y

S t a f f

S a l a r y
s u b t o t a l

Fig. 1. Schematic view of the
operation of a spreadsheet.

what quantities it depends on and how. Next see what each of those
quantities in turn depends on. This process continues until we arrive
at primary inputs (that is, values input by the users, because there are
no equations for them). At that point we will have accumulated a
picture of which inputs are relevant and how they should be
modified (20). This is a new way of using exactly the same model:
instead of running it forward, the system works backward through
the same information.

Now imagine trying to get this same effect in any traditional
program. Having written a Fortran program for the budget, for
example, all we have to do is run it backward. This makes no sense,
of course, but why? Because a Fortran program is fbndamentally a
description of a set of calculations to carry out, not a description of
relationships between variables. In order to express something in
Fortran, the programmer has to write it as a calculation, deciding for
instance which should be the independent variables (faculty, stu-
dent, and staff salary) and which the dependent variables (salary
subtotal). As a result, the program doesn't express what we know
(the relations in the model), but requires that we state what to do (in
this case, run the model forward). By keeping these two things
distinct we leave open the option to use the knowledge in multiple
ways.

This distinction also facilitates explanation. In a complex model
we might find it useful to be able to answer questions about the
results, such as

How did you determine that overhead would be $126,3441
Why did the total decrease by $43,250 when I lowered graduate

student support by only $18,1551
How is the amount of employee benefits computed?

The first two are answered by augmenting the machinery that runs
the model, having it maintain a record, an audit trail, of the
computations it carries out. Given any result, it can then review the
audit trail, describing each computation. The third question is
answered not by running the model but by examing it, retrieving the
equations relevant to the computation mentioned. This is a third use
of the same information: the knowledge base is in effect being
treated as a database containing information to be retrieved (21).

An additional advantage of the distinction is clarity: the content
of the model is more obvious in the equations of the spreadsheet
than in Fortran code. This phenomenon is well known: the body of
a technical paper never lists code, it describes the relevant equations.
This distinction also offers increased assurance that the program and
model express the same thing because they are the same thing.

28 FEBRUARY 1986 ARTICLES 959

As this example suggests, there are significant advantages to
distinguishing carehlly between expressing the knowledge underly-
ing a task and writing a more traditonal program. This is of interest
because everything true for the mathematical computations done
with a spreadsheet is also true for the symbolic inferences done with
knowledge-based systems. In particular, the task changes from
writing a program to specifying the knowledge required for solving
the problem. Like the spreadsheet, a knowledge-based system is
constructed not by describing an algorithm, but by describing
things about the world. With the spreadsheet this information was
written in terms of equations and mathematical relations; for a
knowledge-based system the information consists of symbolic rela-
tions, that is, task-specific rules.

This approach of telling a program what to know accounts in part
for the difference between knowledge-based systems and traditional
software. A second difference is highlighted by considering what
basic constructs each supplies and how those constructs affect our
view of the system's behavior. As noted, high-level languages like
Fortran supply constructs such as subroutine calling and iteration.
As a result, while it is certainly possible for the programmer to build
those constructs when using assembly language, using a high-level
language makes it unnecessary, thereby reducing both the workload
and opportunity for error. The new vocabulary also encourages
viewing the operation of the system in terms of those higher level
constructs: we can think in terms of formulas evaluated or subrou-
tines called, rather than individual additions and multiplications.
Knowledge-based systems in turn supply another set of constructs,
like forward- and backward-reasoning inference engines and trace
facilities to aid explanation. The consequences are similar: the
workload and chance of error are reduced, and more importantly,
there is a new vocabulary that encourages viewing system behavior
not in terms of calculations performed but in terms of rules applied.
All of this has in turn led to a broader conception of the roles
software can play.

A Broader View
Much software traditionally used for scientific and data process-

ing applications has been based on well-established algorithms and
has focused on performance, that is, finding the answer to the
problem at hand. Knowledge-based systems have been applied to
tasks like medical diagnosis, where few well-defined algorithms
exist. As a result, significant emphasis is placed on the careful
specification and accumulation of the knowledge necessary for the
task. This in turn has focused interest on having the systems play a
broader role, considering in addition to performance such capabili-
ties as explanation, knowledge acquisition, and tutoring.

Many knowledge-based systems explain their results in the man-
ner suggested earlier, keeping a record of the rules that have been
applied and playing back the relevant portion of that record (4).
Some systems are also able to answer questions about what they did
not do (for example, 'Why didn't you conclude that the organism
was an Escherichia coli?"). The system examines the knowledge base
to find all the rules that would have led to that conclusion,
displaying them and showing why each failed to apply to the case at
hand (22). General questions about the task (for example, "How do
you conclude that the organism might be E. coli?) can be answered
similarly, retrieving relevant rules from the knowledge base.

Knowledge acquisition is important because the accumulation of
any sizable knowledge base is a process of iterative refinement, in
part because the initial explication of previously tacit knowledge is
difficult, often resulting in incomplete or inconsistent sets of rules.
For example, a knowledge base might be judged incomplete if it

contained rule 27 but no rules for inferring portal of entry, because
it would be better for the system to infer the answer than to rely on
the user's judgment. In response, one or more new rules might be
added to allow the system to deduce the answer from more basic
data. Now when the system, reasoning backward through the rules,
comes to clause 3 of rule 27, rather than ask the user it will retrieve
the newly added rules, which in turn may require the more basic
observations. Adding new rules is rarely this straightforward in
practice (23), but the process is facilitated by focusing the rules on
the knowledge underlying the task.

Knowledge acquisition can also aid in the development and
systematization of knowledge in a field. It assists in much the same
way that writing a text ofien helps: building a system requires the
same sort of methodical listing. Building a system helps in a way that
developing any kind of computer program helps, and in a way that
no paper listing can: it provides a form of "mental hygiene" in
running the rules that is not available in other media. With rules
written on paper and invoked by hand, there is enormous tempta-
tion to do what we think the rule meant, not what it actually said.
Scale is also an issue: the ability to keep track of detail in hand
simulation is easily overwhelmed by more than a few dozen rules. In
that case the system can be used to do the reasoning and track the
details.

The system also helps by running endless tests and running them
faster than is possible by hand. This permits an interactive approach
to knowledge acquisition: the system can be used to evaluate many
different additions to the knowledge base. Such evaluation in turn
facilitates incremental knowledge specification, accumulating bits of
knowledge by distilling them one at a time from hundreds of real
examples, an approach that has proven successful on tasks chosen in
part because there is as yet no simple, encompassing theory for
them.

Building a knowledge-based system also offers leverage because of
its ability to provide explanations and because of its incremental
character. Explanations ensure that we can see how the rules are
actually being used, which may turn out to be different from what
was intended.

Building a system incrementally makes it possible to attack a small
part of a problem and, over time, add new knowledge to expand the
scope of competence. As a result, it may not be necessary to
understand the entire problem before starting on the parts that are
understood.

Having laboriously transferred knowledge from an expert to the
system, it would be useful if the system could transfer the same
knowledge to a student. This transfer is possible but nontrivial (24),
in part because teaching sometimes requires a deeper understanding
than doing, and in part because it also requires pedagogical skills.
Where problems can often be solved with the rote application of a
procedure, teaching also requires being able to document why and
how the procedure works, knowing how to structure a lesson, and
SO on.

Current Systems
While this broader view of programs has implications for the long

term, much of the near-term impact of knowledge-based systems
results from their performance on problems of pragmatic value. A
number of systems are currently in use and under development in
both the research and commercial communities. The representative
systems described below were selected on the basis of applicability to
a problem of scientific interest, substantial development, and current
performance.

Geoh~y. The Prospector system (8) was developed to aid in

SCIENCE, VOL. 231

mineral exploration, including regional resource evaluation, ore
deposit identification, and drilling site selection. The system's
knowledge base covered ten different kinds of deposits in detail,
describing the characteristic features of large-scale deposits of lead,
zinc, copper, molybdenum, uranium, and others. In one instance it
was able to extend the boundaries of a known deposit (25).

The Dipmeter Advisor system (26) interprets data from oil wells.
Tools lowered into the well and slowly retrieved measure such
things as the inclination (or dip) of rock bedding planes. Using
knowledge of the effects of geologic forces, human experts can
interpret these measurements to infer subsurface geology, including
the presence of faults, ancient sand dunes, river channels, and so
forth. This knowledge was analyzed and embodied in the system,
allowing it to produce interpretations, primarily for the deltaic
environments in which it was originally developed.

Electronic troubleshooting.. ACE (automated cable expert) was
developed to analyze the large volume of trouble reports generated
in residential telephone service (27). These reports were previously
analyzed by looking for patterns of misbehavior that suggest a
specific cable, junction box, or other component as a source of
trouble. This expertise has been captured in approximately 500 rules
that scan the trouble report database, processing overnight what had
previously required a week or more.

Aeronautics-mtronautia. The Navex system is designed to func-
tion as an interpreter of navigation data gathered during space
shuttle flights (9). The shuttle is tracked by multiple radar sites, each
providing estimates of range and azimuth. Like the human console
operators, Navex determines whether to include or exclude specific
tracking stations (on the basis of the quality of the data being
supplied), whether to adjust (restart) the Kalman filter used to
estimate position, velocity, and acceleration from the possibly noisy
data, and whether to certify the current position estimate as reliable
(for use by other groups at Mission Control).

The system also maintains a model of the mission, which,
combined with its knowledge of the domain, allows it to anticipate
events. As one example, the system knows when the solid rocket
boosters are due to separate and knows that when they do, the C-
band radars will often track them, rather than the shuttle.

Chemist?. The Dendral program (28), one of the earliest knowl-
edge-based systems, aids in the determination of molecular smc-
tures by interpreting data from a mass spectrometer. Its expertise
includes aliphatic structures like ketones, ethers, alcohols, and
mines, and extends to cyclic ketones, estrogenic steroids, and
prostaglandins. It has been used to check solutions found in the
literature and often turns up additional possibilities; in one instance
it proved better than human experts at untangling the data produced
by a mixture of compounds.

Dendral's power arises from several kinds of knowledge of
chemistry. Substantial performance arises from its structure genera-
tor, an exhaustive, nonredundant enumerator of possible structures
that ensures no potential solution will be overlooked. Rules con-
cerning structures that are impossible at room temperature provide
additional knowledge used to guide and constrain the generator.
Guidance is also provided by knowledge about mass spectra: various
patterns of peaks are characteristic of particular families of mole-
cules. Finally, knowledge of molecular fragmentation processes
makes possible rules that test candidate solutions.

Medicine. Medicine has been a rich source of examples and
challenging problems for these systems. Mycin (6) was designed to
consult on problems of infectious disease diagnosis and therapy
selection (diagnosing bacteremia and meningitis, then selecting
antibiotic treatment). Caduceus (7) works in the broad problem of
internal medicine; after almost 15 years of knowledge base construc-
tion effort the system is scheduled for field test late in 1986.

Mathematics. Macsyma (lo), another of the earliest knowledge-
based systems, can perform, at the user's request, a very wide range
of operations in symbolic mathematics. Experimental systems have
also been developed for statistics, where the interesting problem is
not in doing the statistical calculations, but in knowing what
arithmetic to do and how to interpret the results. Systems under
development assist with determining when regression can be applied
(29), basing their decision in part on knowledge of phenomena like
collinearity.

The technology has been applied across a wide range of fields: in
addition to the well-established systems mentioned, experimental
systems have also been developed for tasks as diverse as planning
experiments in molecular biology (30), designing organic syntheses
(31), and investigating creativity in mathematical research (32).

Research Issues
While construction of systems like these has in a few cases been

relatively straightforward (15), often the effort encounters substan-
tial issues that are the subject of basic research. This section discusses
a few representative issues.

Where it has been possible, distinguishing between what to know
and what to do provides substantial benefits in terms of multiple
uses of knowledge. But even under these circumstances, explanation
and knowledge acquisition are not trivial. Explanation viewed as a
replay of the reasoning is not particularly use l l if that reasoning is
long and complex. In response, some systems have modeled their
tasks at multiple levels of detail and are thus capable of providing
high-level explanations that avoid unnecessary detail (33). A key
issue in research on automating knowledge acquisition is credit
assignment, determining what missing or incorrect knowledge
caused the system to produce the wrong answer. This in turn
appears to require substantial knowledge about the task at hand
(34), offering a technical version of the common-sense observation
that learning proceeds best when it has an established base of
knowledge to work from.

Experience has also indicated that it is difficult to keep this
distinction sharp. Difficulties arise because an important part of
expertise in many tasks is knowledge of sequence and problem-
solving strategies. Xcon (35), for example, a large system with over
3000 rules, checks the purchase order for a computer system to
ensure that it is complete (all of the appropriate components are
present) and consistent. Six basic steps must be followed, in order,
to accomplish this task, but there is no direct way to express this fact
by using rules of the sort illustrated earlier. Such rules are well suited
to expressing small, independent inferences, not the overall structure
of the solution. Expressing overall solutions is not impossible
through the use of rules, only very difficult and often indirect (36),
intermixing the domain knowledge and how it is to be used, thereby
losing clarity and the other advantages this distinction offers. While
the sequencing of steps is easily expressed in any standard program-
ming language, it is not yet obvious how to combine rules and
procedures in the same program to get the benefits of both.

Problem-solving strategies express ways of attacking a problem,
such as "use process of elimination," or "generate all hypotheses
consistent with the initial data, then generate tests that will distin-
guish among hypotheses." They are ubiquitous in analytic problems
like the diagnosis and data-interpretation tasks often encountered by
knowledge-based systems. Yet neither rules of the sort illustrated
earlier nor any of the standard knowledge representation techniques
offer a way to express this information directly.

This difficulty has led to an active body of research whose
fundamental hypothesis is that specifying and selecting a problem-

28 PEBRUARY 1986 ARTICLES 961

solving strategy-deciding what to do next-is itself a knowledge-
based task (37). In response, strategies are treated as a task domain
in much the same way that the original knowledge-based systems
focused on their tasks: specify and accumulate a body of knowledge
about the topic. This new body of knowledge is used to select a
strategy appropriate to the problem at hand; that strategy is then
used to guide application of knowledge in the original knowledge
base. The difficult problems here are discovering the strategies and
developing knowledge representation languages that are both ex-
pressive and efficient (38).

But even where distinction between knowing and doing has not
been maintained with complete clarity, substantial benefit has
resulted. Developing knowledge bases for a range of tasks has
helped to make clear what knowledge is required for those prob-
lems. This in turn has made it possible to study the knowledge bases
to detect recurring patterns of reasoning that might not otherwise
have been visible (39). Ways of expressing those patterns now being
developed should improve the performance and ease of construction
of future systems.

A second area of considerable research activity is building systems
that reason from a more fundamental understanding than is typically
captured in rules. Traditionally rules have expressed empirical
associations, links like those between symptoms and diseases where
the connection has been observed frequently, but the underlying
mechanism may not be clear. Rule 27, for instance, asserts such an
association, but does not indicate why it is true, perhaps because the
answer is not yet known.

Research efforts in progress draw on examples from analog and
digital circuits, simple mechanical devices, and selected areas of
medicine (33, 40). The key issue is understanding, modeling, and
reasoning about causality: a central concept in many of the efforts is
the notion of a causal explanation. While the equations for the force
on a simple pendulum, for example, can be solved analytically to
indicate that it will oscillate, this doesn't tell us what causes the
oscillation. Physical intuition is better served by an explanation that
describes how the forces at the beginning of the swing accelerate the
bob from rest, how those forces then decrease as the string moves
toward the vertical, then reverse, and so forth. The explanation is
causal in that it identifies explicit causes and their effects, the causes
precede effects, and effects propagate locally (there is no action at a
distance)--all intuitive attributes of causality. The explanation is also
qualitative, using terms like "increase" and "decrease," enabling it to
suppress the detail present in a quantitative account.

Explanations like this play a key role in many forms of problem-
solving currently being investigated. One interesting task is produc-
ing the explanations themselves: the system is given a structural
description of a device and produces from it a causal description of
the device's behavior (41). This differs from the task of traditional
simulation, in which the basic question is what the device will do;
here the goal is to produce an explanation of why such behavior
occurs.

Such explanations can provide the basis for a p o w e m form of
diagnostic reasoning (42). If, for example, a digital circuit is
malfunctioning, tracing backward from a symptom along the path
of causality permits the identification of components that may be
broken. Systems built this way can handle a wider range of devices:
where the knowledge base of a rule-based system is typically specific
to a single device, programs built using this approach can in effect
"read the schematics" to gulde their reasoning. They are also more
robust, in the sense that they can diagnose a wider range of faults,
including those that change the connectivity of the circuit, changing
the path of signal flow. To date only very simple circuits have been
used; the difficult research problems include describing and reason-
ing about the behavior of complex devices like microprocessors.

In the long term this line of work has implications for both theory
and practice. Theory is advanced by the careful statement of the
principles that guide construction of these systems (43). One such
principle, common in many engineering disciplines, indicates that
the behavior specification of a component should refer only to
properties of that component, not anything that component may be
attached to. Thus the behavior of a switch, for instance, should not
be "if the switch is closed, current will flow," since that presumes the
switch is attached to a current source. Instead it should simply be
"when the switch is closed, the voltage at either end of the switch
will be the same." Following this guideline helps to ensure that the
model captures physical causality, rather than the biases and expecta-
tions of the model builder.

Advances may lead to knowledge-based systems with a wider
range of abilities. Current systems are narrowly focused in their
expertise and are fragile, in the sense that their performance falls off
precipitously near the boundaries of that expertise, especially when
compared with the more graceful decline exhibited by human
experts. These systems know the rules, but have no more fundamen-
tal theory to fall back on when no rules apply. Their rule base
captures knowledge as a large collection of specific situations, but
provides no means for reasoning that the current situation is
different from "but very close to" one specified in a rule. Causal
reasoning may provide a basis for such reasoning, broadening the
scope of the system's performance.

Knowledge-based systems have generated wide interest for the
kinds of problems they have attacked and the level of performance
they have occasionally achieved. A more significant impact may be
the broader view they take of a computer program, suggesting that
it not be considered simply as a set of instructions written for the
efficient solution of a problem, but viewed instead as an en\ 'iron- '

ment for the development, accumulation, and specification of
knowledge about that problem.

This view is made possible in part by distinguishing between what
to know and what to do, attempting as far as possible to express
knowledge about the task without also committing to a specific way
of using that knowledge. The separation of inference engine and
knowledge base in these systems reflects this distinction; it also
offers the opportunity to build new systems by writing new
knowledge bases. Where the knowledge has successfully been
expressed without committing to a specific way of using it, the same
information can be used in multiple different ways, providing
significant support for explanation, knowledge acquisition, and
tutoring.

This distinction has been achieved to only a limited extent in most
operational systems, but even so the systems built have proved to be
useful tools aiding in the organization and study of knowledge
about a range of tasks. These systems have also motivated research
into the elucidation of strategies and the development of advanced
languages for expressing them. Research focused on understanding
and reasoning from causality emphasizes the accumulation of princi-
ples for carel l construction of models and may provide an irnpor-
tant base for broadening performance of these systems beyond their
currently narrow focus.

While the computational technology described plays a key role in
facilitating the elucidation, expression, and testing of knowledge,
the specific computer programs built may prove to be irrelevant.
The most lasting contribution of these systems will likely lie in the
knowledge that had to be accumulated and formalized to make them
work.

SCIENCE, VOL. 231

REFERENCES AND NOTES

I. A. Newell and H. A. Simon, Human Problem Solving (Prentice-Hall, Englewmd
cliffs, y, 1972).

2. E. A. Feigenbaum, B. Buchanan, J. Lederberg, in Machine Intelligence B. Meltzer
and D. Michie, Eds. (American Elsevier, New York, 1971)~ vol. 6.

3. The related term "expert system" is less desirable for its lack of technical substance
and tendency to suggest inappropriate standards. Calling something an expert
system primarily advertises the aspiration to have it perform at the level of human
experts. Although this has been accomplished in several cases, significant utility has
arisen from knowledge-based systems that fimction as intelligent assistants and
colleagues, without ever becomng expert at their task.

4. R. 0. Duda and E. H. Shodffe, Science 220, 261 (1983).
5. I coined the term "inference engine" in 1974 in conscious analogy to C. Babbage's

term for his pioneering 19 th-cenq machine, the "analytical engine," but with the
ap ropriate modificauon to make clear that its basic operation is inference, not
cJulation.

6. B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Systems (Addison-Wesley,
Reading, MA, 1984).

7. H. E. Pople, in AI in Medicine, P. Szolovits, Ed. (Westview, Boulder, CO, 1982).
8. R. 0 . Duda and R. Reboh, inAIAppluationsfirBwiness, W. Reitman, Ed. (Ablex,

Norwood, NJ, 1984).
9. M. C. Maletz, Anificial Intelligence 1985 (1985), p. 71

10. R. Bogen et al., "MACSTMA Refevence Manual" (Laboratory for Computer
Science report, Massachusetts Institute of Technology, Cambridge, 1975).

11. Proceedings of the AAAI Workshop on Uncertainty and Probability in Artificial
Intelligence (American Association for Artificial Intelligence, Menlo Park, CA,
1985).-

12. J. Fox, C. D. Meyers, M. F. Greaves, S. Pegram, Method Infirm. Med. 24, 65
(1985).

13. T h s explanation has been simplified to present only the points needed for what
follows. A more detailed explanation can be found m (4) or (6).

14. B. K. P. Horn, Robot Vkwn (MIT Press, Cambridge, MA, 1984).
15. J. Kunz et al., "A hysiological rule-based system for interpreting pulmonary

function results" (&mputer Science Department working paper HPP-78-19,
Stanford University, Stanford, CA, 1978),

16. J. S. Bennett, L. A. Creary, R. S. En elmore, R. E. Melosh, "SACON: A
knowledge-based consultant in struchlrf analysis" (Computer Science Depart-
ment report HPP-78-23, Stanford University, Stanford, CA, 1978).

17. J. S. Bennett and C. R. Hollander, Proc. Int. Joint Conf:AI 7, 243 (1981).
18. W, vanhielle, "A domain independent system that aids in constructing consulta-

tion rograms" (Computer Science Department report STAN-CS-80-820, Stan-
ford bniversity, Stanford, CA, 1980).

19. The concept that programs might be iven advice rather than instructions appears
quite early in the history of A1 D. Mctarthy, in Semantic InJbwnationProcessin M.
Minsky, Ed. (MIT Press, Cambrid e, MA, 1968)] This same motivation is a fo at
the heart of some of the work on kngua es like Prolog.

20. This is not always easy. (i) Each equationaas to be inverted; this can be di5cult in
complex models. (ii) It may be necessary to keep track of alternative choices: if

c = a + b, for instance, c can be changed by changing a alone, b alone, or both
together. But often it can be done and in those situations illustrates an important
technique. Even where equations cannot be inverted, there is still utility in moving
backward through the model to determine which quantities are relevant to the
desired result.

21. Various commercial spreadsheet pro rams have several of these capabilities; a
small, experimental program used in t8e MIT course on knowledge-based systems
does them all (crudely).

22. R. Davis and D. B. Lenat, Knowledge-Based Systems in A I (McGraw-Hill, New
York, 1982).

23. J. Bachant and J. McDermott,AIMag. 5, 21 (1984); R. Davis, Artif: Intell. 12, 121

(1979).
24. W. J. Clancey, Int. J . Man-Mach. Stud. 11, 25 (1979).
25. A N. Cam bell, V. F. HoUiier, R. 0 . Duda, P. E. Hart, Science 217, 927 (1982).
26. R. G. smiJ ,AIMag. 5, 61 (1984).
27. G. T. Vesdoner. S. 1. Stolfo. T. E. Zielinski, F. D. Miller. D. H. Copp, Pmc. Int. , . '

con& ~1 8, I16 (198;).
28. R. K. Lindsa , B. G. Buchanan, E. A. Feigenbaum, J. Lederberg, Applications of

Artificial Inteligencefir Organic Chemishy (McGraw-Hill, New York, 1980).
29. R. W. Olford and S. C. Peters, in Anificral Intellbetace and Stathis, D. Pregibon,

Ed. (Addison-Wesley, Reading, MA, 1985); D. Pregibon, ibid., p. 136.
30. M. Stefik, Artif: Intell. 16, 111 (1981); P. Friedland and Y. Iwasaki, J. Automated

Reasoning I, 161 (1985).
31. W. T. Wipke, H. Braun, G. Smith, F. Choplin, W. Sieber, in Computer-Asshed

Oraanic Svnthesis. W. T. W i ~ k e and W. J. House. Eds. (American Chemical
SoTiety, washington, DC, I&).

32. D. B. Lenat, Artif: Intell. 9, 257 (1977); D. B. Lenat and J. S. Brown, ibid. 23, 269
(1984).

33. R. Pad, "Causal understanding of patient iUness for electrolyte and acid-base
diagnosis" (Computer Science Department, report MITLCSRR-267, Massachu-
setts Institute of Technolo Cambridae, 1981). ,

34. J. G. Carbonell, R. S. Michgki, T. Mitc ell, mMachmeleaming, R. S. Michalski,
J. G. Carbonell, T. Mitchell, Eds. (Tioga, Palo Alto, CA, 1983).

35. J. McDermott, Artif: Intell. 19, 39 (1982).
36. C. Forgy and J. McDermott, Proc. Int. Joint Conf: AI 5, 933 (1977).
37. R. Davis, Anif Intell. 15, 179 (1980); M. R. Genesereth, Proc. Natl. Conf: AI (1983)~

p. 119; W. J, CIancey, ibid., p. 74.
38. H. J. Levesque, R. J. Brachman, in Readings in Knowledge Representation, R. J .

Brachman and H. J. Levesque, Eds. (Morgan-Kaufmann, Los Altos, CA, 1985).
39. W. Clancey, Artif: Intell. 27, 289 (1985).

40. Anif: Intell. 24, 1-491 (1984).
41. J, deKleer, in (@), p. 205; A. Stevens et al., "Steamer: advanced computer-aided

instruction in propulsion engmeermg" (report 4702, Bolt, Beranek & Newman,
Cambridge, MA, 1981).

42. R. Davis, in (@), 247; M. R. Genesereth, in (@), p. 411.
43. J. deKleer and J. $ '~ rown, in (4); p. 7.
44. Useful comments on earlier drafts were received from B. Williams, R. Duda, W.

Hamscher, M. Shirl D. Weld, T. Malone, R. Valdes-Perez, P. Szolovits, D.
Lenat, and E. ~ e i ~ e x a u m .

Small Shared-Memory Multiprocessors

Multiprocessors built from today's microprocessors are
economically attractive. Although we can use these multi-
processors for time-sharing applications, it would be
preferable to use them as true parallel processors. One key
to achieving efficient parallel processing is to match the
communications capabilities of the multiprocessor to the
communications needs of the problem. The other key is
improved parallel programming systems. If these are
achieved, then efficient parallel processing can be ap-
proached from both ends by providing more communica-
tions capability in the hardware and restructuring the
problem to reduce the communications requirements.

T HE LABORATORY COMPUTING ENVIRONMENT FOR SCIEN-

tists and engineers has been changed dramatically, first by
minicomputers and, more recently, by personal computers

and p o w e f i workstations. Small multiprocessors promise to in-
crease the speed with which computationally intensive problems can
be solved in the laboratory (1). While such machines should be as
much as one order of magnitude faster than today's minicomputers,
they will probably have comparable or lower costs. These multipro-
cessors will be small in that the processors will number on the order

Forest Baskett is director, Western Research Laboratory, Di ital Equipment Corpora-
tion, roo Hamilton Avenue, Palo Alto, CA 94301. John %. Hennessy is associate

rofessor, Departments of Electrical Engineering and Computer Science, Stanford
f ; . mversity, Stanford, CA 94305

28 FEBRUARY 1986 ARTICLES 963

